Issue 12, 2023

Modeling the hydrological benefits of green roof systems: applications and future needs

Abstract

Green roof systems (GRs) provide a promising stormwater management strategy in highly urbanized areas when limited open space is available. Hydrological modeling can predict the ability of GRs to reduce runoff. This paper reviews three popular types of GR models with varying complexities, including water balance models, the U.S. EPA's Stormwater Management Model (SWMM), and Hydrus-1D. Developments and practical applications of these models are discussed, by detailing model parameter estimates, performance evaluations and application scopes. These three models are capable of replicating GR outflow. Water-balance models have the smallest number of parameters (≤7) to estimate. Hydrus-1D requires substantial parameterization effort for soil hydraulic properties but can simulate unsaturated soil water flow processes. Although SWMM has a large number of parameters (>10), it can simulate water transport through the entire GR profile. In addition, SWMM GR models can be easily incorporated into SWMM's stormwater model framework, so it is widely used to simulate the watershed-scale effects of GR implementations. Four research gaps limiting GR model applications are identified and discussed: drainage mat flow simulations, soil characterization, evapotranspiration estimates, and scale effects of GRs. The literature documents promising results in GR simulations for rainfall events, however, a critical need remains for long-term monitoring and modeling of full-scale GR systems to allow interpretation of both internal (substrate) and external (meteorological characteristics) system effects on stormwater management.

Graphical abstract: Modeling the hydrological benefits of green roof systems: applications and future needs

Supplementary files

Article information

Article type
Critical Review
Submitted
03 Mar 2023
Accepted
01 Aug 2023
First published
14 Aug 2023

Environ. Sci.: Water Res. Technol., 2023,9, 3120-3135

Modeling the hydrological benefits of green roof systems: applications and future needs

Z. Dong, D. J. Bain, K. A. Gray, M. Akcakaya and C. Ng, Environ. Sci.: Water Res. Technol., 2023, 9, 3120 DOI: 10.1039/D3EW00149K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements