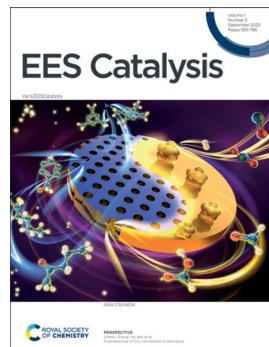

EES Catalysis

rsc.li/eescatalysis

The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

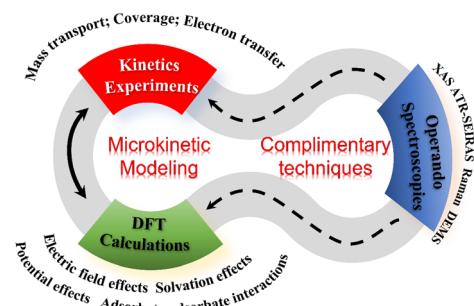

IN THIS ISSUE

eISSN 2753-801X CODEN ECEACE 1(5) 583–786 (2023)

Cover

See Sangaraju Shanmugam *et al.*, pp. 645–664.
Image reproduced by permission of Sangaraju Shanmugam from *EES Catal.*, 2023, 1, 645.

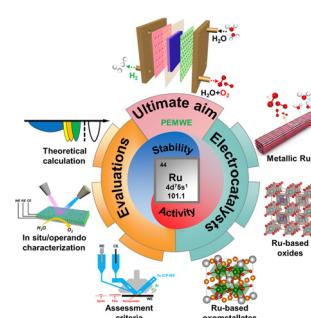
Inside cover


See Chenxi Zhang, Fei Wei *et al.*, pp. 677–686.
Image reproduced by permission of Chenxi Zhang and Fei Wei from *EES Catal.*, 2023, 1, 677.

REVIEWS

590

Microkinetic studies for mechanism interpretation in electrocatalytic CO and CO₂ reduction: current and perspective


Xiaofei Lu, Keisuke Obata and Kazuhiro Takanabe*

619

Strategies for the design of ruthenium-based electrocatalysts toward acidic oxygen evolution reaction

Liqiang Hou, Xiumin Gu, Xuemei Cui, Jiachen Tang, Zijian Li, Xien Liu* and Jaephil Cho*

EES Catalysis

rsc.li/EESCatalysis

EES Catalysis publishes exceptional research on energy and environmental catalysis.

Editorial Board

Editor-in-Chief

Shizhang Qiao, The University of Adelaide, Australia

Associate Editors

Honggang Fu, Heilongjiang University, China
Susan Habas, National Renewable Energy Laboratory, USA
Rebecca Melen, Cardiff University, UK

Advisory Board

Joel W. Ager III, Lawrence Berkeley National Laboratory, USA	Zhongwei Chen, University of Waterloo, Canada	Menny Shalom, Ben-Gurion University of the Negev, Israel
Jong-Beom Bae, Ulsan National Institute of Science & Technology (UNIST), Korea	Ib Chorkendorff, Technical University of Denmark, Denmark	Licheng Sun, KTH Royal Institute of Technology, Sweden
Alexis Bell, University of California, Berkeley, USA	Charles Dismukes, Rutgers University, USA	Zhiyong Tang, National Center for Nanoscience and Technology, China
Annemie Bogaerts, University of Antwerp, Belgium	Shaojun Guo, Peking University, China	David Tilley, University of Zurich, Switzerland
Charles T. Campbell, University of Washington, USA	Qian He, National University of Singapore, Singapore	Xin Wang, City University of Hong Kong, Hong Kong
Richard Catlow, University College London, UK	Kie Tae Nam, Seoul National University, Korea	Ye Wang, Xiamen University, China
Jingguang Chen, Columbia University, USA	Ungyu Paik, Hanyang University, Korea	

Information for Authors

Full details on how to submit material for publication in *EES Catalysis* are given in the Instructions for Authors (available from <http://www.rsc.org/authors>). Submissions should be made via the journal's homepage: rsc.li/EESCatalysis

Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form: (Original Citation)–Reproduced by permission of the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2023. Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the Publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.

Registered charity number: 207890

Editorial Staff

Executive Editor

Emma Eley

Deputy Editor

Jon Ferrier

Editorial Production Manager

Sarah Whitbread

Assistant Editors

Jamie Purcell, Aphra Murray, Alexander John, Emily Ellison, Jack Pitchers

Editorial Assistant

Alex Holiday

Publishing Assistant

Lee Colwill

Publisher

Neil Hammond

For queries about submitted papers, please contact Sarah Whitbread, Editorial Production Manager in the first instance. E-mail: EESCatalysisRSC@rsc.org

For pre-submission queries please contact Emma Eley, Executive Editor. E-mail: EESCatalysis-RSC@rsc.org

