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Structural characterization of a sulfated
polysaccharide from Gracilariopsis lemaneiformis
and its potentiation of cisplatin antitumor activity

in Colon-26 carcinoma tumor-bearing mice by
inducing ferroptosis
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Ferroptosis, a form of regulated cell death caused by iron-mediated lipid peroxidation, has become a
potential strategy to overcome drug resistance and improve the efficacy of traditional cancer treatments.

In this study, we investigated whether treatment with the combination of Gracilariopsis lemaneiformis
polysaccharides and cisplatin (CP) potentiated the antitumor activity in a Colon-26 carcinoma tumor-
bearing mouse model by ferroptosis activation. The G. lemaneiformis polysaccharide GP90 was mainly
composed of (1-3) linked 4-O-sulfate-f-p-galactose and (1-4) linked 3,6-anhydro-a-L-galactose with a
molecular weight of 12.45 kDa. Compared with the CP group, the combination of GP90 and CP signifi-

cantly suppressed tumor growth. Based on the transcriptomic and metabolomic analyses of tumor tissue,
GP90 enhanced the antitumor effect of CP by promoting ferroptosis and regulating ferroptosis-related
metabolic pathways. Moreover, the accumulation of 4-hydroxy-2-nonenal (4-HNE) and down-regulation

of the expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (Gpx4)
were verified by immunohistochemistry staining. Finally, gene set enrichment analysis showed that posi-
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1. Introduction

Colorectal cancer (CRC) is the third most common malignancy
and the second leading cause of cancer-related death," with
nearly 1.93 million new cases and 0.94 million deaths in 2020
worldwide.> Cisplatin (CP) is one of the most effective cytotoxic
agents in CRC chemotherapy; however, its therapeutic efficacy
is limited by chemoresistance and detrimental side effects.®
Hence, there remains a need for effective therapeutic
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tive immunoregulatory pathways were significantly enriched in the GP90 and CP combination group. Our
results indicate that GP90 potentiates chemotherapy sensitivity by targeting the transferrin receptor and
SLC7A11/Gpx4 pathway to induce ferroptosis, which might be a useful therapeutic target in colorectal

approaches to improve the CP sensitivity in CRC. Recent scien-
tific evidence has shown that CP induces ferroptosis and apop-
tosis in CRC cells and that the combination of CP and the
ferroptosis inducer erastin is effective in enhancing the anti-
tumor activity of drugs.” Ferroptosis, a new mode of cell death
caused by iron-dependence and lipid peroxidation, plays a
beneficial role in improving cancer treatment, tumor chemore-
sistance, and antitumor immunotherapy. Ferroptosis agonists
can promote the accumulation of intracellular reactive oxygen
species (ROS), reduce the transferrin content, or inhibit
cystine/glutamate antiporter System Xc-mediated cystine trans-
port, which leads to ferroptosis in drug-resistant tumor cells.”
In addition, ferroptosis may reshape the tumor ecology and
stimulate the immune microenvironment, thereby inhibiting
tumor growth and progression.® Thus, strategies to induce
ferroptosis have been proposed to improve the outcomes of
current cancer therapy.

Gracilariopsis lemaneiformis is an edible red alga of econ-
omic importance that is not only directly consumed but can
also be processed into dietary supplements, cosmetics, and

This journal is © The Royal Society of Chemistry 2023
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pharmaceuticals, among others. G. lemaneiformis contains
high levels of polysaccharides, phycobiliproteins, pigments,
and other nutritional components, whereas polysaccharides
are its main active components.” G. lemaneiformis polysacchar-
ides (GPs) exert potential antitumor activity without obvious
toxicity. Shi et al. reported that the three polysaccharides
extracted from G. lemaneiformis inhibited the proliferation of
MCF-7, HepG-2, and HeLa cells in vitro.® Additionally, in vivo
antitumor tests showed that soluble GPs significantly inhib-
ited mouse sarcoma S180 tumor growth and improved the
activity of splenic lymphocytes and natural killer cells.’
Moreover, GPs alleviated dextran sulfate sodium-induced
colitis in mice by remodelling the gut microbiota and intesti-
nal metabolites, which reduces the risk of CRC.'° Thus, GPs
not only directly inhibit tumor growth, but also interfere with
tumor progression and can be used for tumor prevention and
adjuvant therapy. Du et al. found that Lycium barbarum poly-
saccharide effectively prevented the proliferation and pro-
moted the ferroptosis of breast cancer cells, mainly by the
System Xc- and glutathione peroxidase 4 (Gpx4) pathway.'!
Studies have also shown that Pinus massoniana pollen polysac-
charide treated colon cells exhibit electron-lucent cytoplasm
and nuclei as well as cytoplasmic vacuolization, which are
characteristic of apoptosis caused by ferroptosis.'”> The ques-
tion remains whether the auxiliary antitumor activity of GPs is
related to the induction of ferroptosis.

In this study, we investigated the synergistic antitumor
effect of GPs in combination with CP and determined whether
the underlying mechanism is related to ferroptosis induction.

2. Materials and methods

2.1. Materials

Dried G. lemaneiformis was provided by Qingdao Haiyouyou
Trading Co., Ltd (Shandong, China), the origin being Qingdao.
Colon-26 (C26) colon carcinoma cell lines were obtained from
the American Type Culture Collection (ATCC, Manassas, VA,
USA). Dulbecco’s modified Eagle medium (DMEM), fetal
bovine serum (FBS), penicillin-streptomycin antibiotics, and
phosphate-buffered saline (PBS) were purchased from
Invitrogen-Gibco (Grand Island, NY, USA). All chemical
reagents were of analytical grade.

2.2. Preparation of GP90

Dried G. lemaneiformis powder was obtained by crushing and
passing through an 80-mesh screen. Then the powder was
washed three times with anhydrous ethanol, and soaked over-
night in anhydrous ethanol at 4 °C. After filtration, the filtered
residue was dried at 70 °C for 2 h and then extracted with 35
times the volume of 0.05 M citric acid solution (v/w, mL g™') at
100 °C. After the reaction for 2 h, the supernatant was col-
lected by centrifugation at 10 000 rpm for 20 min, and the pH
was adjusted to 7.0 with 1 M NaOH solution and concentrated.
The concentrate was recovered, and anhydrous ethanol was
added until the concentration of the final system alcohol was
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30% for precipitating the fraction, followed by a continued
regulation of the supernatant with anhydrous ethanol to final
alcohol concentrations of 60% and 90% to obtain GP90. The
precipitated GP90 was solubilized with distilled water, depro-
teinated by the Sevag method (chloroform : butanol = 5: 1, v/v),
concentrated, dialyzed, and lyophilized.

2.3. Structural characterization of GP90

The homogeneity and molecular weight were measured with
an Agilent 1260 Infinity size exclusion chromatography and gel
permeation chromatography system equipped with an Agilent
RID-7115A refractive index detector (Agilent Technologies, Palo
Alto, CA, USA) and a gel-filtration chromatography column
(TSK-gel G3000PWXL column, 7.8 x 300 mm i.d., 7 pm; Tosoh
Bioscience LLC, Tokyo, Japan). Dextran standards (1, 5, 12, 50,
80 and 270 kDa) were used for calibration. Elution was per-
formed with 0.02 M ammonium acetate solution at a rate of
0.6 mL min~" and maintained at 35 + 1 °C.

According to a previously reported high-performance liquid
chromatography (HPLC) method,"® freeze-dried GP90 (5 mg)
was hydrolysated with 4 M trifluoroacetate acid (TFA, 1 mL) for
4 h at 120 °C, and excess TFA was removed by rotary evapor-
ation with methanol. Subsequently, the products or monosac-
charide standards were derivatized with 3-methyl-1-phenyl-2-
pyrazolin-5-one (PMP, 0.5 M) at 70 °C for 1.5 h. Then the reac-
tion mixture was neutralized and excess PMP was removed
using chloroform. The monosaccharide was analyzed using
HPLC (Agilent-1260; Agilent Technologies) equipped with a
YMC-Pack ODS-AQ column (250 x 4.6 mm, L.D. S-5 pm, 12 nm)
and eluted with 50 mM ammonium acetate solution and aceto-
nitrile at a ratio of 73 :17 (v/v).

Fourier transform infrared spectroscopy (FTIR) for GP90
was carried out using 400 FT-IR spectrometers (Shimadzu,
Japan) at wavelengths ranging from 4000 to 400 cm™".

GP was prepared with D,O to a concentration of 30 mg
mL ™", The nuclear magnetic resonance (NMR) spectra of GP90
were analyzed using a 700 MHz NMR spectrometer (Bruker
Daltonik GmbH, Leipzig, Germany), and the 1D- and 2D-NMR
spectra were recorded.

2.4. Animal experimental design

BALB/c mice (8 weeks old, 20-24 g, male) were obtained from
SiPeiFu (Beijing Biotechnology Co., Ltd, Beijing, China) and
housed in a room under a 12 h light-dark cycle and main-
tained at 22 + 2 °C. Animal experiments were performed fol-
lowing the guidelines of the Animal Ethics Committee of
Guangdong Medical University (GDY1902062).

C26 colorectal models were prepared as described by Zhang
et al."* Briefly, C26 colon cells were cultured in DMEM contain-
ing 10% FBS, 1% glutamine, 1 mM sodium pyruvate, and 1%
streptomycin/penicillin at 37 °C and 5% CO,. Then the cells
were collected in a 0.25% trypsin-EDTA solution and resus-
pended in sterile PBS before subcutaneous injection into mice
(1 x 10° cells per mouse). On day 1 after the C26 cell injection,
all mice were randomly divided into four groups: model, GP90,
CP and CP + GP90."® Mice in the GP90 and CP + GP90 groups
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were gavaged with 200 mg kg™' GP90 daily, whereas mice in
the other two groups were gavaged with 0.2 mL sterile saline
alone daily. In CP and CP + GP90 groups, the mice were
treated with a combination of GP90 and intraperitoneal CP
chemotherapy (3 mg kg™') starting from day 1 and every 4 days
thereafter. During the study, the tumor volume was measured
every 3 days based on the formula: V = 0.5x”y, where x is the
shortest and y is the largest superficial diameter. On day 16
after treatment, the mice in all groups were sacrificed by cervi-
cal dislocation. Spleen and tumor tissues were collected and
stored at —80 °C for subsequent analyses.

2.5. RNA isolation, sequencing, and bioinformatics analysis

Total RNA from tumor samples was extracted using the Trizol
reagent (Invitrogen, Carlsbad, CA, USA) based on the manufac-
turer’s protocol, and the RNA quality was assessed using
RNase-free agarose gel electrophoresis using an Agilent 2100
Bioanalyzer (Agilent Technologies). After the extraction of total
RNA, eukaryotic mRNA was enriched using oligo (dT) beads,
while rRNA was removed using the Ribo-ZeroTM Magnetic Kit
(Epicentre, Madison, WI, USA). Then the enriched mRNA was
fragmented into short fragments with fragmentation buffer
and reverse transcribed into ¢cDNA using random primers. The
cDNA fragments were purified using the QiaQuick PCR extrac-
tion Kit (Qiagen, Venlo, the Netherlands), end-repaired, poly-
adenylated, and ligated to Illumina sequencing adapters. The
ligation products were separated by size by agarose gel electro-
phoresis, amplified by PCR, and sequenced using the Illumina
HiSeq2500 (Gene Denovo Biotechnology Co., Guangzhou,
China). The RNA-sequence data reported in this study was
archived in the NCBI SRA database with the accession number
PRJNA945228 and PRJNA945586.

The differential expression analysis of different RNAs in
each group was performed using the DESeq2 software. The
genes with a false discovery rate parameter below 0.05 and an
absolute fold change >2 were considered differentially
expressed genes (DEGs). All DEGs were mapped to Gene
Ontology (GO) terms in the GO database (https:/www.geneon-
tology.org/), and then the number of genes per term was calcu-
lated. The GO terms that were significantly enriched in DEGs
were defined using the hypergeometric test. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis identified metabolic pathways or signal trans-
duction pathways that were significantly enriched in DEGs
compared to the genome-wide background. The calculated
p-value was corrected for the false discovery rate (FDR) with an
FDR of <0.05 as the threshold. GO terms and KEGG pathways
that met this condition were defined as significantly enriched
in DEGSs.

2.6. Metabolite analysis

Tumor tissues (100 mg) were grounded with liquid nitrogen
and resuspended in 500 pL prechilled 80% methanol by vortex-
ing. The homogenate was incubated on ice for 5 min and then
centrifuged at 15 000g, 4 °C for 20 min. The supernatant was
taken and diluted with LC-mass spectrometry (MS) grade water
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to a final methanol concentration of 53%, and then centri-
fuged at 15 000g, 4 °C for 20 min. Finally, the supernatant was
injected into an LC-tandem MS (MS/MS) system for analysis.

Ultra-performance LC (UPLC)-MS/MS analysis was per-
formed using the Vanquish UPLC system (Thermo Fisher
Scientific, Dreieich, Germany) coupled with the Orbitrap Q
ExactiveTM HF-X mass spectrometer (Thermo Fisher
Scientific) at Gene Denovo Co., Ltd. Samples were injected into
a Hypesil gold column (100 x 2.1 mm, 1.9 pm) at a flow rate of
0.2 mL min~". The eluents for the positive polarity mode were
eluent A (0.1% formic acid in water) and eluent B (methanol),
and the eluents for the negative polarity mode were eluent A
(5 mM ammonium acetate, pH 9.0) and eluent B (methanol).
The elution parameters were set as follows: 2% B, 1.5 min;
2-100% B, 12.0 min; 100% B, 14.0 min; 100-2% B, 14.1 min;
and 2% B, 17.0 min. A Q Exactive™ HF-X mass spectrometer
was operated using a spray voltage of 3.2 kV, a capillary temp-
erature of 320 °C, a sheath gas flow rate of 40 arb, and an aux
gas flow rate of 10 arb.

