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Investigating machine learning models to predict
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Continuous online monitoring of water treatment process performance is an essential step in ensuring

reliable water quality outcomes. In particular, it is important to ensure effective removal of microbial

substances during advanced wastewater treatment processes. However, most microbial indicators cannot

be continuously monitored by online processes. Therefore, it is necessary to monitor treatment process

performance based on surrogate measures which can be reliably and continuously monitored. For

example, water quality data such as colour, turbidity and chemical oxygen demand (COD) can be

measured quickly and easily. In this study, a combined ozonation–biological media filtration process (O3/

BMF), was used to reduce microbial indicator concentration. After gathering water quality data and

corresponding microbial indicator concentrations, we applied machine learning to develop models for

predicting the amount of change in microbial indicator concentration following O3/BMF treatment. Three

microbial indicators were studied, namely Clostridium perfringens, E. coli, and somatic coliphage. The most

effective physico-chemical predictors for the removal of these microbial indicators were determined by

means of mutual information. Associations between changes in the predictors' concentration during O3/

BMF and the reduction of the microbial indicators were identified using a range of supervised learning

algorithms including Naïve Bayes, random forest, support vector machines and generalised linear model.

The impact of the type of prediction algorithm on prediction accuracy was investigated and the superior

classifier was determined. Performance measures for microbial removal prediction were found to be

superior for the support vector machines (SVM) classifier. Using SVM with a Gaussian kernel classifier,

prediction accuracy for all microbial removal was above 75%. Moreover, other performance measures such

as area under curve (AUC) and kappa statistics (KS) were higher in SVM compared to the other applied

classifiers (AUC ≥ 0.80; KS ≥ 0.34). From this study, we have identified an objective and efficient method

that can predict the effectiveness of the O3/BMF process in removing the three microbial indicators in

water from a short list of commonly measured physico-chemical parameters.

Introduction

Previous studies have shown that ozonation can effectively
reduce microbial concentrations, organic content, colour and

trace chemicals in wastewater.1–4 It has been observed that
ozone increases the oxygen concentration and the
biodegradability of organic material, facilitating more rapid
biodegradation during subsequent biological filtration.

Current international guidelines for water recycling
promote a risk management approach for the control of
hazards with a primary emphasis on pathogens because of
their potential acute, severe and widespread impacts.5–7

These guidelines draw principles from Hazard Analysis
Critical Control Point (HACCP) standards for the monitoring
and control of hazards across a multi-barrier system. The
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Water impact

To ensure water quality, online monitoring of pathogen removal is very important which is not possible with current technologies. Therefore, it is essential
to find surrogate measures that can be easily monitored online. In this study, we have investigated machine learning techniques to predict microbial
removal through surrogates such as water quality data in ozonation and biofiltration processes.
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performance of treatment barriers is evaluated through
validation, which is the process of ensuring that the system
can effectively control the hazards. For pathogens, this
performance is measured by log 10 reduction values (LRV).
Log removal value (LRV) is the percentage that a pathogen
will be inactivated by a disinfection method. In mathematical

form, LRV ¼ log10
Initial microbial concentration

Microbial concentration after disinfection
.

A LRV equal to 1 means that the pathogen is reduced by
90% from its initial value. The monitoring of critical control
points requires online parameters indicative of the hazard
removal performance of the process. For ozonation and
biological media filtration (BMF), however the water matrix
characteristics play a crucial role in the disinfection
effectiveness which has limited the use of indicators such as
ozone dose and CT, applied elsewhere in water treatment.8–10

This limitation has impeded the formal attribution of LRV
credits to ozonation and BMF for wastewater in many
jurisdictions. LRV credits have been awarded to post-
ozonation at Melbourne Water's Eastern Treatment Plant
(ETP) (the subject of this study) on the basis of CT
disinfection. Post-ozonation CT disinfection is only possible
due to the pre-treatment provided by pre-ozone and BMF
primarily through satisfying ozone demand. There are,
however reported studies on the use of alternative indicators
for monitoring of microbial performance removal including
bromate formation, O3 : TOC ratio, and UVA reduction.11–13

These studies have focussed on ozonation under ideal
conditions, for example by removing suspended solids and
using benchtop reactors.11 The ability to obtain LRV credits
for ozonation/BMF could translate into major cost savings for
wastewater recycling projects by reducing the need for
additional treatment processes such as high-energy
photochemical processes, or by reducing chemical
consumption for downstream disinfection processes.
Alternatively, obtaining additional LRV credits for a treatment
system can increase the resilience of recycled water
production in the event of sub-optimal performance of one
or more pathogen reduction barriers.

