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A process-level perspective of the impact of
molecular force fields on the computational
screening of MOFs for carbon capture†

Conor Cleeton, *a Felipe Lopes de Oliveira,bc Rodrigo F. Neumann,b

Amir H. Farmahini, a Binquan Luan, d Mathias Steinerb and Lev Sarkisov a

The question we pose in this study is to what extent the ranking of metal organic frameworks (MOFs)

for adsorption-based carbon capture, and the selection of top performers identified in Pressure Swing

Adsorption (PSA) process modelling, depends on the choice of the commonly available forcefields. To

answer this question, we first generated distributions of CO2 and N2 adsorption isotherms via molecular

simulation in 690 MOFs using six typical forcefields: the UFF or Dreiding sets of Lennard-Jones

parameters, in combination with partial charges derived from ab initio calculations or by charge

equilibration schemes. We then conducted a systematic uncertainty quantification study using PSA

process-level modelling. We observe that: (i) the ranking of MOFs significantly depends on the choice of

forcefield; (ii) partial charge assignment is the prevailing source of uncertainty, and that charge

equilibration schemes produce results which are inconsistent with ab initio-derived charges; (iii) the

choice of Lennard-Jones parameters is a considerable source of uncertainty. Our work highlights that is

not really possible to obtain material rankings with high resolution using a single molecular modelling

approach and that, as a minimum, some uncertainty should be estimated for the performance of

MOFs shortlisted using high throughput computational screening workflows. Future prospects for

computational screening studies are also discussed.

Broader context
To avoid the most severe impacts of climate change, we need to deploy carbon capture and sequestration (CCS) technologies on a scale that matches human
industrial activity’s emissions. However, the differences in scale, composition, and technical requirements between various emission sectors require
technologies that can be optimised for various applications. Adsorption-based processes using metal organic frameworks (MOFs) for carbon capture offer a
significant advantage because they can be tailored for specific CO2 capture sources by optimising the adsorption cycle and MOF properties. While high
throughput computational screening (HTCS) studies are routinely conducted to identify the best MOFs for various CCS applications, very few of these materials
are tested at the lab-scale. In this article, we argue that a lack of accurate, reproducible, and consistent implementation of HTCS workflows is one of the primary
technological barriers between theoretical and experimental studies. We demonstrate that the molecular parameter sets used to simulate CO2 and N2

adsorption significantly impact the final recommendations made using process modelling. Given the uncertainties we observe, the community must take steps
to improve the current simulation strategy. We offer several recommendations in the article on how to enhance the reliability of predictions derived from HTCS
studies.

Introduction

High throughput computational screening (HTCS) has emerged
as an important strategy in the efforts to identify the most
promising metal organic frameworks (MOFs) for carbon cap-
ture applications.1,2 Consider two academic groups as an
example: both are seeking to determine the best MOF for
carbon capture from flue gas using computational screening.
Their simulation protocols are identical, including the data-
base of MOF candidates. To rank the performance of materials,
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both groups use pressure swing adsorption (PSA) process
modelling, with an identical process configuration and para-
meters. They both operate under the assumption that the
results obtained using their workflows can be used to inform
experimentalists on which MOFs to synthesise and test. The
only difference between the groups is the choice of force fields
used to describe intermolecular interactions, which are
required by molecular simulations to generate equilibrium
adsorption data. In this article, we question whether the rank-
ings produced by the two groups, and therefore the final
recommendations of their screening studies, will be similar
and to what extent.

Let us first look in more detail at the steps and the assump-
tions typically involved in HTCS workflows. Generally speaking,
HTCS can be conducted at the material level or the process
level. Material-level screening studies filter MOFs for a desired
property. For example, the CO2/N2 adsorption selectivity, per-
cent regenerability, and CO2 working capacity are key perfor-
mance indicators (KPIs) that have been used to organise MOF
databases on several occasions.2–4 However, for complex,
dynamic processes such as PSA, it has been convincingly
demonstrated that these properties alone do not provide
enough information to determine the separation potential of
an adsorbent.5 For that reason, process-level screening work-
flows must be utilised. This approach relies on atomistic Grand
Canonical Monte Carlo (GCMC) simulations to obtain micro-
scale properties of the adsorbent (in particular, equilibrium
adsorption data). This data is then passed onto detailed PSA
process models whereby MOFs are evaluated under realistic
separation conditions.6 At this level, we are interested in KPIs
which reflect the economic drivers of the separation, such as
high CO2 product purity and recovery, or low energy penalty
(energy required to capture a unit amount of CO2) and high
productivity (how much CO2 is captured per kg of adsorbent
per second). These properties depend on the properties of the
adsorbent as well as the variables of the PSA cycle (pressures of
each step, duration of each step, etc.). However, there is no
unique combination of the PSA cycle variables which satisfies
all of the process-level KPIs simultaneously, and so the trade-off
between competing objectives can be represented as a series of
Pareto-optimal solutions known as a Pareto front. Comparing
Pareto fronts for two different materials has therefore become
an established protocol for ranking MOFs based on their
performance.7–11 Among the several design choices one is
posed with when constructing a process-level simulation pipe-
line, the first (and perhaps most important) choice is how to
generate the adsorption data using molecular simulations. To
understand the importance of this step, it is instructive to
briefly review the primary components of a typical GCMC
simulation of adsorption.

The interactions between all atoms, and therefore the
potential energy, must be accurately described in order to
predict CO2 and N2 adsorption in MOFs. In classical GCMC,
this is typically achieved by defining an appropriate set of
equations and molecular parameters known as a forcefield
(FF), whereby short-range repulsion/dispersion interactions

are described by a Lennard-Jones (LJ) potential, and long-
range electrostatic interactions by a coulombic potential.12,13

Specialised FFs have been developed to accurately describe the
LJ contributions in specific subclasses of MOFs,12,14,15 however
these lack the large-scale predictive capabilities needed for
screening purposes. On the other hand, generic FFs such as
Dreiding16 and the Universal Force Field (UFF)17 are transfer-
able (albeit less accurate) as they describe the same types of
framework atoms in many different materials with the same
parameters. Therefore, Dreiding or UFF are the common and
practical choices for HTCS of MOFs.18–22 They are typically
combined with the Transferable Potentials for Phase Equilibria
(TraPPE)23 FF (which describes the CO2 and N2 adsorbates)
using mixing rules such as Lorentz–Berthelot. For the electro-
static interactions, partial charges must be assigned to each
atom in the system. Several assignment schemes have
been developed so far and have been reviewed elsewhere,24

each differing in their level of accuracy, philosophy, and
computational cost. The most accurate (but computationally
expensive) approach would be to determine the electrostatic
potential within a material using ab initio calculations and then
assign point charges that best represents this electronic
environment.24 While many ab initio approaches exist,25–33

density derived electrostatic and chemical (DDEC)28–32 charges
and Repeating Electrostatic Potential Extracted ATomic
(REPEAT) charges33 are considered to be the best options for
periodic structures. Less accurate, but computationally inex-
pensive, charges can also be obtained using charge equili-
bration (Qeq)34 schemes such as the Extended Qeq (EQeq)35

and Periodic Qeq (PQeq)36 methods, among others.37,38 These
approaches are based on the principle of electronegativity
equalisation between bonded atoms, and have been used
extensively in MOF screening studies despite their semiempi-
rical nature.18,39–42

Despite the consensus that ab initio charges are the pre-
ferred choice for HTCS, several practical considerations (such
as the availability of computational resources) can motivate the
choice of charge equilibration schemes. Additionally, it is
currently nontrivial to obtain a set of LJ parameters capable
of screening thousands of MOFs with high accuracy. Therefore,
it is quite common to see an almost arbitrary combination of
the LJ parameters and charge assignment schemes used in
HTCS of MOFs. This raises some concerns on the quality of the
FFs used for predicting equilibrium adsorption data in mole-
cular simulations.43–45 Several studies have endeavoured to
understand how the choice of charge scheme27,39,46,47 or LJ
FF44,48 changes the rankings of MOFs for CO2 capture. How-
ever, these studies do not extend beyond a simple material-level
analysis (i.e., up to step 2 in Fig. 1). In order to align with the
advancements achieved in HTCS, the uncertainty embedded
within the process-level KPIs must be understood (i.e., up to
step 3 in Fig. 1), given that the adsorption data plays a pivotal
role in PSA-based CO2 capture processes.5,49–51 Without
this level of analysis, a shadow of doubt on the outcomes
of theoretical studies will remain, which only serves to
hinder the transition of the recommended materials to the
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experimental campaign and ultimately to practical, industrial
systems.

To explore these issues, we carry out a multiscale HTCS
where we assess the suitability of six FFs commonly chosen to
simulate CO2 and N2 adsorption in MOFs. Our goal is to
understand how the material rankings are impacted by this
choice, not necessarily on how well the FFs reproduce experi-
mental data, and so we deliberately avoid making any compar-
isons to experimental measurements of adsorption. As a
process-level case study, we consider the separation of CO2

(15 vol%) and N2 (85 vol%) binary mixtures using a modified
Skarstrom PSA cycle at conditions representative of dry flue gas
streams from coal-fired power plants. We generate distribu-
tions of CO2 and N2 adsorption isotherms in 690 MOFs at
multiple temperatures using LJ parameters from either Dreid-
ing or UFF, in combination with partial charges assigned by the
DDEC, EQeq, or Qeq schemes. We then determine the distribu-
tions in process-level performances for every MOF using a
combination of high-fidelity PSA process modelling and
machine learning. Using these data, we generate material
ranking lists for each FF and reflect on the consistency of the
results. Our analysis will show moderate-to-poor correlations
between the process-level rankings obtained using different
FFs, and that this disagreement stems primarily from the
significant deviations which manifest at the material level of
description. We then quantify the average uncertainties
between FFs from their process-level responses and reveal that
the prevailing source of uncertainty is the choice of charge
scheme. We finally explore a potential pathway towards uncer-
tainty mitigation in multiscale simulations of PSA-based CO2

capture processes and discuss future prospects for HTCS of
materials.

Methodology
Grand canonical Monte Carlo simulations

The computation-ready, experimental (CoRE) MOF 2014 DDEC
database52,53 is chosen as the starting point for adsorbent
selection. To ensure a fair comparison in GCMC modelling
approaches, only MOF structures that contain all the atom
types present in both the UFF and Dreiding force fields are
included. This filtering process results in a reduced dataset of
726 structures from the original 2932. A further 36 MOFs are
removed due to the presence of unbound water molecules,
counter-ions and/or hydrogen atoms with incorrect bond
lengths/angles, leaving 690 computation-ready structures avail-
able for this study.

Simulations of CO2 and N2 adsorption are performed using
the atomistic GCMC method implemented in RASPA.54 For
framework atoms, LJ parameters were taken from UFF17 or
Dreiding.16 For CO2 and N2 adsorbates, the TraPPE FF is
used.23 For the coulombic interactions, three partial charge
assignment schemes are considered here: DDEC,28 EQeq,35 and
Qeq.34 DDEC charges are taken from the original CoRE MOF
2014 DDEC database, while the EQeq and Qeq partial charges
are calculated using the EQeq v1.1.055 and RASPA v2.0.47
simulation codes, respectively.

For each adsorbent, single-component isotherms are gener-
ated at 273 K, 298 K, and 323 K on a logarithmic pressure scale
between 10�3–10 bar for CO2 and 10�3–1 bar for N2. As there are
6 possible FF combinations, this results in 18 isotherms for
both CO2 and N2 using 378 unique adsorption points. In total,
24 840 isotherms are generated across 690 MOFs which
span different pressures, temperatures, charge assignment
methods, and generic forcefield parameters. We refer to the

Fig. 1 An approach to understanding the impact of molecular forcefields on the computational ranking of MOFs for CO2 capture. In the first step, a
subset of molecular forcefields (comprised of Lennard-Jones parameters and partial charge assignment schemes) are chosen for evaluation. In the
second step, adsorption data is generated using different forcefields via molecular simulation. The rankings of MOFs are then compared using material-
level metrics such as CO2 uptake. Until now, the differences between forcefields have only been evaluated at this level. In the third step, as in the current
study, the impact of one’s choice in forcefield is evaluated using rigorous process simulation and optimisation.
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data generated using this subset of MOFs as the charge-
dependent, reproducible, accessible, forcefield-dependent,
and temperature-dependent exploratory database of isotherms,
or CRAFTED isotherms for brevity. To provide an initial seed for
future benchmarking efforts, we make the CRAFTED database
(v1.1.1)56 and scripts available to the broader scientific com-
munity in a dedicated Zenodo repository at https://zenodo.org/
record/7689919. This data was obtained using a HTCS workflow
that has been developed56 and validated elsewhere.57,58 For
more technical details on the GCMC simulations, see the ESI,†
supplementary note 1.

Equilibrium adsorption model

Process-level simulations require an analytical model to deter-
mine the equilibrium molar loadings of CO2/N2 mixtures over
various pressure and temperature domains. The dual-site
Langmuir (DSL) model (eqn (1)) is well suited for this purpose.
Within the DSL approach, competitive adsorption may be
calculated by a simple extension of the single-component DSL
models;59 many practical systems of interest are known to be
described by this behaviour.7,60,61

qDSL
i ¼

X2
j

qis;jb
i
jpi

1þ
P
i

bijpi
(1)

bij ¼ bi0;j exp
�DHads

i;j

RT

 !
(2)

Here, i refers to adsorbate (either CO2 or N2), j refers to
adsorption sites 1 or 2, qi

s,j [mmol g�1] is the saturation
capacity, pi [bar] is the pressure of component i, qi

0,j [bar�1] is
the pre-exponential factor, and DHads

i,j [J mol�1] is the heat of
adsorption. The DSL model parameters are determined by

nonlinear least-squares regression against the GCMC adsorp-
tion data at all three temperatures using the lmfit.minimize()
function in python.62 We apply the following constraints during
the fitting to obtain physically meaningful DSL model para-
meters. We enforce that the saturation capacity of each site is
equal for both CO2 and N2 to satisfy the thermodynamic
consistency requirements.63 We designate the CO2 adsorption
site 1 as being the stronger adsorbing site by imposing the

bCO2
1 4 bCO2

2 condition. This constraint reflects the energetic
heterogeneity of CO2 adsorption. For N2, in cases where the
adsorption isotherm is linear over the pressure range, we adopt
the Equal Energy Site (EES) formulation of the extended DSL
model.64,65 This formulation recognises the energetic homo-
geneity of N2 adsorption by setting the interaction energy

parameters (i.e., bN2
0;j and DHads

N2;j
) to the same value at both

sites.51,66 In cases where N2 adsorption deviates substantially
from linearity, this constraint is relaxed, and the fitting proto-
col used to model CO2 adsorption is utilised. This approach has
been validated using binary mixture GCMC simulations (see
supplementary note 1.3, ESI†).

PSA simulation and optimisation strategy

We consider a modified Skarstrom PSA cycle which consists of
five steps: (1) pressurisation; (2) adsorption; (3) heavy reflux; (4)
counter-current depressurisation; and (5) light reflux, as shown
in Fig. 2. The cycle variables consist of high (adsorption) and
low (evacuation) pressures (pH and pL [bar]), durations of the
pressurisation, adsorption, and counter-current depressurisa-
tion steps (tpres, tads, and tcnCDepres [s]), velocity of the feed (vfeed

[m s�1]), and light and heavy reflux ratios (aLR and aHR [�]).
Other important properties highlighted in Fig. 2 are the poros-
ity of the bed and pellet (eB and ep [�]), and the pellet radius

Fig. 2 Schematic of the five-step modified Skarstrom cycle. From left to right, the pressurisation, adsorption, heavy reflux, counter-current
depressurisation, and light reflux steps are shown. Some of the key cycle variables and adsorbent pellet properties are highlighted in red and are
described in the main text.
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(rp [m]). The role and purpose of individual steps are described
in detail elsewhere.7 The main feature of this cycle is that it
utilises a dual reflux configuration, which avoids the need to
pull deep vacuum below the practical limits of industrial
vacuum pumps.67 This presents an important advantage over
the more commonly used 4-step VSA cycle with light product
pressurisation, which often requires unphysically low evacua-
tion pressures to achieve high CO2 purities and recoveries.51

To accurately simulate the separation of CO2/N2, partial
differential equations which describe the mass, energy, and
momentum transfer phenomena taking place in the adsorption
column are required. A complete description of the governing
equations, model parameters, boundary conditions and math-
ematical criterion used to determine cyclic steady state are
provided in supplementary note 2 (ESI†), while other technical
details of the PSA simulation are provided elsewhere.7,68 We
summarise here the key assumptions adopted in our process
model as the following: (1) the Ideal Gas law describes the gas
phase; (2) the gas phase and solid phase are in thermal
equilibrium; (3) mass transfer is controlled by molecular diffu-
sion in the macropores, which is valid for most microporous
adsorbents with pore openings greater than 4 Å.69 Furthermore,
the mass transfer rate is described by the linear driving force
(LDF) approximation; (4) an axially dispersed plug flow model
is employed, meaning there are no radial distributions in
concentration, pressure, and temperature for both the solid
and gas phase; (5) the column is operated adiabatically; (6) the
Ergun equation describes the axial pressure drop. These
assumptions are largely consistent with the assumptions of
several previous studies.7–11

Four key performance indicators (KPIs) are extracted from
the PSA simulations, namely: CO2 purity [�], CO2 recovery [�],
energy penalty [kWh tonCO2

�1], and productivity [molCO2

kgads
�1 s�1]. Regulatory bodies such as the US Department of

Energy have specified 95% purity and 90% recovery targets for
CO2 capture processes. Viable adsorbents must therefore be
able to achieve this product specification in any given PSA cycle.
For the purposes of our investigation, we relax the purity
requirement to 90%,7,66 and simply refer to the 90% purity
and recovery targets as carbon capture and sequestration (CCS)
constraints. The energy penalty corresponds to the amount of
energy required to capture a unit of CO2, whereas productivity
specifies how much CO2 a unit of the adsorption bed (e.g., a kg
or m3) can capture per unit of time. These KPIs are related to
the operating and capital costs of the separation, and have been
widely adopted in previous screening studies as the indicative
metrics of material performance.7–11,70 Mathematical defini-
tions for each KPI are provided in supplementary note 2 (ESI†).

The performance of the PSA cycle is optimised by coupling
the PSA process model with the Non-dominated Sorting Genetic
Algorithm (NSGA-II).71–73 11 decision variables (DVs) are initi-
ally considered for the process optimisation. These included all
of the PSA cycle variables as well as eB, ep and rp. Parameters eB,
ep and rp are included as DVs in light of the recent work by
Farmahini et al.74 who demonstrated that significant perfor-
mance gains can be obtained by optimising properties of the

pellet as well as the cycle variables. We then reduced the
dimensionality of the optimisation landscape to 7 DVs by fixing
the values of pL, tpres, tcnCDepres, and aHR after some preliminary
sensitivity analysis. This decision is motivated by the fact that
these 4 parameters contributed very little to the overall perfor-
mance of the cycle; they either converged to the boundaries
defined by physical limitations, or they varied within a narrow
window of the optimisable range (see supplementary note 3,
ESI†). A summary of the final DVs considered in this work and
their operating ranges are provided in Table 1.

We conduct two separate optimisation stages in this study.
The first is an unconstrained maximisation of the CO2 purity
and recovery. For this stage, the genetic algorithm is terminated
after 70 generations. The second stage is a multi-objective
optimisation, whereby we maximise the productivity while
simultaneously minimising the energy penalty subject to the
two CCS constraints: CO2 purity Z0.9 and CO2 recovery Z0.9.
For this stage, the genetic algorithm is terminated after 250
generations. We confirm that 70 and 250 generations for the
CO2 purity-recovery and energy-productivity optimisations,
respectively, are sufficient to guarantee convergence of the
Pareto fronts.

Machine learning surrogate model for the prediction of PSA
performance indicators.

We developed a machine learning (ML) surrogate model of the
modified Skarstrom cycle which can predict the process KPIs
for any arbitrary combination of DVs and material properties.
We use this surrogate model to expedite the calculation of CO2

purity-recovery and energy penalty-productivity Pareto fronts.
Similar to, and guided by, our previous efforts in this domain,66

we use an artificial neural network (ANN) as our choice of ML
model. There are overall 7 DVs and 14 material-specific para-
meters (crystal density rs [kg m�3], crystal specific heat capacity
cp,s [J kg�1 K�1], and the 12 DSL parameters which describe CO2

and N2 adsorption), resulting in 21 inputs, while the outputs of
interest are the 4 KPIs (i.e., CO2 purity, CO2 recovery, energy
penalty, and productivity). Appropriate training limits are
defined for each of the material-specific parameters to suffi-
ciently cover the distributions of CRAFTED MOF material
properties, and training limits for the 7 DVs are defined as
the optimisable ranges given in Table 1.

Training data is generated by a combination of Latin Hyper-
cube sampling (LHS) of the input phase space as well as a
guided search of high quality, Pareto-optimal points through a
bootstrap optimisation technique. The data obtained using

Table 1 Lower and upper bounds for decision variables used in the
optimisation of the modified Skarstrom cycle

pH
a

[bar] tads [s] aLR [�]
vfeed

[m s�1] eB [�] ep [�] rp [m]

Lower bound 1 5 0.01 0.1 0.35 0.3 0.5 � 10�3

Upper bound 5 500 0.2 2.0 0.45 0.7 2.5 � 10�3

a Competitive adsorption of CO2/N2 mixtures are well described by the
extended DSL model up to 5 bar, see Fig. S1 (ESI).
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these sampling techniques is then cleaned and pre-processed
by applying log-like transformations to each of the KPIs.75 Next,
the data is partitioned into train/test/validation datasets using a
ratio of 90/5/5. MATLAB’s machine-learning toolbox is subse-
quently used to train a dense feedforward ANN model archi-
tecture of 3 hidden layers with 45 neurons per hidden layer by
Levenberg–Marquardt back-propagation. The ANN model pre-
dictive performance is evaluated by calculating the adjusted
coefficient of determination (Radj

2) for all KPIs using the test
dataset. Model training and refinement is terminated once
predictions of both the individual cycle configurations and
fully resolved Pareto fronts no longer improved (Fig. 3). Addi-
tional details on the surrogate model training protocol and on
how the CRAFTED MOF material properties are calculated are
provided in the supplementary note 4 (ESI†).

Uncertainty metrics for high performing adsorbents

High performing adsorbents are characterised by their ability
to minimise the cost of CO2 capture while meeting the CCS
requirements. It is not a priori evident what combination of
material properties leads to these requirements being satisfied,
so we conduct preliminary purity-recovery optimisations in two
stages. Low performing adsorbents are first identified by their
ANN-generated Pareto fronts and discarded from our subse-
quent analysis. We define a low performing material as one
which does not satisfy the CCS constraints for any FF. For the
218 materials that remain after this pre-screening, high quality
Pareto data is generated by refining the ANN results with the
PSA process model for an additional 10 NSGA-II generations.
This mitigates any potential bias in the ML process and ensures
that the conclusions drawn are established using accurate
process simulation data. Moving forwards, we only consider

the 218 MOFs in our uncertainty calculations. We designate
this subset of MOFs as CRAFTED-u.

We seek to quantify the level of agreement between FFs at
the molecular and process simulation levels. To do so, we make
use of a number of statistical metrics which are both local, i.e.,
relating to a single material, and global, i.e., relating to the
entire CRAFTED-u MOF database. Let us first focus on mole-
cular simulations, used to generate equilibrium adsorption
data. In addition to the comparison of individual adsorption
isotherms generated from different FFs, we also employ the
Spearman correlation coefficient, r, to measure the global
extent of the correlation between adsorbate uptakes predicted
by different FFs. Perfect positive correlations result in r = 1,
perfect negative correlations in r = �1, and no correlation
in r = 0.

At the process level, for each CRAFTED-u MOF, the uncer-
tainty between Pareto fronts that emerges from the use of
different molecular FFs to generate the adsorption data as
input, is quantified using the hypervolume. The hypervolume,
x, measures the area enclosed by all solutions on the Pareto
front and a user-defined reference point r.76,77 We measure x by
querying N = 104 uniformly distributed random points within
the Pareto phase space bounded by r, where r is determined
such that the entire Pareto front for every FF is covered in the
sampling. The difference in hypervolumes between FFs i and j,
which we call the hypervolume error Dxj

i, is taken as the
uncertainty measure for a single material. The process of
calculating Dxj

i is visually represented in Fig. 4.
Now, in order to quantify the global uncertainties between

two different FFs i and j across all CRAFTED-u MOFs, we must
determine a single numerical value from the full distribution
of Dxj

i values. We take the mean of the hypervolume error

Fig. 3 The ANN model prediction accuracy compared to the high-fidelity PSA process model. Left subplots: Parity plots showing the ANN model
predictions of individual cycle configurations for each process KPI, along with the corresponding Radj

2 values. Each ANN model is trained on 300 000+
datapoints. Right subplot: Examples of energy-productivity Pareto front predictions using the ANN model (solid lines) compared to the Pareto fronts
obtained from process simulations (filled circles) for 7 different hypothetical adsorbent materials (indicated by different colours). Hypothetical adsorbent
materials are characterised by random combinations of the material-specific parameters. Shaded region indicates an error of �5%.
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distribution, Dx
j

i , as the indicative metric of global uncertainty.
Qualitatively we would also like to understand if FF i has a
propensity to generate adsorption behaviours that produce
better process performances overall compared to FF j. Estab-
lishing this connection between the adsorption behaviours and
process-level responses helps to reveal the biases in perfor-
mances that may arise in particular FFs. We therefore introduce

a normalised metric, ~Xi; to understand the general process-level
behaviours of different FFs across many materials which may
dominate different areas of KPI phase space. The protocol for

calculating ~Xi for FF i is as follows. For a single MOF, six Pareto
fronts are generated for each of the six possible FFs. One of
these FFs generates a Pareto front which performs the best, and
therefore has the greatest hypervolume. We treat this hypervo-
lume as the upper limit of performance (i.e., xmax = 100%) and
normalise the hypervolume of FF i relative to xmax such that Xi =
xi/x

max � 100. This operation is applied to every CRAFTED-u
MOF, resulting in a distribution of Xi values. Similar to the
hypervolume error, we measure the central tendency of the Xi

distribution by a single numerical value. In this case, we take

the median, Xi. If ~Xi 4 ~Xj , then FF i tends to dominate over FF j
overall. Note that the mean of Dxj

i and the median of Xi were
determined to be the most appropriate statistical measures of
central tendency given the spread and skewness of the under-
lying data distributions. They are therefore the best metrics to
indicate the overall trends of the CRAFTED-u MOF dataset.

Finally, we measure the correlation between process-level
rankings using the Spearman coefficient. Note that, as a matter
of convention, we indicate that any of the metrics discussed
above are being calculated with respect to a particular FF by the
subscript notation and are being compared to another FF using

the superscript notation. As an example, xi refers to the
hypervolume calculated for FF i, and rj

i refers to the correlation
in rankings obtained using FFs i and j.

Results & discussion

We begin our discussion by delving into the most crucial and
practical consideration of this work, i.e., to what extent the
selection of a particular FF impacts the process-level rankings
of materials. We then consider specific adsorption patterns and
the level of agreement between different FFs in predicting the
uptake of CO2 and N2. The objective here will be to reason
some of the important differences in molecular modelling
approaches, seeking to understand the nature of the (dis)agree-
ment by exploring correlations in simulated CO2 and N2

uptakes. Next, we quantify the uncertainty between different
FFs at the process-level. For this, we will utilise a number of
figures and statistical measures to map process-level responses
onto the underlying adsorption patterns. Finally, we explore
potential pathways towards uncertainty mitigation in multi-
scale simulations of PSA-based CO2 capture processes and
discuss future prospects for HTCS of materials.

Level of agreement between process-level rankings obtained
using different molecular forcefields

In this section, we inquire whether the ranking of porous
materials and the identification of top performers through
process modelling depends on the use of a specific FF. For
this, we must first generate a material ranking list for each
molecular FF using some process-level performance metric.
The energy-productivity Pareto front, subject to the CCS

Fig. 4 High throughput computational screening workflow with uncertainty quantification. For a single CRAFTED MOF, comparing two different
molecular forcefields i and j involves the following steps. In step (1) the CO2 and N2 adsorption isotherms are predicted using molecular simulations. In
step (2), the GCMC adsorption data is used to generate CO2 purity-recovery Pareto fronts or energy penalty-productivity Pareto fronts using the ANN
surrogate model. If the CCS constraints are satisfied for at least one forcefield, then all of the ANN-generated Pareto fronts are refined using the PSA
process model. If the CCS constraints are not satisfied for any forcefield combination, then the MOF is discarded from our uncertainty quantification
study. In step (3), the hypervolume x of each Pareto front i and j is determined by stochastically sampling the Pareto phase space with 104 points, i.e., the
blue and red shaded regions in the right-most subplots. The hypervolume error between forcefields i and j for a single material at the Pareto level, Dxi

j, is
taken as the difference in these two shaded regions, as shown by the grey shaded region in the right-bottom subplot.
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constraints, is often used to rank materials in multiscale HTCS
studies.7,66,70,74 However, the CCS constraints are not satisfied
by every CRAFTED-u MOF across all FFs, and so it is not
possible to evaluate every material behaviour using energy-
productivity KPIs. We therefore ranked materials according to
the maximum CO2 purity they can achieve in the modified
Skarstrom cycle (Fig. 2), subject to the constraint of CO2

recovery Z0.9, using the HTCS workflow shown in Fig. 4.
Then, we extracted the top 50 MOFs from each ranking,

consistent with the philosophy of previous screening studies
which typically seek to narrow the candidate list to only the top
performers.2,19,21,22,70 We find that the material rankings are
poorly-to-moderately positively correlated, and that the identity
of the top performing MOFs can change significantly, depend-
ing on the FF. To demonstrate this point, let us make compar-
isons amongst the different FFs by choosing UFF with DDEC
charges as the reference. Note that by doing so, we do not
suggest that UFF + DDEC is more accurate in reproducing
experimentally observed adsorption behaviours, it is simply a
matter of convention. With this in mind, we identify the
number of MOFs from each FF-specific ranking which overlap
with the top 50 materials from the UFF + DDEC baseline and
visualise the results in Fig. 5.

Let us first focus on the comparison between UFF and
Dreiding in Fig. 5, with each of these LJ parameter sets
combined with the DDEC charges. We see that 35 MOFs are
shared in the list of top performers between these two variants
of the forcefields. Turning now to the combinations of UFF with
other charge schemes, the greatest level of agreement is
between DDEC and Qeq, with 36 MOFs appearing in both lists

of the top 50 materials. It is also quite apparent that the EQeq
charges provide a much poorer level of agreement, with only
27 MOFs appearing in the ranking obtained using the DDEC
charges. We find that even if we take a different molecular FF as
the baseline (Fig. S9, ESI†) or focus on a shorter list of candidate
materials, i.e., the top 20 (Fig. S10, ESI†), that generally: (1) there is
consistently better agreement in the rankings between Qeq and
DDEC charges than in EQeq and DDEC charges; (2) depending on
one’s choice of the charge scheme, the overlap in the materials
identified by any two different schemes ranges between 50% and
70% (Fig. S9, ESI†), not to mention the order of materials which
changes significantly depending on the set of parameters; (3) the
screening results remain sensitive to the choice of LJ parameters
and the two lists of top materials produced by two different FFs
may share approximately 70% of the materials. These tendencies
are supported by the Spearman ranking correlation coefficients,
which are provided above each bar plot in Fig. 5.

While Fig. 5 is a useful tool to visualise how the identity of
the top performers can change with molecular FF, we do not yet
understand how close the materials are in terms of their
numerical performance. The two possible explanations for
poor-to-moderate agreement between material rankings is
either: (1) many materials perform similarly, and small differ-
ences in the performance estimates give rise to large differ-
ences in the relative rankings across different FFs, or (2) the
process performances, and therefore the rankings, are highly
variable parameters. In Fig. 6 we provide a snapshot of how the

Fig. 5 The number of MOFs in the list of top 50 performing materials
shared between the UFF + DDEC forcefield and other molecular force-
fields. Materials are ranked by the maximum CO2 purity value they can
achieve in the modified Skarstrom PSA cycle, subject to CO2 recovery
Z0.9. The Spearman coefficient, r, measures the strength of the correla-
tion between rankings obtained using the UFF + DDEC forcefield and
other molecular forcefields, and is reported above each bar plot.

Fig. 6 Visualisation of how the process-level performance values for the
top 10 MOFs ranked by UFF + DDEC change using other molecular
forcefields. Materials are ranked by the maximum CO2 purity they can
achieve in the modified Skarstrom cycle, subject to the recovery of CO2 Z

0.9. CSD reference codes for the top 10 MOFs ranked by the UFF + DDEC
forcefield (QOVWOO is ranked 1st, and KAFYAT is ranked 10th) are shown
in the legend. The dark grey shaded region indicates the process-level
performance value which differentiates the top 50 materials in each
forcefield. The light grey shaded region indicates the CCS constraint of
CO2 purity Z0.9.
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numerical performance values used to rank the top 10 materi-
als for UFF + DDEC change with molecular FF. From this plot
we identify some materials, such as QOVWOO and PEKKAS,
which show fairly minor deviations using different FFs, and so
are consistently ranked in the top 10 candidates. Other materi-
als, such as VUNCAJ, always remain within the top 50 thresh-
old. Finally, we have some materials with such a strong
volatility in their process KPIs that they may fall far below the
top 50 threshold, depending on the choice of FF. These con-
stitute the largest proportion of materials, and in many
instances the difference in performance is sufficient to classify
the same material as suitable (in other words, meeting the CCS
constraints) by one FF and not suitable by another FF. Note that
these trends persist when the other FFs are taken as the
baseline for comparison (Fig. S11, ESI†).

So far it appears that the process performances and material
rankings depend on both the definition of the LJ and the
electrostatic potentials, however it seems that the choice of
charge scheme has a stronger impact (Fig. 5). In practice,
(E)Qeq may be chosen over DDEC in HTCS78–80 due to restricted
computational resources, or they may be used to pre-screen
large databases and shortlist top performers for further refine-
ment using higher accuracy charge assignment schemes.81,82 In
an ideal scenario, DDEC charges are available or can be
calculated for all candidate materials. In this case, the uncer-
tainty embedded in one’s choice of partial charge assignment
would be eliminated as ab initio charges are the preferred level
of molecular theory for HTCS of materials for carbon capture.2

If we confine the scope of our analysis to this ideal scenario, the
only additional degree of freedom remaining is how to model
the LJ interactions. In Fig. 7(a), a direct comparison of the
maximum CO2 purity predicted by either UFF or Dreiding in
combination with DDEC charges reflects this ideal case study.
Apart from FUFREE, the MOFs in this top performing subset

show similar process-level responses. While it is tempting to
attribute this behaviour to minor scattering in the adsorption
data, we show later in our discussion of the process-level
uncertainties that this may not strictly be the case as different
adsorption patterns can lead to the same CO2 purity-recovery
performances. On the contrary, differences between LJ FFs
become much more pronounced at the energy-productivity
Pareto level. For example, in Fig. 7(b) we rank materials
according to the maximum productivity they can achieve on
their energy-productivity Pareto front (subject to the CCS con-
straints), and make a similar comparison between the top
performers identified by UFF + DDEC and Dreiding + DDEC.
It is evident from Fig. 7 that the predictions between LJ FFs are
substantially more uncertain when the energy-productivity
process KPIs are used. This observation is notable because
the energy-productivity Pareto front more accurately reflects the
separation potential of an adsorbent and, unlike the choice of
charge scheme, the uncertainty that arises between different LJ
parameter sets is unavoidable as the choice of UFF vs Dreiding
is still somewhat arbitrary.

What then are the practical implications of these observa-
tions for HTCS of materials for CO2 capture? At this point it is
important to recognise that the correlations between rankings
are in some cases much greater than zero, i.e., between UFF +
DDEC and Dreiding + DDEC. This suggests that HTCS retains
its utility as a guided search platform even in the presence of
considerable uncertainties. Indeed, Chung et al.83 and Boyd
et al.82 have demonstrated this to good effect as studies which
have experimentally verified the structures predicted by HTCS
workflows. However, in light of our results, the preliminary
conclusion of this section is that it is very likely that two
separate studies utilising different levels of molecular theory
will still come to different conclusions on what the top per-
forming material candidates are. The picture that is emerging

Fig. 7 Visualisation of how the process-level performance values for the top 10 MOFs ranked by UFF + DDEC change using Dreiding + DDEC.
(a) Materials are ranked by the maximum CO2 purity they can achieve in the modified Skarstrom cycle, subject to the recovery of CO2 Z 0.9. (b) Materials
are ranked by the maximum productivity they can achieve, subject to the constraints of CO2 purity and recovery Z0.9. PARHEW, ZNGLUD01, FUFREE,
and PUPNAQ do not meet the CCS constraints using Dreiding + DDEC and so their productivity KPIs are set to zero. CSD reference codes for the top 10
MOFs in each subplot are shown in the legends.
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from the process-level results cannot be complete without a
complementary understanding of the adsorption behaviours.
Our objective in the next section is to therefore understand the
nature of the disagreement between FFs at the material level.
This will provide us with the molecular insights needed to
reason why such differences in process performances arise.

Analysis of the underlying adsorption patterns and the extent
of consistency in CO2 and N2 uptakes predicted using different
molecular forcefields

Fig. 8 provides a birds-eye-view of the extent of agreement in
simulated uptakes of CO2 and N2 between different FFs.
Fig. 8(a, b, e and f) show the Spearman correlations in simu-
lated uptakes for all pressure points. Subplots (a) and (e) show
correlations between LJ FFs using fixed charges for CO2 and N2,
respectively, while subplots (b) and (f) consider fixed LJ FF
parameters and different charge schemes. Parity plots of simu-
lated uptakes for both CO2 and N2 relevant to each of these
scenarios are provided in Fig. 8(c, d, g and h) at 0.001 bar, i.e.,
in the Henry’s regime. We begin the discussion by comparing
the behaviours of both adsorbates, after which we will explore
the differences between molecular FFs. Note that the results
presented here are qualitatively similar at higher pressures (see
supplementary note 6, ESI†).

From Fig. 8(a, b, e and f), both CO2 and N2 there is a greater
degree of scattering, and therefore a lower correlation, between
different FFs at lower pressures. We note that CO2 simulated
uptakes exhibit a higher degree of scattering than N2 and seem
more sensitive to the electrostatics than to the parameters of
the LJ FF, as seen by the stronger correlations in Fig. 8(a)
compared to Fig. 8(b); for N2, the opposite trend is observed.

The observations above are easy to rationalise. It is known that
the most favourable adsorption sites on a MOF will be occupied
preferentially at lower pressures.44 The strength of the interac-
tions between the adsorbing species and the framework is
mediated by the partial charges assigned to framework atoms
and the cross-interactions between the adsorbate and adsor-
bent (and hence the parameters of the LJ FF). Therefore, a
higher degree of scattering in the uptakes is expected in the low
pressure regime. CO2 also exhibits more pronounced uncer-
tainties than N2 because: (1) it has more LJ sites available to
interact with the MOF, and (2) it has a larger quadrupole
moment which strongly interacts with the partial charges
assigned to framework atoms.84 Finally, as the electrostatic
contributions in CO2 adsorption are more significant than in
N2 adsorption, the variation in the charge schemes produces a
more pronounced scattering in the results compared to varia-
tions in the LJ parameters.

Now, we explore in more detail individual adsorption beha-
viours that contribute to the overall picture in Fig. 8. Intuitively,
we can expect three primary scenarios for when predictions
between FFs deviate significantly from each other: (1) when
adsorption occurs in MOFs with small pores; (2) when the LJ
parameters for framework atoms are significantly different
between UFF and Dreiding; and (3) when charge equilibration
methods fail to reproduce DDEC charges. In addition, it is
possible that there are combinations of these scenarios for
particular MOFs leading to strongly coupled effects. The aim of
the following discussion is to explain how these FF deviations
arise, and in doing so to provide more insights into the
molecular origins of the correlation results in Fig. 8(a, b, e
and f). To achieve this, we explore each of these three scenarios,

Fig. 8 Correlations and parity plots of simulated uptakes of CO2 and N2 for different molecular forcefields. Subplots (a) and (b) show the Spearman
correlations in simulated uptakes of CO2 for different LJ forcefields and charge schemes, respectively. Subplots (c) and (d) show the parity in simulated
CO2 uptakes at low pressure using different LJ forcefields and charge schemes, respectively. Subplots (e) through to (h) make the same comparisons but
for N2. Note that each point in subplots (c), (d), (g) and (h) represents a unique material and forcefield. Clusters I and II are highlighted in subplots (c) and
(h) respectively to aid in the discussion.
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touching on both the general trends and some material specific
deviations.

MOFs with smaller pores, and therefore a higher density of
framework atoms, are more sensitive to the LJ parameters.
These materials are typically associated with lower adsorbate
uptakes, and so we generally see higher scattering in the data at
lower loadings, as shown in e.g., Fig. 8(c). This is further
demonstrated in Fig. S12 (ESI†), where the relative uptake of
CO2 at 0.1 bar is plotted against the accessible void fraction of
MOFs. In specific cases, confinement effects may also lead to
very strong deviations in the adsorptive behaviours depending
on the choice of the LJ parameters. For instance, OSOMIT,
HELCUY, and GIMVAA – materials which contain Zn and have
very narrow pore spaces – represent such exceptional cases. As
an example, let us consider the adsorption isotherms of GIM-
VAA, as shown in the top left panel of Fig. 9. The first feature to
note about the behaviour of this material is the very strong
uptake observed for the UFF + EQeq combination of parameters
(green line). This is associated with the EQeq charges assigned
to metal atoms in this structure, which are substantially higher
than the charges assigned by the DDEC and Qeq schemes.
Focusing on the other data in this panel (blue and red lines), we
note that only UFF predicts an appreciable uptake of CO2, and
much lower uptake for any other combination of parameters.
This behaviour stems primarily from the difference in LJ
diameters assigned to Zn by UFF and Dreiding (sUFF

Zn =
2.462 Å and sDre

Zn = 4.045 Å). Due to the larger size of the
framework atoms, the cross-potential interactions between
the adsorbate and adsorbent are unfavourable in the small
pores of GIMVAA for Dreiding, and favourable for UFF. This
leads to negligible CO2 uptake when using Dreiding-based

parameters and non-negligible uptake when the UFF models
are employed. Returning to the outlier behaviour of the
models based on EQeq charges, GIMVAA is representative of
several materials in this class, forming a cluster of green points
(cluster I) far above the parity line in Fig. 8(c).

Let us now consider the second scenario, when the LJ
parameters for framework atoms are significantly different
between UFF and Dreiding. If a MOF contains atom types for
which the depth of the well in the interaction potential, e,
between UFF and Dreiding is very different, we can anticipate
some sensitivity of the adsorption behaviour to the choice of LJ
FF.48 From Fig. 8(c and g), we see that UFF generally predicts
higher adsorbate uptakes. This can be tentatively attributed to
the fact that many (approximately 65%) of the CRAFTED-u
MOFs contain Zn as the metal which, in the UFF framework,
is modelled with eUFF

Zn = 62.35 K compared to the Dreiding value
of eDre

Zn = 27.68 K. Then, depending on the type of framework
atoms and their abundance within the unit cell, it should be
possible to determine which MOFs will be sensitive to the
choice of LJ FF before performing any molecular simulations.
Indeed, Dokur and Keskin developed a simple factor, calculated
using the difference in ei between LJ FFs and the number, ni, of
atoms i, to distinguish MOFs which are relatively insensitive,
and MOFs which significantly depend on the choice of the LJ
parameters (see supplementary note 6.2, ESI†).45 Turning our
attention now to some specific materials, we find that, similar
to the previous scenario, often a particular feature of a MOF
tends to magnify the expected deviations between LJ FFs. For
example, in addition to OSOMIT, HELCUY, and GIMVAA,
cluster I in Fig. 8(c) contains other Zn-metal MOFs such as
BEPNIV (Fig. 9, top panel on the right) for which confinement

Fig. 9 Distribution of CO2 adsorption isotherms predicted by different molecular forcefields for GIMVAA, BEPNIV, AYUWUM, and EBOTOF. Error bars
are shown at each simulated pressure point. MOF structures are visualised using iRASPA to the right of each isotherm subplot.
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effects cannot explain the observed sensitivities as these struc-
tures are quite open and feature relatively larger pores. These
materials do however contain open metal sites (OMS).85 As Zn
is defined by a smaller LJ collision diameter in UFF, the closest
distance of approach between adsorbing CO2 and the OMS is
shorter, which leads to an exponential increase in the electro-
static contributions to the interactions in these systems. This
generally results in more sporadic adsorption behaviours using
UFF parameters. From this observation we expect that large
uncertainties are likely to be encountered when: (1) MOFs
contain OMS that are accessible to the adsorbates; (2) the
OMS belongs to a metal in which the difference in atomic
diameters between LJ FFs is significant (e.g., Zn, Fe, Ti, Tc, and
Ru); and (3) the partial charge assigned to the metal is suffi-
ciently large. Caution is therefore warranted when interpreting
the adsorption behaviours in MOFs with OMS using generic LJ
FFs, particularly as they often fail to reproduce the adsorption
data of their experimental counterparts.85–89 Combined, the
materials described here and in the previous scenario explain
why poorer correlations between LJ FFs are observed using

EQeq (Fig. 8(a and e)), and why rUFFþEQeq
UFFþDDEC orDreþEQeq

DreþDDEC for CO2

in Fig. 8(b).
Finally, the third scenario is concerned with the accuracy of

charge assignment using simplified schemes such as Qeq and
EQeq. In many instances, charge equilibration methods do not
capture the subtle differences in chemical bonding environ-
ments that are reflected by DDEC charges. Therefore, only
modest agreement between DDEC and (E)Qeq charge schemes
is observed over the entire CRAFTED-u database. A good
example is given in Fig. S14 (ESI†), whereby (E)Qeq returns
similar charges for all Zn atoms in all CRAFTED-u MOFs, while
DDEC charges range between 0 and +1.5e (where e is the
elementary charge). For specific materials, charge equilibration
methods can fail spectacularly. In particular, we found that the
Qeq scheme can return inappropriately high – and in some
instances unphysical – charges. Such is the case for the MOFs
populating the cluster of blue points (cluster II) below the parity
line in Fig. 8(h). The spurious charges assigned in these
materials arise for different reasons. For example, in EBOTOF
(Fig. 9, lower panel on the right), Al metals are coordinated to
highly electronegative atoms such as F, which represents a
particular bonding environment for which Qeq fails. Similarly,
abnormal Qeq charges are assigned in MOFs where Na, Ga, or
In metals are present, such as in AYUWUM (Fig. 9, lower left
panel). Ongari et al. noticed similar abnormalities in their
study.47 As to why Qeq fails in this regard, and EQeq does
not, stems from the fact that Qeq uses a neutral charge-centre
to express the Taylor series expansion in electric energy, while
EQeq considers the Taylor series expansion around charge-
positive metal cations. The neutral charge-centring is not able
to accurately reproduce DDEC charges in alkali metals such as
Na, but more generally it appears to fail for MOFs containing
metals with a single electron in their outer orbital,47 thus
leading to similar deviations in In- and Ga-metal MOFs in the
CRAFTED-u dataset. These outlier adsorption behaviours,
which exist primarily for the Qeq scheme, are what contributes

to the difference between Qeq and EQeq correlation lines in
Fig. 8(b and f).

At this point, it is clear that the choice of the FF has a very
strong impact on the adsorption behaviour, often leading to
profound differences in the isotherms for the same material.
These differences are likely to manifest in the material-level
KPIs that depend on adsorption data from molecular simula-
tions (see for example Fig. S16, ESI†), as well as in the
performance estimates obtained using process simulations,
discussed in the next section. Our results further emphasise
that using simplified charge equilibration schemes in applica-
tion to a heterogeneous database of materials is likely to result
in unreliable predictions, which can further lead to significant
scattering in the results and a lack of confidence in the
rankings. From this analysis, we are now better equipped to
establish a general connection between the different molecular
FFs and the process performance distributions that arise from
such modelling choices.

Quantifying process-level uncertainties emerging from the use
of different molecular forcefields

In this section, we quantify the uncertainty between different
FFs at the process-level. The objective here is two-fold: (1) we
attempt to connect the material uncertainties described in the
previous section to the process-level uncertainties in a systema-
tic way; and (2) benchmarking protocols that quantify the
impact of different FFs in conditions relevant to the desired
application, e.g., carbon capture, will be required as improve-
ments in molecular simulations continue to develop. Through
our analysis, we aim to demonstrate the generality of our
framework for evaluating future generations of molecular FFs.

For the above purposes, we make use of the metrics
described in the Methodology section to map between distribu-
tions in adsorption isotherms and CO2 purity-recovery Pareto

fronts. A Pareto-dominance plot, constructed from ~Xi for each
molecular FF i, is displayed in Fig. 10(a). This plot demon-
strates the tendency of a particular FF to dominate, or not
dominate, relative to other FFs. In Fig. 10(b), the process-level
uncertainties are visualised using the average hypervolume

error, Dx
j

i . Consistent with the discussion so far, we make
comparisons amongst the different FFs by taking UFF + DDEC
as the reference. For a complete comparison of the uncertain-
ties between all pairwise FFs i and j, see supplementary note 7.1
(ESI†).

Focusing on Fig. 10(a) first, it is clear that ~Xi values con-
structed from the models based on EQeq charges are consis-
tently lower than those using DDEC or Qeq charges. This
means that the adsorption behaviours of materials generated
using the EQeq charge scheme typically yield poorer process-
level performances compared to DDEC and Qeq. Another
interesting feature to note is the interaction between LJ FFs
and the different charge schemes. Dreiding yields better aver-
age process performances than UFF when coupled with either
DDEC or Qeq but poorer average process performances when
coupled with EQeq. The molecular origin behind this inverse
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Pareto-dominance relationship is explained in supplementary
note 7.2 (ESI†). Now, turning our attention to Fig. 10(b), we note
a number of important trends. Relative to the UFF + DDEC

baseline: (1) larger Dx
j

i are typically observed when the charge
scheme is changed rather than when the LJ FF is changed, i.e.,

Dx
UFFþðEÞQeq

UFFþDDEC 4Dx
DreþDDEC

UFFþDDEC; (2) models based on EQeq charges

are associated with larger Dx
j

i compared to the models based on
Qeq charges; and (3) the uncertainties associated with the
choice of LJ FF is non-negligible. To expand on this final point,
QOVWOO and XOVVIO are the 1st and 47th ranked materials
according to the UFF + DDEC forcefield. Their performance
curves deviate by a hypervolume of approximately 7%, which is
equivalent to the average error between UFF and Dreiding in
Fig. 10(b). The results presented here reasonably support the
conclusions outlined in our discussion of the agreement
between process-level rankings. In particular, they corroborate
that the predictions are overall more sensitive to the choice of
the charge scheme than to the choice of the LJ parameters, that
the models based on EQeq charges agree less favourably with
the DDEC baseline, and that the LJ FF can have a considerable
impact on the process-level results.

On the contrary, we find that the connection between the
process-level uncertainties and material-level correlations in
Fig. 8(a, b, e and f) is not as straightforward. For example,
given that a stronger correlation in the Henry’s regime is
observed between DDEC and EQeq in Fig. 8(b and f), one might
expect that lower process-level uncertainties in Fig. 10(b) would
be observed between DDEC and EQeq rather than DDEC and
Qeq. However, different FFs often give rise to variations in
several important features of both the CO2 and N2 adsorption
isotherms simultaneously, such as the Henry’s coefficient, local
slope, nonlinearity, and total saturation capacity. The perfor-
mance of an adsorbent is determined by an interplay of all of

these features and by the competitive adsorption between CO2

and N2,5,49–51,66 and so it is difficult to capture the process-level
effects from a single metric such as the correlation between
uptakes at low pressure. This makes establishing a general
connection between molecular FFs and their process-level
uncertainties a challenging task. It is possible to link individual
materials to their process-level responses by a more in-depth
analysis (for example, see supplementary note 7.2, ESI†), how-
ever the material-to-process mappings are in general nonlinear.

Exploring potential pathways towards uncertainty mitigation in
multiscale HTCS workflows

In the previous sections we demonstrated that the typical
choices and combinations of the FF parameters lead to incon-
sistent selection of the top performing materials and the
relative rankings of the materials. We showed that both selec-
tion of the LJ parameters (UFF vs. Dreiding) and selection of the
charge scheme has an impact on the predictions, however the
inconsistency introduced by the charge scheme seems to be
more significant compared to the choice of the LJ parameters.
Furthermore, our results indicate that charge equilibration
schemes may lead to unphysical results (Qeq) and strong
deviations in the adsorption behaviours predicted by DDEC
charges (both EQeq and Qeq).

These findings have significant implications for any further
effort to implement fully in silico multiscale screening of porous
materials. On the one hand, a strong statement would be that
none of the combinations of the parameters are fully validated
in experiments and, given the sensitivity of the process predic-
tions to the selection of the FFs, it is unlikely that fully
computational workflows will be able to produce reliable
results. On the other hand, we argue that meaningful results
can be obtained using this approach provided the parameter
inputs and data outputs are handled with care. It is clear that

Fig. 10 Process-level uncertainty metrics for CO2 purity-recovery optimisations. (a) Pareto-dominance plot constructed from eXi values using the

CRAFTED-u dataset. (b) Average hypervolume error, Dx
j

i ; between i = UFF + DDEC and other molecular forcefields ( j a UFF + DDEC) for the CRAFTED-u

dataset. Higher values of Dx
j

i indicate a larger average uncertainty with the UFF + DDEC baseline.
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shortcut methods such as (E)Qeq should not be used in HTCS
studies, and so future screening studies should adopt ab initio
levels of theory for partial charge assignment. The process
performance of shortlisted materials identified using ab initio
charges should therefore (ideally) be robust against perturba-
tions in the LJ parameters. As a minimum, some estimate of the
uncertainty introduced by different LJ parameter sets should be
considered to build confidence in the predictions of these
workflows. In either case, an accurate and comprehensive FF
is the key bottleneck in computational screening, and we will
return to this point in more detail in the next section. For now,
we would like to explore two ideas to improve the consistency of
predictions within the current state-ot-the-art.

The first idea is based on the hypothesis that amongst the
CRAFTED MOFs, a group of materials exists whose adsorption
behaviours are rather insensitive to the choice of the FF. It is
further possible that among these materials, there are those
that meet the required purity and recovery constraints and, in
general, show good performance at the process level. We
speculate that, given the insensitivity of the materials to the
FF, it is likely that they will retain their performance in
experiments as well. In this case, one can argue that the
screening protocols could focus on searching for the materials
in this class.

The second idea is as follows. We assert that ab initio
charges are required for HTCS of MOFs for carbon capture.
Unfortunately, it is still computationally challenging to employ
these approaches for large databases of materials. Therefore,
we would like to explore whether ML-based models90–92 such as
the message passing neural network (MPNN) model90 and partial
atomic charges in metal–organic frameworks (PACMOF) model92

can be used as a scalable but accurate alternative to the DDEC
method.

Let us focus on these ideas in turn. To explore our initial
hypothesis that there exists a subset of high performing MOFs
that are relatively insensitive to the FF, we first define a
taxonomy for describing CRAFTED MOFs by their ability to
meet the CCS constraints for different FFs using four distinct
consistency classes (Table 2). A small subset of 28 MOFs meets
the CO2 purity and recovery constraints on a consistent basis,
regardless of the particular variation of the FF chosen. We
denote these materials as being at the highest level of consis-
tency: consistency level 1 (CL1).

The next question we pose is whether the high level of
consistency in the CL1 group is because the adsorption

behaviours in these materials are insensitive to the parameters
of the FF or due to some other factors. To address this question,
in Fig. 11(a) we visualise the relative ranking of CL1 class MOFs,
using a box-and-whisker plot to represent the underlying dis-
tributions in process performances. It is evident from this
subplot that the CL1 class contains materials which are char-
acterised by both narrow distributions in performance, i.e.,
PEKKAS, and broad distributions in performance, i.e., NOQ-
LOV. This suggests that a search for materials which consis-
tently meet the CCS constraints is not sufficient to guarantee
that their performance is insensitive to the choice of FF. Still,
within the CL1 subset there are materials such as PEKKAS,
QOVWOO, FIRVEH, and NAYZUK, whose narrow boxplots have
the potential to confirm our hypothesis. By inspection of the
individual adsorption behaviours and performance curves for
select materials in Fig. 11(b), we observe a diversity of
responses to the choice of FF. In every case however, some
scattering in the adsorption data is observed. This means that
the MOFs which are (rather fortuitously) characterised by
narrow performance distributions achieve this level of consis-
tency through different pathways. That is to say, the CO2 purity-
recovery Pareto fronts in these materials converge to similar
high performing solutions (despite the scattering seen in the
adsorption data) by using very different combinations of the
PSA cycle parameters. Therefore, the results in Fig. 11 do
not provide us with the type of evidence one would like to
confirm our initial hypothesis. We arrive then to the conclusion
that, in order to achieve consistent process performances in
multiscale HTCS workflows for the right reasons, the incon-
sistencies which propagate from the material level must first be
addressed.

This brings us onto our second idea. Here, we test whether
the uncertainties which are introduced by charge equilibration
schemes can be effectively mitigated by using the ML-based
MPNN and PACMOF models. As a case study, we continue with
the CL1 class of MOFs. These materials satisfy the CCS con-
straints across all FFs, and so we evaluate the accuracy of
MPNN and PACMOF charges by optimising the energy penalty
and productivity performances subject to the CCS constraints.
This protocol is more robust than an unconstrained CO2 purity-
recovery optimisation as the energy-productivity process
responses are more sensitive to changes in the adsorption
behaviours.66 The optimisations were first conducted using
the ANN model and then refined using the PSA process model
in order to calculate the hypervolume errors between Pareto

Table 2 Summary of how CRAFTED MOFs are distributed amongst different performance consistency classes

Classa Label
Number of molecular forcefields (out of 6)
for which a material meets the CCS constraints

Number of
materials in class

CL1b Consistent CCS adsorbents 6 28
CL2a Semi-consistent CCS adsorbents 5 22
CL3 Inconsistent CCS adsorbents [1–4] 168
CL4 Non-CCS adsorbents 0 472

a The lists of CSD codes for each of these classes are provided in supplementary note 8. b CL1 and CL2 class materials are differentiated from CL3
and CL4 on the basis of statistical significance. That is, the spread and skewness of the performance distributions for materials in these classes can
be visualised using box-and-whisker plots which require a minimum of 5 measurements to construct.
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fronts generated using different molecular FFs. The results are
provided in Fig. 12, taking UFF + DDEC as the baseline for
comparison.

Disregarding the MPNN and PACMOF charges in Fig. 12 for
a moment, we observe a similar response in the energy-
productivity results to changes in the FF as the CO2 purity-
recovery results. However, it is clear that scattering in the
adsorption data has a stronger influence on these KPIs. For
instance, the average hypervolume error of 24% between LJ FFs
(combined with DDEC charges) in Fig. 12 represents a 3-fold
increase in the errors calculated at the CO2 purity-recovery
Pareto level (Fig. 10). While these results are determined for a
reduced subset of MOFs, we generally expect an uncertainty of
approximately 30% between LJ FFs using energy-productivity
KPIs (see supplementary note 8.3, ESI†). Upon introducing the
MPNN and PACMOF charges back into the discussion, the
lowest uncertainties in Fig. 12 no longer occur between UFF
and Dreiding using fixed DDEC charges. Instead, they occur
between DDEC and MPNN/PACMOF charges using fixed UFF
parameters, meaning that the prevailing sources of uncertainty
identified previously (the choice of charge) has been effectively
mitigated by modelling the electrostatics with ML-based
charges. Interestingly, the uncertainty that is introduced by
the MPNN and PACMOF models is comparable to the scattering
seen between surrogate model predictions and PSA process
simulations (Fig. 3). Efficient pre-screening of MOF databases
could therefore be achieved by combining ML models for both
the partial charge calculations and the PSA cycle optimisations

without a significant loss of accuracy. Overall, our results
suggest that MPNN and PACMOF can be used to assign charges

Fig. 11 Relative ranking of CL1 adsorbents under uncertainty. (a) For each material, a box-and-whisker plot is used to visualise the spread and skewness
of the process metrics used to evaluate CL1 class material performances. The process metric is the maximum CO2 purity achievable (subject to the
requirement that CO2 recovery Z0.9). The median process KPI across all forcefield combinations is used to rank materials, as indicated by the solid red
line which is provided to guide the eye. Red crosses indicate outlier performance estimates. (b) Distribution of CO2 purity-recovery optimisation results
for select materials in class CL1. Top row shows the Pareto fronts for each material, middle row shows the CO2 adsorption isotherms at 298 K, and
bottom row shows the N2 adsorption isotherms at 298 K. Solid lines and dashed lines indicate the UFF and Dreiding forcefields, respectively. Red, green,
and blue colours indicate DDEC, EQeq, and Qeq charges, respectively. Note that the isotherms shown are generated from the dual-site Langmuir model
which is used as input for the PSA process simulator.

Fig. 12 Process-level uncertainty metrics for energy penalty-productivity
optimisations of CL1 class materials. Average hypervolume error, Dx

j

i ,
between i = UFF + DDEC and other molecular forcefields ( j a UFF +

DDEC). Higher values of Dx
j

i indicate a larger average uncertainty with the

UFF + DDEC baseline.
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in lieu of the DDEC method (see Fig. S18, S19 and S21, ESI†).
This is further demonstrated in Fig. 13 whereby we see that, of
the materials shown here, the adsorption behaviours and
process-level predictions obtained using ML-based charges
are in closer agreement with the DDEC baseline for all materi-
als apart from NOQLOV.

Future prospects for HTCS of materials for carbon capture

While we strongly advocate for ab initio charges whenever
possible, the results presented in Fig. 12 and 13 support our
argument that ML-based charges are the next best option
available to practitioners. Nonetheless, we recognise some of
the shortcomings in our analysis (see supplementary note 9,
ESI†) and understand that 28 MOFs cannot represent the
diverse chemical landscape of all known MOFs. It is likely that
expanding the scope of our study to more materials would
expose some regions of poor agreement between ML-based and
DDEC charges. Indeed, Liu and Luan39 recently benchmarked
several charge assignment methods and determined that
charge predictions from PACMOF significantly deteriorated in
MOFs which contained transition metals. However, as larger
MOF databases with pre-computed ab initio charges begin to
emerge,93 we expect that improvements in the current ML
models can be achieved by simply extending the training set
to cover more materials with greater chemical diversity. Future
efforts should therefore be directed towards developing more
advanced MOF representations and ML architectures.

A problem still remains when we are posed with the ques-
tion of which LJ FF to use. Both UFF and Dreiding are designed
to be as generic as possible and thus are rather crude approx-
imations of the complex interatomic interactions taking place
during adsorption. These interactions are relatively weak com-
pared to the energy variations in chemical bonds, and so the
development of more reliable LJ FFs for adsorption in MOFs
remains an open and important challenge. As with most areas
of material science, ML has a possible role to play here. The
interatomic potentials which describe short range interactions
can be constructed using ML methods by approximating the
high-dimensional potential energy surface (PES) using training
data obtained from ab initio calculations.94 The general and
flexible nature of neural network models makes them a viable
ML architecture for this purpose. Indeed, the so-called high-
dimensional neural network potential (HDNNP) was intro-
duced as early as 2007 by Behler and Parrinello,95 and in
principle considers the PES to be a sum of environment-
dependent atomic energy contributions. HDNNPs can be com-
puted many orders of magnitude faster than e.g., DFT calcula-
tions, they retain the accuracy of reference ab initio data, and
can be scaled to large systems or time scales.94

These concepts are only beginning to emerge in the field of
MOFs. The first application of HDNNPs for MOFs was intro-
duced by Eckhoff and Behler, where they predicted the negative
thermal expansion of MOF-5 as well as its phonon density of
states using HDNNPs.96 Zheng et al. also recently developed a

Fig. 13 Distributions in energy-productivity Pareto fronts for different CL1 class materials. Top row shows the energy-productivity Pareto fronts for each
material, middle row shows the CO2 adsorption isotherms at 298 K, and bottom row shows the N2 adsorption isotherms at 298 K. Note that the isotherms
shown are generated from the dual-site Langmuir model which is used as input for the PSA process simulator. From left to right, each subplot shows a
material with a lower degree of uncertainty between charge schemes.
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HDNNP to study to the chemisorption and diffusion of CO2 in
Mg-MOF-74.97 While promising, this approach comes with its
own set of open challenges. These include, but are not limited
to, the construction of more informative feature vectors which
can capture both the local chemical environments and MOF
pore attributes, in developing an approach which can model
material classes with a large number of chemical elements (the
feature vector often scales with the number of chemical
elements98), and in generating the reference training data for
MOFs with a large number of atoms in their unit cells.99

Furthermore, extending this approach to predict adsorption
in chemically diverse material databases would require trans-
ferable models: the training set must represent the problem
at hand. A good example is the general-purpose ANI-2
potential,100 which was trained on reference data for a large
number of organic molecules and is thus capable of simulating
systems containing (H, C, N, O, F, Cl, and S). One can envision a
similar approach being adopted for mixed organic–inorganic
complexes. An alternative, less data-intensive avenue would be
to use active learning as a means to reliably explore the
chemical space of MOFs.99,101 In either case, a viable pathway
towards developing a general-purpose, highly accurate ML
potential for MOF screening applications exists provided that
the appropriate training data, ML architecture, and feature
vector can be combined. If such a method were to emerge, it
has the potential to shift paradigms not only in the screening of
MOFs for carbon capture, but in materials modelling in
general.

Conclusions

In this multiscale computational screening study, we aimed to
address the question: to what extent will the ranking of porous
materials, and the selection of top performers identified in
process modelling, depend on the choice of molecular force-
field? To do so, we generated distributions of CO2 and N2

adsorption isotherms in 690 MOFs using different forcefields
(FFs) which represent the modelling choices commonly
encountered in high-throughput computational screenings
(HTCS) of materials for CO2 capture. We then conducted a
systematic uncertainty quantification study using PSA process-
level modelling to determine one’s ability to identify top-
performing candidate materials consistently across different
FF definitions.

Our results allow us to draw a number of general
conclusions:

(i) Indeed, the computational ranking of materials appears
to depend on the choice of the molecular FF to a significant
extent.

(ii) From the pool of molecular modelling choices consid-
ered in this investigation, the choice of charge assignment
scheme represents the largest source of uncertainty at the
process-level.

(iii) Partial charges assigned by charge equilibration meth-
ods such as Qeq and EQeq are unable to reproduce the

adsorption behaviours of charges derived from ab initio calcu-
lations such as DDEC with sufficient accuracy to guarantee
consistent process-level rankings. As such, we recommend
avoiding using charge equilibration methods when the electro-
static interactions are important for adsorption, such as
CO2 adsorption in MOFs. When ab initio charges are not
available and are computationally unfeasible to obtain, ML-
based charges are an attractive alternative that can effectively
minimise the uncertainties originating from partial charge
assignment. A simple extension in the pool of training materi-
als can provide a quick remedy to the potential pitfalls of
existing ML models, while future efforts should strive towards
advanced MOF representations and machine learning
architectures.

(iv) The process-level correlations between LJ FFs indicate
that approximately 70% of the top performing MOFs may be
mutually identified. This suggests that, in spite of considerable
uncertainty, the search for MOFs using state-of-the-art multi-
scale HTCS is still more efficient than a random search. Never-
theless, we still lack a consistent, experimentally validated set
of molecular parameters to describe the LJ interactions. Until
this issue is addressed, one has to accept the considerable
uncertainties embedded within process-level predictions which
make use of adsorption data generated using generic LJ FFs.

We believe our work is an important step towards under-
standing the level of accuracy one can expect from multiscale
screenings of materials for PSA-based carbon capture pro-
cesses. The picture that emerges from our study is that, while
HTCS remains a useful tool in the computational chemist’s
arsenal, it is not really possible to obtain material rankings with
high resolution using this approach. In light of these observa-
tions, we see two ways to proceed with HTCS studies.

The first is to strive towards more consistent implementa-
tions of these workflows. As we mention above, the most direct
route is to only use ab initio charges and, failing that, ML-based
charges, to model the electrostatic interactions. Moving
towards more consistent models of the short-range range
dispersion/repulsion interactions would require two stages of
implementation, we expect. In the short-term and until a truly
universal methodology can be developed, opting for internally
consistent LJ parameters within the community is an admir-
able pursuit. The rational choice would be to use the UFF
forcefield, given its ability to simulate MOF databases with
greater chemical diversities. However, we still recommend that
the performance of shortlisted MOFs should be checked for
robustness against perturbations in the LJ parameter sets. In
the longer-term, we foresee great possibilities in the use of
machine learned interatomic potentials as a means to simulate
the short-range interactions in MOFs and, provided such a
method can be developed, expect this approach to radicalise
the way in which HTCS studies are conducted.

The second option is to alter the perceived utility of HTCS.
Many technical barriers exist between identifying MOFs
through HTCS and translating them into real, industrially
viable separation materials. To name a few, a MOF must
demonstrate good mechanical, thermal and moisture stability,
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low cost, and scalable synthesisability. A prime example is
CALF-20102 which, despite its relatively modest process-level
performance (see supplementary note 10, ESI†), is the only
known MOF to satisfy enough of these technical requirements
to succeed as a viable industrial-scale adsorbent. Therefore,
rather than identifying the best performers via material rank-
ings which we understand suffers from some reliability issues,
one can instead try to identify good performers using HTCS and
then shortlist materials based on all other factors which dictate
the feasibility of an adsorbent. Given the importance of these
material attributes, this approach could provide more meaning
to the results obtained using HTCS and help expedite the
transition between identifying promising MOFs and eventually
tasking them to bench scale.
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73 L. Estupiñan Perez, P. Sarkar and A. Rajendran, Sep. Purif.
Technol., 2019, 224, 553–563.

74 A. H. Farmahini, D. Friedrich, S. Brandani and L. Sarkisov,
Energy Environ. Sci., 2020, 13, 1018–1037.

75 J. Beck, D. Friedrich, S. Brandani and E. S. Fraga, Comput.
Chem. Eng., 2015, 82, 318–329.

76 M. T. M. Emmerich and A. H. Deutz, Nat. Comput., 2018,
17, 585–609.

77 Y. Cao, B. J. Smucker and T. J. Robinson, J. Stat. Plan.
Inference, 2015, 160, 60–74.

78 X. Deng, W. Yang, S. Li, H. Liang, Z. Shi and Z. Qiao, Appl.
Sci., 2020, 10, 569.

Energy & Environmental Science Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 8
:3

6:
26

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://github.com/danieleongari/EQeq
https://lmfit.github.io/lmfit-py/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ee00858d


3918 |  Energy Environ. Sci., 2023, 16, 3899–3918 This journal is © The Royal Society of Chemistry 2023

79 G. Avci, I. Erucar and S. Keskin, ACS Appl. Mater. Interfaces,
2020, 12, 41567–41579.

80 Y. Yan, Z. Shi, H. Li, L. Li, X. Yang, S. Li, H. Liang and
Z. Qiao, Chem. Eng. J., 2022, 427, 131604.

81 S. Li, Y. G. Chung and R. Q. Snurr, Langmuir, 2016, 32,
10368–10376.

82 P. G. Boyd, A. Chidambaram, E. Garcı́a-Dı́ez, C. P. Ireland,
T. D. Daff, R. Bounds, A. Gładysiak, P. Schouwink, S. M.
Moosavi, M. M. Maroto-Valer, J. A. Reimer, J. A. R. Navarro,
T. K. Woo, S. Garcia, K. C. Stylianou and B. Smit, Nature,
2019, 576, 253–256.
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