Raw data files generated by UPLC-MS/MS were processed
using the Compound Discoverer 3.1 (Thermo Fisher Scientific)
for peak alignment, peak extraction, and quantitation for each
metabolite. Then peak intensities were normalized to the total
spectral intensity and matched against mzCloud (https:/www.
mzclound.org/), mz Vault, and the Mass List database to
obtain accurate qualitative and relative quantitative results.
Statistical analyses were performed using Python (Python 2.7.6
version), R (R version R-3.4.3), and the CentOS (CentOS release
6.6) statistical software.

Orthogonal projections to latent structure-discriminant
analysis (OPLS-DA) were performed in metaX. Metabolites with
variable importance in projection values >1 and a p-value of
the ¢-test <0.05 were considered to be differentially expressed
metabolites (DEMs). The functions of DEMs and metabolic
pathways were analyzed using the KEGG database. The P-Value
<0.05 was considered statistically significant.

2.7. Quantitative PCR

The gene expression was validated based on the transcriptomic
data using quantitative PCR (qPCR). Total RNA was prepared
using the Trizol reagent. HiScript II Q RT SuperMix was used
for the qPCR of complementary DNA. Quantitative PCR was
performed with the AceQ qPCR SYBR Green Master Mix
(Vazyme, Nanjing, China) on the TL988 device (TianLong
Group, Guangdong, China). The amplifying conditions for
cDNA were as follows: denaturation at 95 °C for 90 s, 40 cycles
of 95 °C for 5 s, and 60 °C for 15 s, followed by 72 °C for 20 s.
The 2744°" method was applied to calculate changes in the
mRNA expression levels of candidate genes. The primer
sequences are listed in Table 1.

2.8. Immunohistochemistry staining

Tumor tissues were weighed, fixed in 10% formalin, and
embedded in paraffin. Briefly, after deparaffinization and
blocking in 3% hydrogen peroxide, the sections were treated
with citric sodium buffer (1 M, pH 6.0) and then treated by

This journal is © The Royal Society of Chemistry 2023
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Table 1 Sequences of gPCR primers

Gene Forward sequence Reverse sequence

Apoe CTGAACCGCTTCTGGGATTA GTTGCGTAGATCCTCCATGT
Tfrc CAGTCATCAGGGTTGCCTAATA CTGGGCTCCTACTACAACATAAC
Bnip3 TCCAGCCTCCGTCTCTATTT CGACTTGACCAATCCCATATCC
B-Actin CTGAGTCTCCCTTGGATCTTTG AGGGCAGGTGAAACTGTATG

microwave for antigen unmasking. Sections were blocked and
then incubated with anti-4-hydroxy-2-nonenal (4-HNE, 1: 1600
dilution; Bioss Antibodies, Massachusetts, USA), anti-solute
carrier family 7 member 11 (SLC7A11, 1:1600 dilution; Cell
Signaling Technology [CST], Shanghai, China), and anti-GPX4
(1:1600 dilution; CST) primary antibodies at 4 °C overnight.
The next day, sections were incubated with horseradish peroxi-
dase labelled secondary antibody (1:5000 dilution; CST) for
1 h at room temperature and then rinsed three times with PBS.
The sections were coloured with DAB, counterstained with
hematoxylin, and dehydrated. All images were viewed using
the FilterMax F5 fluorescence microplate reader (Molecular
Devices, Silicon Valley, CA, USA).

2.9. Statistical analyses

All data are expressed as the mean + standard deviation (SD).
Differences were analyzed by the one-way analysis of variance
using the IBM SPSS 22.0 software. P < 0.05 was considered stat-
istically significant.

3. Results

3.1. Structural characterization of GP90

The contents of carbohydrates and sulfate in GP90 were 88.29
+ 8.24% and 22.93 + 0.94%, respectively. A single and sharp
peak was observed in the chromatogram of GP90 (Fig. 1A) with
an average molecular weight of 12.45 kDa. GP90 was mainly
composed of galactose (97.95%; Fig. 1B), which indicated that
GP90 was a homogeneous polysaccharide. As shown in
Fig. 1C, the FTIR spectrum of GP90 showed typical character-
istic peaks of polysaccharides. The broad absorption at
3402.43 cm™" and sharp absorption at 2954.95 cm ™" were O-H
and C-H stretching vibrations, respectively. The strong absorp-
tion peak at 1220.94 cm™" and the sharp absorption peak at
848.68 cm™' corresponded to the asymmetric stretching
vibrations of S=0O and C-O-S, respectively, which indicates
the presence of sulfate.'® Peaks between 1000 and 1200 cm™*
may have the presence of C-O-H and C-O-C of galactose."”
The peaks at 925.83 and 848.68 cm™ " indicated the presence of
3,6-anhydro-galactopyranose and axial sulfate ester at C4 of
p-galactopyranose (G4S), respectively.'® The low-intensity peak
at 802.39 cm ™" was thought to be the sulfate group at C-2 of
3,6-anhydro-galactopyranose.'® The results revealed that GP90
was composed of galactose and anhydro-galactose.