Some previous studies have reported efforts to develop
models for the prediction of microbial concentration based
on some water quality data and operational parameters.
Using an on-line UV absorbance analyser, Gerrity (2012)11

developed a model to predict microbial inactivation during
ozonation. Gamage (2013)14 used O3 : TOC ratio, ΔUV254 and
ΔTF to predict the inactivation of three surrogate microbes.
Using a linear correlation for the prediction of microbial
removal, Gamage reported that ΔUV254 and ΔTF were able to
most effectively predict microbial inactivation in ozone/H2O2

systems. Gamage reported high variability in the prediction
of E. coli concentration under different dosing conditions.
However, traditional regression models might not be the
optimum prediction tools for the complex relationships
between microbial removal and operational or water quality
data. Recently, multivariant predictive models based on Naïve
Bayes have been developed to predict disinfection by-

products (DBPs) concentration in drinking water streams.15

Although a few studies have investigated the prediction
capacity of Naïve Bayes in the LRV performance of pathogens
from wastewater streams,16 there are still limited studies on
the use of prediction tools for on-line monitoring of water
treatment process performance.

The aim of this paper was to evaluate the use of
several water quality and operational parameters as
surrogates for the removal efficiency of microbial
indicators during full-scale ozonation and biological media
filtration of secondary treated wastewater. This research
assessed previous reported indicators including colour and
UVA. The key outcome is the presentation of a method
for evaluating useful predictive variables through mutual
information and calculating microbial LRVs using these
predictors. This outcome is significant because it allows
us to perform on-line monitoring to indicate the likely
presence or removal of microbial substances in water
samples without requiring cumbersome or time-consuming
microbial measurements.

Methodology
Full scale wastewater treatment plant

Melbourne Water's Eastern Treatment Plant (ETP) is located
30 km south east of Melbourne, Australia, and treats
around 40% of Melbourne's sewage. The ETP is a tertiary
wastewater treatment plant which produces around 400 ML
per day of high-quality treated water which meets the
requirements of both safe discharge to the receiving marine
environment and “Class A” recycled water. The ETP process
uses ozonation and biological media filtration as an
advanced treatment train for secondary treated wastewater.
A simplified process diagram of the O3/BMF configuration
at the ETP is depicted in Fig. 1. A dataset with 105 records
of grab sample water quality from secondary effluent and
BMF effluent was provided by Melbourne Water and used
in developing prediction models.

LRV observations from the data shows that the
reduction of microbial indicators i.e., Clostridium
perfringens, E. coli, and somatic coliphage was evidently
successful through pre-ozonation and biological media
filtration. Fig. 2 shows the average reduction of each
microbial indicator after pre-ozonation and biological
media filtration (sample point 2).

Water quality data from sample points 1 and 2 were also
measured for a range of parameters, including microbial
indicators, suspended solids (SS), alkalinity, nitrite, nitrate,
ammonia, ultraviolet transmittance (UVT), and colour.

Analytical methods

A portable Hach HQ30d meter was used to measure pH and
temperature, and a portable Hach 2100Q IS meter was used
to measure the turbidity of samples. Hach colourimetric
methods with a Hach DR1900 meter were used for the
measurement of nitrite, nitrate, COD, and colour. UVT, UVA
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and total suspended solids (TSS) were analysed by Australian
Laboratory Services (ALS), Environmental Division,
Melbourne, Australia. TOC was measured by Australian Water
Quality Centre, South Australia. Bromate and Bromide were
measured by National Measurement Institute (NMI), North
Ryde, New South Wales, Australia. Microbial concentration of
C. perfringens spores, E. coli and somatic coliphage was
measured by Australian Water Quality Centre, South
Australia.