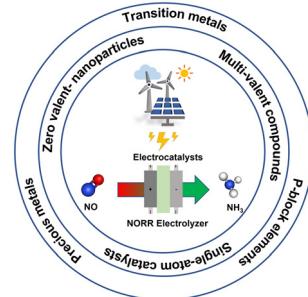
EES Catalysis (electronic: ISSN 2753-801X) is published 6 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

EES Catalysis is a Gold Open Access journal and all articles are free to read. Please email orders@rsc.org to register your interest or contact Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Tel +44 (0)1223 432398; E-mail: orders@rsc.org

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Advertisement sales:
Tel +44 (0) 1223 432246; Fax +44 (0) 1223 426017;
E-mail advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

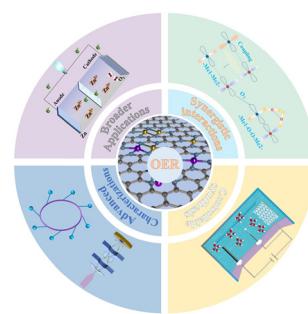


REVIEWS

645

Recent advances in electrocatalytic NO_x reduction into ammonia

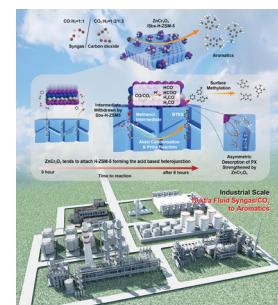
Harish Reddy Inta, Dinesh Dhanabal,
Sridhar Sethuram Markandaraj and
Sangaraju Shanmugam*



PERSPECTIVES

665

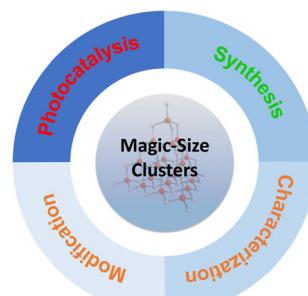
Advanced dual-atom catalysts for efficient oxygen evolution reaction


Xiaobo Zheng, Jiarui Yang and Dingsheng Wang*

677

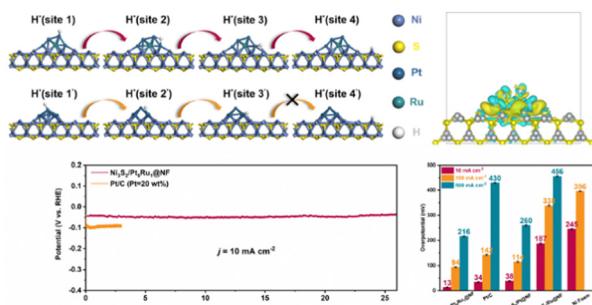
A perspective of CO_x conversion to aromatics

Guo Tian, Xiaoyu Liang, Hao Xiong, Chenxi Zhang* and
Fei Wei*



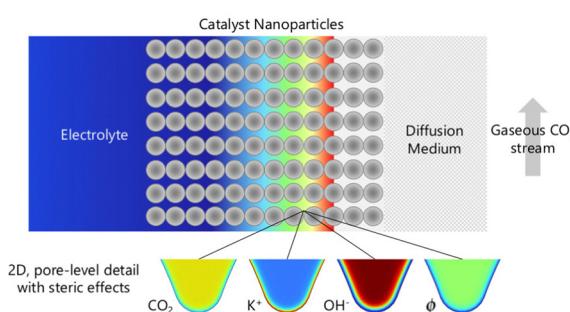
MINIREVIEW

687


A review of II–VI semiconductor nanoclusters for photocatalytic CO_2 conversion: synthesis, characterization, and mechanisms

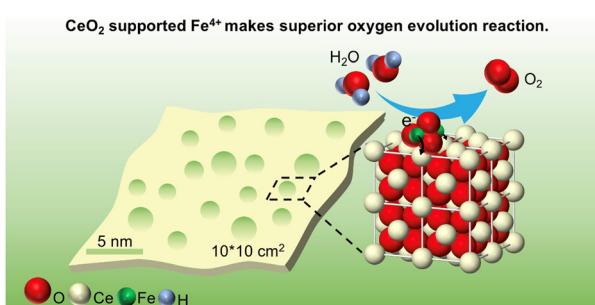
Kai Li, Junjun Ge, Enhao Li, Zhe Li, Hua Wang,
Yuanyuan Wang,* Yang Zhou* and Jun-Jie Zhu*

PAPERS


695

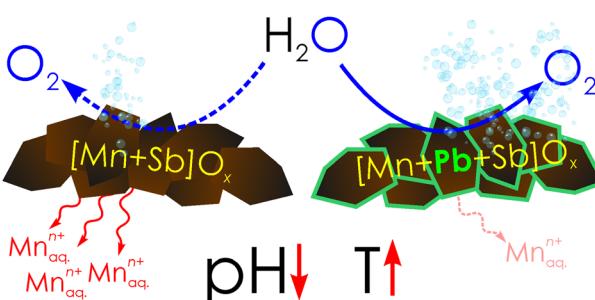
Hydrogen spillover in Pt₅Ru₁ nanoalloy decorated Ni₃S₂ enabling pH-universal electrocatalytic hydrogen evolution