The 1D NMR (*H, "*C, and DEPT-135) and 2D NMR (hetero-
nuclear singular quantum correlation spectroscopy [HSQC],

This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Molecular weight distribution (A), monosaccharide composition
(B), and FT-IR spectra of GP90 (C). The HPLC chromatograms of mono-
saccharide standards (blue line) and GP90 (red line). Peaks 1 = Man, 2 =
Rib, 3 = Rha, 4 = GIcA, 5 = GalA, 6 = Glc, 7 = Gal, 8 = Xyland 9 = Ara.

heteronuclear multiple correlation spectroscopy [HMBC], and
correlation spectroscopy [COSY]) were performed to analyze
the structural configurations of GP90. As shown in the 'H
NMR spectrum of GP90 (Fig. 2A), a typical proton of the
anomeric carbon of 3,6-anhydrogalactose (DA) at § 5.02 and of
galactose-4-sulfate (G4S) at § 4.54 are characteristic of
k-carrageenan.'””'® The ratio of G4S/DA was 2.34, which was
calculated based on the H-4 proton of G4S and the H-1 signal
of DA.*® The signals at § 102.27 and § 94.34 (Fig. 2B) were
ascribed to C-1 of G4S and DA, respectively.”’ From the
DEPT-135 spectrum (Fig. 2C), the intense inverted peak at §
60.73 was the C-6 of D4S, whereas the other inverted peak at §
69.40 was the C-6 of DA. The assignment of GP90 was analyzed
with 2D NMR. The 'H and "*C chemical shifts of GP90 are
summarized in Table 2. The HSQC spectrum depicts the corre-
lations of anomeric carbons of G4S with protons at § 102.27/
4.54 and 6 94.34/5.02 for DA (Fig. 2D). From the COSY spec-
trum of GP90 (Fig. 2E), the coupling correlation between H-1
(5 4.54) and H-2 (6 3.42), H-3 (6 3.73) and H-4 (§ 4.59), and H-5
(6 3.72) and H-6 (6 3.71) of G4S were found. For DA, H-1/H-2
was at 6 5.02/4.05, H-2/H-3 was at § 4.05/4.43, and H-5/H-6 was

Food Funct., 2023,14, 3712-3721 | 3715
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Fig. 2 The structural characterization of GP90 (A) *H NMR spectrum,
(B) 33C NMR spectrum, (C) DEPT135 spectrum, (D) HSQC spectrum, (E)
COSY spectrum and (F) HMBC spectrum. DEPT: distortionless enhance-
ment by polarization transfer; COSY: homonuclear chemical shift corre-
lation spectroscopy; HSQC: heteronuclear singular quantum correlation

spectroscopy; and HMBC: heteronuclear multiple correlation
spectroscopy.
Table 2 'H and "*C NMR chemical shifts of GP90

Sugar residues "H/**C chemical shift (ppm)

A (1-3) linked 4-0O- 4.54 3.42 3.73 4.59 3.72 3.71
sulfate-B-p-galactose 102.27 70.55 74.45 76.41 71.51 60.73
B (1—4) linked 3,6- 5.02 4.05 4.43 4.51 4.02 4.15
anhydro-a-L-galactose 94.34 69.54 78.67 77.97 69.54 69.40

at 4.02/4.15. The linkage sites of G4S and DA in GP90 were
further confirmed from the HMBC NMR spectrum shown in
Fig. 2F. The cross-peak at 6 4.54/77.91 (A H-1/B C-4) revealed
that the O-1 of residue A was linked to the C-4 of residue
B. The results of NMR spectroscopy also confirmed the pres-
ence of (1—-3) linked 4-O-sulfate-p-n-galactose and (1—4)
linked 3,6-anhydro-o-r-galactose. This similar structure of sul-
fated galactans has been found in other red algae such as
Gracilari caudate, Gracilariopsis persica, Ahnfeltiopsis flabellifor-
mis, and Acanthophora spicifera.”> >

3.2. The antitumor effect of GP90

The C26 tumor-bearing mice were treated with GP90 for 15
days and were sacrificed on day 16. Compared with the model
group, tumor growth was significantly inhibited in GP90-
treated mice starting from day 10 after the tumor challenge
(Fig. 3A). The average tumor weight in the GP90 group was
decreased by 24.01% compared to that in the model group
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Fig. 3 GP90 exerted antitumor efficacy in the C26 carcinoma tumor-
bearing mice. (A) The tumor growth curve was reported using the tumor
volume one time per 3 days. (B) The average tumor weight for each
group on the last day (i.e., day 16). (C) The average weight gain of mice
every three days. Results are expressed as the mean + SD (n = 6). *p <
0.05, **p < 0.01, the model group vs. the GP90 group; #p < 0.05, the CP
group vs. the CP + GP90 group.

(Fig. 3B). In addition, the tumor growth of CP-treated mice was
obviously inhibited, and the tumor inhibition rate was signifi-
cantly increased to 94.55% when combined with GP90
(Fig. 3B). During the experiment, GP90 treatment had no sig-
nificant effect on the mouse body weight and spleen index
(Fig. 3C and 3D), suggesting that GP90 inhibited tumor growth
without exerting general toxicity to the host. These results indi-
cate that GP90 exerts potential antitumor effects and increases
the sensitivity of tumor cells to CP.

3.3. Antitumor effect of the GP90 and CP combination
treatment is associated with ferroptosis

To elucidate the potential mechanism of the combined antitu-
mor activity of GP90 and CP, the transcriptome and metabo-
lome were used to analyze the changes in the tumor tissue. A
total of 22 322 genes were annotated in the tumor tissue from
the CP + GP90 group, of which there were 13 DEGs (five upre-
gulated and eight downregulated) compared with the CP group
(Fig. 4A). GO enrichment results showed that the DEGs were
significantly enriched in biological processes such as localiz-
ation, immune system response, and signalling; molecular
functions such as binding, catalytic activity, and transporter
activity; and significant enrichment in cellular components
such as membrane, protein-containing complexes and the
extracellular region (Fig. 4B). KEGG pathway terms enriched by
DEGs were mainly involved in nitrogen metabolism, ferropto-
sis, and cholesterol metabolism (Fig. 4C). qPCR analysis of fer-
roptosis-related genes apolipoprotein (Apoe), transferrin recep-
tor (Tfrc) and B-cell lymphoma 2-interacting protein 3 (Bnip3)
in tumor tissues was performed to validate the RNA-seq
results. Compared with the CP group, the relative mRNA
expression of Apoe and Tfrc was up-regulated, whereas the
relative mRNA expression of Bnip3 was down-regulated in the
CP + GP90 group (Fig. 4D). Considering the DEGs and KEGG
pathways involved in ferroptosis, we speculated that GP90

This journal is © The Royal Society of Chemistry 2023
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Fig. 4 Transcriptomic analysis of the effect of GP90 on enhancing the
CP sensitivity in the colon cancer tissue. (A) The radar chart of DEGs in
CP vs. the CP + GP90 group. (B) Gene ontology analysis. (C) The most
enriched KEGG pathways. (D) Quantification of ferroptosis-related genes
by gPCR in the tumor tissue. (E) Immunohistochemistry staining for
4-HNE, SLC7A11, and Gpx4 in the tumor tissue. The original magnifi-
cation of H & E is at 400x, and the width of the bar corresponds to
100 pm. (F) The gene set enrichment analysis (GSEA) of tumor tissue
transcriptome data exhibited that C26 mice treated with the CP + GP90
combination therapy were significantly enriched in immune-related sig-
nalling pathways compared to mice treated with CP. The data are shown
from at least four independent experiments. Results were accepted at
INES| > 1, NOM p < 0.05, FDR g < 0.25. Data are expressed as the mean +
SD; *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the CP group.

could enhance the CP treatment sensitivity by inducing ferrop-
tosis in tumor cells. The protein expression of ferroptosis-
associated biomarkers including 4-HNE, Gpx4 and SLC7A11 in
tumor tissues was identified by immunohistochemistry stain-
ing. Compared to the CP group, the relative expression of
4-HNE was clearly increased in the CP + GP90 group, whereas
the relative expression of Gpx4 and SLC7A11 was sharply
decreased (Fig. 4E). The gene set enrichment analysis (GSEA)
results demonstrated various enriched immune- and tumor-
related pathways in the GP + GP90 pathways, such as the posi-
tive regulation of the innate immune response, positive regu-
lation of lymphocyte mediated immunity, antigen processing
and presentation of peptide antigen, positive regulation of
interferon-y (IFN-y) production, response to IFN-y, Toll-like
receptor signalling pathway, programmed death-ligand 1
(PD-L1) expression and programmed cell death protein 1
(PD-1) checkpoint pathway in cancer, nucleotide oligomeriza-
tion domain (NOD)-like receptor signalling pathway, T helper
17 (Th17) cell differentiation, Th1 and Th2 cell differentiation
and T cell receptor signalling (Fig. 4F).

The OPLS-DA plots for the CP and CP + GP90 groups show
clustering in the respective regions (Fig. 5A). Compared with
the CP group, there were 43 DAMs induced by the CP +
GP90 group, and the volcano data show the distribution of the

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper

() o0 < ®
100000- .
.

~100000: 2

200000

300000,

200000100000 G 100,000 200000 3 7 g 3 g

RB8B88B885E88880586868

Fig. 5 GP90 combined with cisplatin altered metabolic profiling in
tumor tissue. (A) A volcano plot of differentially accumulated metab-
olites (DAMs), (B) the OPLS-DA score plot, (C) the Z-score plot of top 20
DAMs, and (D) the KEGG enrichment bar graph in the tumor tissue
between the CP and CP + GP90 groups. Data are shown from four inde-
pendent experiments.

DEGs (Fig. 5B). Among the 43 DAMs, 27 genes were upregu-
lated, and 16 genes were downregulated. These DAMs were
mainly r-glutathione (reduced), r-glutamic acid, ascorbic acid,
17(S)-HpDHA, and 16(R)-HETE (Fig. 5C), which induced ferrop-
tosis in tumor cells. The KEGG enrichment and pathway ana-
lysis showed that after GP90 treatment, the glutamate metab-
olism, glutathione metabolism, pantothenate and coenzyme
A (CoA) biosynthesis were mainly regulated, which may be
related to induced-ferroptosis of GP90 (Fig. 5D).

4. Discussion

CRC remains one of the most common malignancies world-
wide. Among various chemotherapy drugs, CP is one of the
most effective and widely used anticancer drugs for CRC. CRC
initially responds to CP, followed by tumor recurrence after
further treatment due to resistance, but does not affect CP-
induced ferroptosis. Ferroptosis is a potentially novel strategy
to address the problem of CP resistance. Studies have shown
that CP combined with a ferroptosis inducer has a cumulative
effect on its antitumor activity.>® Polysaccharides have gar-
nered great research interest in recent years because of their
anticancer activity or can improve the efficacy of conventional
chemotherapeutic drugs with fewer side effects.”” The anti-
cancer activity of some polysaccharides is related to the regu-
lation of ferroptosis. Zhai et al. demonstrated that red ginseng
polysaccharide induces ferroptosis effects on breast and lung
cancer cells by targeting Gpx4.>% Du et al. found that the anti-
cancer activity of L. barbarum polysaccharide is related to the
induction of ferroptosis in breast cancer cells.'*

GPs induce transcriptional alternations and modulate lung
cancer cell viability, morphology, and apoptosis.”® In our
study, it was found that GP90 can significantly decrease the
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colon tumor volume after 13 days of the animal experiment.
Previous studies have shown that the higher antitumor activi-
ties of polysaccharides may be related to their sulfate groups,
which can selectively act as ligands on the cancer cell lines,
forming molecular interactions that induce apoptosis.*®*!
GP90 has a relatively small molecular weight of 12.45 kDa and
high sulfate content, accounting for 22.93%. It has been found
that the polysaccharide activity increases with decreasing rela-
tive molecular weight in a certain molecular weight range.” A
similar report showed that low molecular weight GPs (average
molecular weight of 20.96 kDa) could effectively inhibit the
growth of transplanted $180 tumors.” Smaller molecular GP
fragments are tolerant to oral, gastric, and small intestinal
conditions and reach the colon as a whole, are more easily
metabolized by intestinal microbes, and have a better effect on
cellular responses.*?

GPs can significantly regulate the expression of apoptosis
and cell cycle-related genes via the death receptor-mediated
apoptosis pathway and the p53 pathway in A549 cell lines.>
Fan et al. showed that acidic GPs significantly suppressed the
proliferation of tumor in ICR mice transplanted with
H22 hepatoma cells by increasing both specific and non-
specific cellular immune responses.®® In this study it has been
found for the first time that GPs combined with CP could
induce ferroptosis in the tumor tissue and sensitize the antitu-
mor effect of CP in C26 tumor bearing-mice (Fig. 6).
Transcriptomic results from tumor tissues showed that GP90
regulated the differential expression of genes related to ferrop-
tosis in mice with CP chemotherapy. The combination treat-
ment significantly increased the protein expression of Tfrc,
which is a potential biomarker for colon adenocarcinoma
initiation and progression and drug targets.** Dysregulated
iron metabolism in CRC patients is highly correlated with
their poor prognosis, and the iron transporter protein Tfrc
mediates iron transport, promotes Tfrc mRNA stability,
increases ROS production and iron death sensitivity, and
enhances the host immune response to cancer.** In addition,
Apoe expression associated with cholesterol metabolism is
elevated, with similar results in adipocytes treated with ferric
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Fig. 6 GP90 combined with cisplatin potentiates the antitumor activity
via inducing ferroptosis targeting the Tfrc and SLC7A11/Gpx4 pathway.
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ammonium citrate resulting in an increased Apoe expression.
Excess levels of cholesterol can also induce ferroptosis by ele-
vating oxidative stress responses.*® When cells become cancer-
ous, the interaction between inflammation and tumors
enhances ROS production, and the depletion of the mitotic
receptor Bnip3, a key mitochondrial autophagy receptor in
cells, promotes increased ROS levels and cell death.*” Thus,
Bnip3-depleted cells in GP90 combined with CP groups may
contribute to tumor cell ferroptosis.

Based on these results, the ferroptosis-related proteins were
validated, and an increase in the 4-HNE expression, and a
decreased expression in Gpx4 and SLC7A11 were found in the
CP + GP90 group. The final product of malondialdehyde,
4-HNE, produced by lipid peroxidation, may form covalent
adducts with biomacromolecules, thereby reducing the mem-
brane integrity and cross-linking, and inactivating proteins,
and ultimately promoting cell membrane rupture and ferropto-
sis.*® Recently, a growing number of studies have found that
the induction of ferroptosis by increasing reactive oxygen
species, decreasing intracellular levels of the antioxidant gluta-
thione (GSH), or inactivating Gpx4 or SLC7A11 in CRC cells
can facilitate the clinical treatment of CRC.*> Gpx4, a key
upstream regulator of ferroptosis, is the only glutathione per-
oxide used for intracellular lipid peroxidation reduction. If
GSH is depleted or Gpx4 is inactivated, intracellular ferrous
ions induce ferroptosis by breaking down phospholipid hydro-
peroxide leading to lipid peroxidation, which can be lethal to
tumor cells.”® Ferroptosis can be induced when lipid peroxide
accumulates excessively, this process is tightly regulated by
SLC7A11, known as System Xc-, a key component of the
cysteine-glutamate antiporter.*' Either knockdown of the
SLC7A11 gene or inhibition of its activity increased ROS levels
and decreased cysteine and glutathione levels, subsequently
impairing the viability of colorectal cancer stem cells.*” Thus,
inhibition of the SLC7A11 expression usually leads to GSH
depletion, which induces ferroptosis. These results are consistent
with the decreased glutathione (reduced) and ascorbic acid and
increased r-glutamic acid in the tumor tissue of GP90 combined
with CP treatment. The KEGG enrichment analysis of the meta-
bolomics of colon cancer tissues similarly showed that the com-
bination of GP90 and CP affected the glutamate metabolism,
glutathione  metabolism, and pantothenate and CoA
biosynthesis. Additionally, the related lipid metabolites such as
16(R)}-HETE and 17(S)-HpDHA were increased. The increased
DHA effectively activates ferroptosis-mediated tumor killing by
promoting ROS accumulation, lipid peroxidation, and protein
oxidation.”® Inhibition of System Xc- has been reported to
decrease the levels of CoA, which is synthesized from cysteine via
the pantothenate pathway and plays a role in many metabolic
pathways, particularly lipid metabolism, and can affect the sensi-
tivity to ferroptosis.** This finding indicates that GP90 improves
the CP treatment sensitivity by activating transferrin and
reducing Gpx4- and SLC7A11-induced ferroptosis.

The onset of tumor ferroptosis and the resulting immune
response trigger immunogenic cell death, as well as promote
dendritic cell maturation and T cell infiltration. CD8+ T cells

This journal is © The Royal Society of Chemistry 2023
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can synergistically enhance T cell-regulated antitumor immune
activity and promote the ferroptosis of tumor cells by downregu-
lating IFN-y release from SLC3A2 and SLC7A11, in conjunction
with the immune checkpoint inhibitor PD-1.1.*® Therefore, from
GSEA, GP90 combined with CP could positively regulate the
innate immune response, promote the production and response
of IFN-y, and assist the immune checkpoint inhibitor PD-L1,
which contribute to tumor cell death. Additionally, the Gpx4-
deficient regulatory T cells elevate lipid peroxidation that facili-
tates Th17 responses and the promotion of antitumor immu-
nity.*> We have found that the combination of GP90 and CP pro-
motes the Th17, Th1, and Th2 cell differentiation in response to
the reduction in Gpx4. GP90 activated the innate immune
response in combination with CP, and also involved the NOD-
like receptor signalling pathway, Toll-like receptor signalling
pathway, and T cell receptor signalling pathway, and plays a role
in ferroptosis by regulating oxidative stress.’® Further study will
address the effect of GP90 on the immune function in CP-treated
C26 carcinoma tumor-bearing mice.

5. Conclusions

In summary, we found that GP90 enhanced the antitumor
effect of CP by promoting ferroptosis, which might be via tar-
geting Tfrc and the SLC7A11/Gpx4 pathway. Furthermore, the
combination treatment of GP90 and CP potentiated the cancer
immunotherapy, which may be related to the NOD-like recep-
tor, Toll-like receptor, T cell receptor, PD-L1 expression, and
PD-1 checkpoint pathway. Overall, GP90 is a novel ferroptosis
inducer and can be used as a functional food supplement for
colon patients to promote chemotherapy sensitivity.
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