Prediction model development

The development of the prediction model was undertaken
through a supervised learning scheme, as presented in Fig. 3.
First, the predictive features and outcome of interest were
pre-processed and went through discretisation steps. Then,
in the feature selection step, the most useful (predictive)
features were identified. The selected features along with the
corresponding outcome labels were then used for the
classification stage. This process was cross-validated 10-fold,
and in each iteration of this validation, 80% of data were
used for feature selection and training, while the remaining
20% of data were used for testing the classifier.

The modelling processes applied here incorporates a
range of statistical methods. These are summarised,
indicating common terminology, acronyms and abbreviations
in Table 1.

In the following sections, “features” denote the system
parameters which can be easily and continuously monitored
(e.g., operational parameters and physico-chemical
parameters with online detection). The features included:
amount of change (pre O3/BMF − post O3/BMF) in total

organic carbon (TOC), UV absorbance, UV transmittance,
suspended solids, pH, alkalinity, colour, ammonia, nitrate
and nitrite concentrations. “Outcome” denotes the amount of
change (pre O3/BMF − post O3/BMF) in microbial indicators,
which are more difficult and laborious to continuously
measure. The features are used to make a prediction model,
which can predict the outcomes through a supervised
learning process.

Pre-processing

In the pre-processing step, features with too many missing
values were excluded. For a feature to be assessed as useful,
at least 25% of the feature values had to be non-missing. For
the remaining features, missing values were replaced with
mean values from the non-missing values of that attribute.

Feature selection

The broad objective of feature selection is to identify the
features with greatest predictive value. Finding the most
characterising features is a crucial step in many pattern
recognition applications.21,22 Feature selection shows the
importance of features for prediction, and how these features
are related, and thus minimizes the number of predictors in
the final machine learning model and improves the
performance of model.23 The central assumption when using
a feature selection technique is that the data contain
redundant or irrelevant features. Redundant features are
those, which provide no more information than the currently
selected features, and irrelevant features provide no useful
information in any context.24,25 The specific purpose of
feature selection is to minimize the number of redundant
and irrelevant parameters in the final machine learning
model to improve performance and generalizability.26 In this
study, most predictive features were selected from the
following water quality parameters: suspended solids (SS),
alkalinity, nitrite, nitrate, ammonia, ultraviolet transmittance
(UVT), and colour. By doing so, a reasonable ratio (1 : 15)
between the number of features7 and the number of data
samples (105) was attained.

In this study we used the minimal-redundancy-maximal-
relevance algorithm (mRMR) developed by Peng (2005)23

because of its advantages in terms of both feature selection
complexity and feature classification accuracy. The focus of
this method is on mutual-information-based feature
selection. The mutual information between two random
variables X and Y is defined based on their entropies and

Fig. 1 Schematic diagram for sampling from Melbourne Eastern Treatment Plant.

Fig. 2 log removal reduction of three microbial indicator after pre-
ozonation and biological media filtration.
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their probabilistic density functions, as shown in (eqn 1(a))
to (1(c)):

I(X, Y) = H(X) − H(X|Y) (1(a))

where H(X) represents the entropy of a discrete random
variable X, and is defined as the average “surprise” in learning
the value of x which is equal to the expectation of h(x) with
respect to the probability distribution p(x) and is given by

Fig. 3 Flow chart of the data analysis scheme used in the present study.

Table 1 Key abbreviations and terminology relevant to various classifiers and model validation16–20

Abbreviation Meaning Explanation

PA Prediction accuracy Quantifies the number of correctly predicted values
divided by the total number of cases

PE Prediction error Quantifies the number of incorrectly predicted values
divided by the total number of cases

KS Kappa statistic Measures the agreement between model predictions
and actual values as a metric in the range [−1, 1].
KS = 1 means perfect agreement, KS = 0 means that
agreement is equal to chance, and KS = −1 means
“perfect” disagreement

AUC Area under the curve for the receiver operating characteristic
curve (ROC)

AUC ranges between 0 and 1, where 1 represents perfect
matching, 0.5 reflects totally random models, and
<0.5 indicates models generating predominantly inaccurate
predictions