Zuxi Yu, Xianhong Rui and Yan Yu*


704

Pathways to enhance electrochemical CO₂ reduction identified through direct pore-level modeling

Evan F. Johnson, Etienne Boutin, Shuo Liu and Sophia Haussener*


720

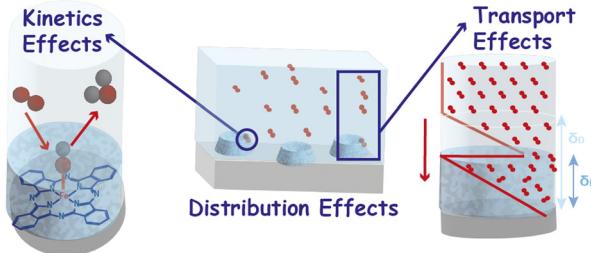
CeO₂ supported high-valence Fe oxide for highly active and stable water oxidation

Hongzhi Liu, Jun Yu,* Jinghuang Lin, Bin Feng, Mingzi Sun, Chen Qiu, Kun Qian, Zhichun Si, Bolong Huang,* Jean-Jacques Delaunay, Yuichi Ikuhara and Shihe Yang*

730

High performance acidic water electrooxidation catalysed by manganese-antimony oxides promoted by secondary metals

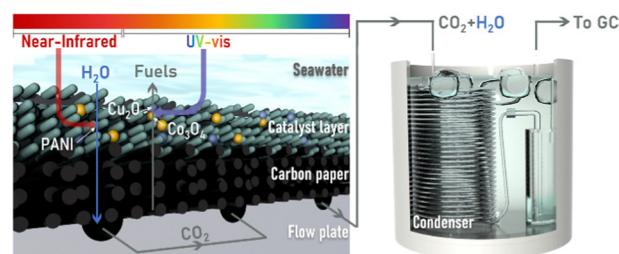
Sibimol Luke, Manjunath Chatti, Darcy Simondson, Khang N. Dinh, Brittany V. Kerr, Tam D. Nguyen, Gamze Yilmaz, Bernt Johannessen, Douglas R. MacFarlane, Aswani Yella,* Rosalie K. Hocking* and Alexandr N. Simonov*


PAPERS

742

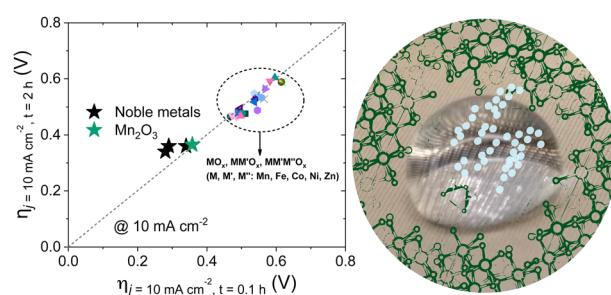
Deconvoluting kinetics and transport effects of ionic liquid layers on FeN_4 -based oxygen reduction catalysts

Silvia Favero, Ifan E. L. Stephens* and Maria-Magdalena Titirici*


Ionic Liquid Layers for Oxygen Reduction

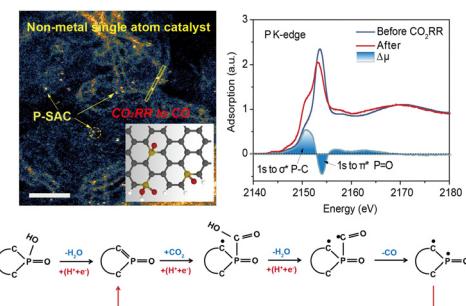
755

Full-spectrum utilization of solar energy for simultaneous CO_2 reduction and seawater desalination


Yuting Yin, Wenhao Jing, Haoran Qiu, Feng Wang, Ya Liu* and Liejin Guo*

765

A survey of Earth-abundant metal oxides as oxygen evolution electrocatalysts in acidic media ($\text{pH} < 1$)


Jiahao Yu, Stefano Giancola, Bahareh Khezri, David Nieto-Castro, Jesús Redondo, Frederik Schiller, Sara Barja, Maria Chiara Spadaro, Jordi Arbiol, Felipe A. Garcés-Pineda* and José Ramón Galán-Mascarós*

774

Identification of non-metal single atomic phosphorus active sites for the CO_2 reduction reaction

Hong Bin Yang, Cong-Qiao Xu, Sambath Baskaran, Ying-Rui Lu, Chengding Gu, Wei Liu, Jie Ding, Jincheng Zhang, Qilun Wang, Wei Chen, Jun Li,* Yanqiang Huang, Tao Zhang and Bin Liu*