TPR True positive rate Rate of correct positive predictions (high reductions)
FPR False positive rate Failure to detect low reductions when they occurred
TNR True negative rate Rate of correct negative predictions (low reductions)
FNR False negative rate Failure to detect high reductions when they occurred
NB Naïve Bayes Probabilistic classifier based on Bayes theorem
GLM Generalised linear model Conventional linear regression models for a continuous

response variable given continuous and/or categorical predictors
RF Random forest
SVM/bn Support vector machine/binary SVM algorithm can find a hyperplane in an N-dimensional

space that distinctly classifies the data points using binary
kernel function

SVM/GK Support vector machine/Gaussian kernel SVM algorithm that uses Gaussian kernel
SVM/PK Support vector machine/polynomial kernel SVM algorithm that uses polynomial kernel
SVM/rbf Support vector machine/radial basis function SVM algorithm that uses radial basis function as the kernel

function

Environmental Science: Water Research & Technology Paper
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H xð Þ ¼ −
X
x

p xð Þ log2 p xð Þ (1ðbÞ)

In other words, H or the entropy of a random variable is the
average level of “uncertainty” inherent in the variable's
possible outcomes.

And thus from (eqn 1(a)) and (1(b)):

I X ;Yð Þ ¼
ðð

p x; yð Þ log p x; yð Þ
p xð Þp yð Þdxdy (1ðcÞ)

I(X, Y) is the mutual information between two variable X and
Y. Mutual information measures how much more is known
about one random value (Y) when given another (X). In the
context of this paper, X is a physico-chemical predictor like
colour, and Y is a microbial indicator such as E. coli.

The mRMR method seeks to maximise the relevance of a
feature set for a specific class and minimise the redundancy
of all features in the feature set. Relevance is defined by the
average value of all mutual information (MI) values between
the individual feature (xj) and the specific class (c). This is
shown in formula (2), where (Sm−1) is a feature set with m − 1
features. The task is to select the mth feature from the set {X
− Sm−1}. This is done through an incremental search method
by selecting the feature that maximizes the condition inside
the square brackets. Redundancy is the average value of all
MI values (denoted with I in formula (1)) between the
individual feature and every other feature in the set (xi).

xj∈X − Sm−1

max
I xj; C − 1

m − 1
X

xi∈X−Sm−1

I xj; xi
� � !" #

(2)

The mRMR algorithm is suitable for unprocessed data, where
the features selected in this way will have more or less
correlation with each other. This is because mRMR does not
intend to select features that are independent of each other.
Instead, at each step, it tries to select a feature that
minimises the redundancy and maximises the relevance.23

Using the mRMR method, for each outcome variable (i.e.,
microbial indicator concentration), the top features were
determined from a random 80% of the data and used for
training the prediction model in the next step. Assessment of
the number of features' effect on prediction accuracy showed
that selection of the top four features resulted in the best
performance (ESI† A).

Discretisation

The outcome variables (i.e., microbial indicator
concentrations) had continuous values. In order to perform
multiclass classification, they needed to be discretised.
Values of each outcome variable were divided into four
quantiles, such that each quantile contained the same
fraction of the total population. This approach was taken to
ensure a balanced number of elements in each of the four
classes.27

For an n-element vector X, quantiles were computed by
using a sorting-based algorithm as follows:

1. The sorted elements in X are taken as the (0.5/n), (1.5/
n), …, ([n − 0.5]/n) quantiles. For example:

• For a data vector of five elements such as {6, 3, 2, 10, 1},
the sorted elements {1, 2, 3, 6, 10} respectively correspond to
the 0.1, 0.3, 0.5, 0.7, 0.9 quantiles.

• For a data vector of six elements such as {6, 3, 2, 10, 8,
1}, the sorted elements {1, 2, 3, 6, 8, 10} respectively
correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6), (5.5/
6) quantiles.

2. Linear interpolation was used to compute quantiles for
probabilities between (0.5/n) and ([n − 0.5]/n).

3. For the quantiles corresponding to the probabilities
outside that range, the minimum or maximum values of the
elements in X was assigned.

As a visual example, Fig. 4 shows the histogram of data
values for log removal of variable E. coli. The bin edges were
set such that it resulted in four quantiles, as explained above.
The data that fell in the first quantile (first histogram bin)
were labelled class 1, data in the second quantile were
labelled class 2 and so on for classes 3 and 4.

For consistency, all the classification algorithms compared
in this study used discretised data values.

Classifiers

After completing pre-processing, feature selection and
discretisation steps, prediction was carried out through
several widely used supervised learning classifiers, namely
Naïve Bayes (NB), support vector machines (SVM) with binary,
Gaussian, radial basis function, and polynomial kernels,
generalized linear model (GLM), and random forest
(bootstrap-aggregated) decision trees. The definition for each
of these classifiers are described below.

Naïve Bayes. NB is a simple probabilistic classifier based
on Bayes' theorem with the assumption of strong (naïve)
independence between the features. NB has the important
advantage of simplicity.

Support vector machines. SVMs are among the most
robust supervised learning prediction methods. The objective
of the support vector machine algorithm is to find a
hyperplane in an N-dimensional space (N—the number of
features) that distinctly classifies the data points.28 SVMs
have the advantage of being effective in high dimensional
spaces, but also effective in cases where the number of
dimensions is greater than the number of samples. SVMs are
versatile, in that using different kernel functions, they can
efficiently perform a non-linear classification, implicitly
mapping their inputs into high-dimensional feature spaces.

Generalized linear model. GLM usually refers to
conventional linear regression models for a continuous
response variable given continuous and/or categorical
predictors, and include multiple linear regression.29 The
advantage of GLM is being a flexible generalization of
ordinary linear regression that allows for response variables
that have error distribution models other than a normal
distribution.
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Random forest. Random forest is one of the most popular
and most powerful machine learning algorithms. Random
forest is a type of bagging algorithm, which aims to reduce
the complexity of models that over-fit the training data. The
algorithm selects a random subset of predictors to use at
each decision split as in the random forest algorithm.30

Bootstrap-aggregated (bagged) decision trees combine the
results of many decision trees, which reduces the effects of
overfitting and improves generalization.

The premise is to train a computer model by giving it
features along with their corresponding outcomes, such that
the model can later predict an outcome based on input
features only. The algorithms to train and test the computer
model were developed in MATLAB Version (R2019b). The
computer algorithms find patterns between features that are
exclusively associated with the outcomes.

Cross-validation. The purpose of cross-validation is to test
the ability of a machine learning model to predict new data,
and to prevent problems like overfitting or selection bias. A
10-fold cross-validation method was used to train and test
the classifiers. In other words, the prediction accuracy was
computed as the average of ten iterations, where at each
iteration, 20% of the data were randomly selected and left
out as the test partition and the remaining 80% of the data
were used for feature selection and training the classifier.
The 80 : 20 split draws its justification from the well-known
Pareto principle.31 This procedure was repeated 10 times with
the training and testing partitions selected randomly each
time.17 The model performance was assessed with several
performance parameters. These parameters included
prediction accuracy, prediction error, kappa statistic, area
under the receiver operating characteristic curve (AUC), true
positive rate (TPR), false positive rate (FPR), true negative rate

(TNR) and false negative rate (FNR). Average ± standard
deviation of performance measures over the 10 iterations of
cross-validation was calculated.

Results and discussions

This study yielded a model that learned the multivariate
associations between physico-chemical predictors and
microbial indicators from a training dataset sampled from
Melbourne Eastern Treatment Plant (Melbourne Water).
Three specific findings resulting from this study were: 1)
identifying the most predictive features; 2) discerning the
predictor-outcome associations; and 3) assessing the impact
of alternative prediction algorithms.

Identifying the most predictive features

Following the feature selection process, the top four features
for each microbial indicator were determined as shown in
Table 2. These features were the most frequently selected in
the 10-fold cross validation. The frequency of each top
feature after the cross-validation is also shown in Table 2.
UVT, nitrite, nitrate, and colour were the most predictive

Fig. 4 Histogram of log removal values for the outcome variable E. coli. Bin edges denote the boundaries of the four quantiles for discretisation.

Table 2 Top four features for microbial removal during ozonation and
biofiltration in Melbourne ETP. The number inside the brackets shows
how many times in the 10 fold cross-validation that feature was selected.
Features indicate Δ values (pre O3/BMF − post O3/BMF)

Clostridium perfringens removal E. coli removal Coliphage removal

UVT10 UVT10 UVT10

Nitrite10 Nitrite10 Nitrite10

Nitrate8 Nitrate6 Nitrate10

Colour6 Colour6 Colour9

Environmental Science: Water Research & Technology Paper
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features for all of the studied microbial indicators. The
reader is reminded that all features were Δ values (pre O3/
BMF − post O3/BMF).

Predictor-outcome association

The results from our model showed that an increase in Δ

nitrite (from <0.1 mg L−1 to >0.4 mg L−1) with ΔUVT greater
than 24% was found to be associated with an increase of
Clostridium perfringens LRV from 0.5 to 1.3. This is consistent
with the fact that high levels of nitrite can stimulate the
growth of bacteria, and therefore the effectiveness of the
water treatment process in decreasing nitrite concentration is
correlated with reduction in microbial concentration of
water. An increase in ΔUVT (from <19% to >33%), and
colour reduction of 53 Pt–Co or more, with Δ nitrate >0.34
mg L−1 was found to be associated with increased E. coli LRV
from 1.5 to 3.1. An increase in Δ colour (from <75% to
>87%), and Δ nitrite of greater than 0.2 mg L−1 was found to
be associated with increase of coliphage LRV from 1.2 to 3.6.

While these findings are noteworthy and useful as a
guideline to the influence of changes in physico-chemical
predictors on changes in microbial indicator concentration,
it should be noted that the predictors are surrogate measures
of the treatment performance and that there is not
necessarily a direct relationship between the measurement
and the presence of the microbial indicator.

Many more hidden and intricate associations may exist
between these variables that cannot be detected from simple
assessment of data. Pattern recognition and sophisticated
machine learning algorithms were used to detect those
associations and be able to predict the amount of microbial
LRV due to O3/BMF solely based on measurement of the four
predictors before and after the water treatment process.

Effect of prediction algorithm

The prediction model, developed in the form of a MATLAB
script, took the difference between four physico-chemical
measurements (namely UVT, colour, nitrite and nitrate)
before and after the O3/BMF process as inputs and predicted
the microbial removal value range associated with those
inputs. Classification was performed using a range of
prediction algorithms, which were described in the classifiers
section. The performance measures for each of these
classifiers are presented in Table 3. Eight performance
matrices were compared in Table 3 (abbreviations are
described in Table 1). These values were calculated based on
10-fold cross validation for each of the seven prediction
algorithms. The calculation method for the reported
performance measures is explained in ESI† B.

The AUC score varies from 0–1, with 0.5 indicating a
totally random model and 1 no error in prediction. AUC <

0.5 denotes models predicting erroneously most of the time.

Table 3 Arithmetic mean ± standard deviation of performance measures from the 10-fold cross validation for three pathogen removal from the dataset
of Melbourne ETP (abbreviations in the table are explained in the footnote)

Pathogen Performance measure NB GLM RF SVM/bn SVM/GK SVM/PK SVM/rbf

Clostridium perfringens LRV PA 0.73 ± 0.03 0.92 ± 0.00 0.77 ± 0.03 0.76 ± 0.03 0.78 ± 0.02 0.75 ± 0.02 0.77 ± 0.03
PE 0.27 ± 0.03 0.08 ± 0.00 0.23 ± 0.03 0.24 ± 0.03 0.22 ± 0.02 0.25 ± 0.02 0.23 ± 0.03
KS 0.26 ± 0.10 0.00 ± 0.00 0.34 ± 0.09 0.32 ± 0.07 0.37 ± 0.06 0.31 ± 0.05 0.33 ± 0.09
AUC 0.81 ± 0.01 0.79 ± 0.01 0.71 ± 0.04 0.80 ± 0.11 0.90 ± 0.01 0.76 ± 0.08
TPR 0.47 ± 0.07 0.00 ± 0.00 0.56 ± 0.07 0.54 ± 0.06 0.61 ± 0.05 0.49 ± 0.05 0.60 ± 0.08
FPR 0.18 ± 0.02 0.02 ± 0.00 0.14 ± 0.02 0.14 ± 0.02 0.13 ± 0.01 0.16 ± 0.02 0.13 ± 0.02
TNR 0.82 ± 0.02 0.98 ± 0.00 0.86 ± 0.02 0.86 ± 0.02 0.87 ± 0.01 0.84 ± 0.02 0.87 ± 0.02
FNR 0.53 ± 0.07 1.00 ± 0.00 0.44 ± 0.07 0.46 ± 0.06 0.39 ± 0.05 0.51 ± 0.05 0.40 ± 0.08

E. coli LRV PA 0.74 ± 0.02 0.93 ± 0.00 0.74 ± 0.03 0.75 ± 0.03 0.75 ± 0.02 0.75 ± 0.03 0.73 ± 0.03
PE 0.26 ± 0.02 0.07 ± 0.00 0.26 ± 0.03 0.25 ± 0.03 0.25 ± 0.02 0.25 ± 0.03 0.27 ± 0.03
KS 0.29 ± 0.07 0.00 ± 0.00 0.31 ± 0.07 0.34 ± 0.07 0.34 ± 0.06 0.32 ± 0.09 0.28 ± 0.08
AUC 0.79 ± 0.01 0.82 ± 0.01 0.73 ± 0.06 0.88 ± 0.01 0.70 ± 0.11 0.88 ± 0.01
TPR 0.49 ± 0.05 0.00 ± 0.00 0.49 ± 0.05 0.50 ± 0.05 0.52 ± 0.05 0.50 ± 0.06 0.47 ± 0.06
FPR 0.17 ± 0.02 0.02 ± 0.00 0.17 ± 0.02 0.17 ± 0.02 0.16 ± 0.02 0.17 ± 0.02 0.18 ± 0.02
TNR 0.83 ± 0.02 0.98 ± 0.00 0.83 ± 0.02 0.83 ± 0.02 0.84 ± 0.02 0.83 ± 0.02 0.82 ± 0.02
FNR 0.51 ± 0.05 1.00 ± 0.00 0.51 ± 0.05 0.50 ± 0.05 0.48 ± 0.05 0.50 ± 0.06 0.53 ± 0.06

Coliphage PA 0.75 ± 0.02 0.92 ± 0.00 0.75 ± 0.04 0.76 ± 0.02 0.78 ± 0.02 0.76 ± 0.02 0.76 ± 0.03
PE 0.25 ± 0.02 0.08 ± 0.00 0.25 ± 0.04 0.24 ± 0.02 0.22 ± 0.02 0.24 ± 0.02 0.24 ± 0.03
KS 0.33 ± 0.07 0.00 ± 0.00 0.34 ± 0.09 0.35 ± 0.06 0.41 ± 0.05 0.37 ± 0.06 0.37 ± 0.08
AUC 0.83 ± 0.01 0.85 ± 0.01 0.82 ± 0.04 0.91 ± 0.01 0.75 ± 0.14 0.92 ± 0.01
TPR 0.49 ± 0.04 0.00 ± 0.00 0.51 ± 0.07 0.51 ± 0.04 0.56 ± 0.04 0.53 ± 0.05 0.53 ± 0.06
FPR 0.17 ± 0.02 0.02 ± 0.00 0.16 ± 0.02 0.16 ± 0.01 0.15 ± 0.01 0.16 ± 0.01 0.16 ± 0.02
TNR 0.83 ± 0.02 0.98 ± 0.00 0.84 ± 0.02 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.84 ± 0.02
FNR 0.51 ± 0.04 1.00 ± 0.00 0.49 ± 0.07 0.49 ± 0.04 0.44 ± 0.04 0.47 ± 0.05 0.47 ± 0.06

NB: Naïve Bayes, GLM: generalized linear model, RF: random forests, SVM/bn: support vector machines with binary kernel, SVM/GK: support
vector machines with Gaussian kernel, SVM/PK: support vector machines with polynomial kernel, SVM/rbf: support vector machines with radial
basis function kernel, LRV: log removal, PA: prediction accuracy, PE: prediction error, KS: kappa statistic, AUC: area under curve, TPR: true
positive rate, FPR: false positive rate, TNR: true negative rate, FNR: false negative rate.
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Values of 0.5–0.7 indicate poor classification performance;
values of 0.7–0.9 indicate fair classification performance, and
values higher than 0.9 indicate excellent classification
performance. Prediction accuracy is calculated as the total
number of correct predictions divided by the total number of
cases. This metric ranges between 0 and 100% with higher
values indicating better prediction. Cohen's kappa statistic
measures the agreement between model predictions and
actual values as a metric in the range [−1, 1] considering
adjustment due to chance effects.32 Kappa = 1 means perfect
agreement, kappa = 0 means that agreement is equal to
chance, and kappa = −1 means “perfect” disagreement.32

Distinct levels of agreement in the range between 0 and 1
have been defined for kappa coefficient:33 <0.2 = slight; 0.2–
0.4 = fair; 0.4–0.6 = moderate; 0.6–0.8 = substantial; and >0.8
= almost perfect.

Assessing the prediction performance for three microbial
communities showed that with the exception of the GLM
classifier, the prediction accuracy for other classifiers
(including NB, RF and all types of SVM) is around 75%,
which is very promising. However, in order to evaluate the
performance of a classifier, all performance measures should
be considered simultaneously. Performance of a classifier is
reliable when the value of both the true positive rate (TPR)
and true negative rate (TNR) are greater than 50%. The
higher KS and AUC is also representative of a better
prediction performance.

Although prediction accuracy of the GLM classifier was
above 90%, TPR was around zero and TNR is around 1 which
means that relying on prediction accuracy was not sufficient
and GLM was not an effective classifier for prediction of
microbial removal during these water treatment processes.

With the TPR of less than 50% (47%, 49% and 47% for
clostridium perfringens, E. coli and coliphage LRV,
respectively), the Naïve Bayes model was also not a good
classifier for any of the microbial communities. On the other
hand, support vector machine with Gaussian kernel had
above 50% TPR for all three microbial indicators. FPR was
also very promising. Moreover, AUC and KS were the highest
compared to the values of other classifiers.

For coliphage LRV, although the value of PA, TPR and
TNR were almost similar in RF and all types of SVM,
however, the AUC and KS was higher in SVM/GK. Therefore,
SVM/GK was considered the most suitable classifier among
all other classifiers.

The significance of results lies in the capacity of the
SVM/GK model to predict the microbial indicator log
removal value of a sample with unknown microbial
concentration based on its previously learned knowledge
and four simple measurements (i.e., UVT, colour, nitrite and
nitrate) before and after the O3/BMF process. As shown in
ESI† A, optimal prediction accuracy resulted with these four
predictors. This has great implications for faster and more
cost-effective assessment of the efficacy of O3/BMF water
treatment process for microbial activity removal. The
prediction model, developed in the form of a MATLAB

script, takes the four physico-chemical measurements as
inputs and calculates the microbial removal value range
associated with those inputs.

Conclusions

Using mutual information and support vector machines, we
showed that several surrogate measures can efficiently
predict the level of microbial indicator removal during
ozonation–biofiltration (O3/BMF).

Key findings from this study are:
• Three microbial indicators; Clostridium perfringens, E.

coli, and somatic coliphage have been efficiently removed by
the combination of ozonation and biological media filtration.

• Removal of three microbial indicators Clostridium
perfringens, E. coli, and somatic coliphage can be predicted
based on physico-chemical measurements.

• Feature selection based on mutual information showed
that the top four physico-chemical predictors of microbial
indicator removal were UVT, colour, nitrite and nitrate
concentrations.

• The best prediction algorithm was found to be support
vector machines with Gaussian kernel (SVM/GK), followed by
SVM with radial basis function, and random forests.

• Using the SVM/GK classifier, prediction accuracy for all
microbial removals was above 75%, AUC ≥ 0.80, and kappa
statistic (KS) ≥ 0.34.

• This prediction model, developed in the form of a
MATLAB script, takes the four physico-chemical
measurements as inputs, and calculates the microbial
removal value range associated with those inputs. Therefore,
this model can be used to assess the performance of other
systems based on changes in the surrogate measures from
pre- to post-water treatment process.

While removal of most microbial indicators during O3/
BMF cannot be continuously monitored by online processes,
the methodology discussed in this study provides a fast and
cost-effective alternative based on surrogate measures. This is
important because continuous online monitoring of water
treatment process performance is an essential step in
ensuring reliable water quality outcomes.
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