

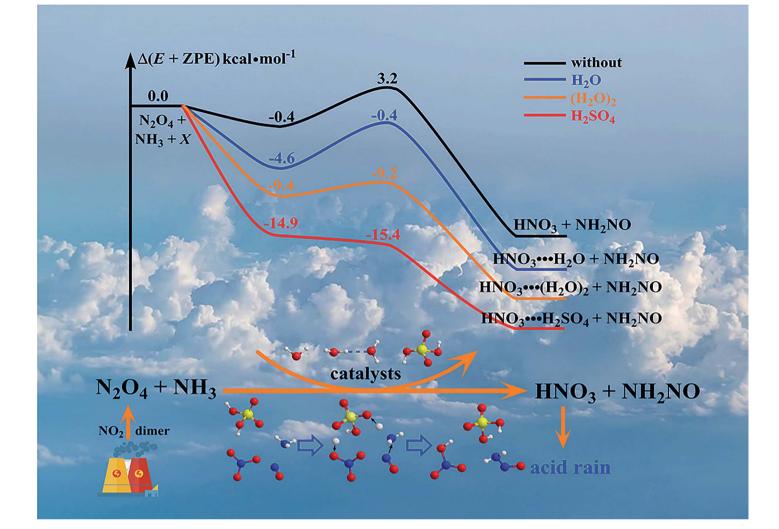
Advance your career in science

with professional recognition that showcases your **experience**, **expertise and dedication**

Stand out from the crowd

Prove your commitment to attaining excellence in your field

Gain the recognition you deserve


Achieve a professional qualification that inspires confidence and trust

Unlock your career potential

Apply for our professional registers (RSci, RSciTech) or chartered status (CChem, CSci, CEnv)

Apply now

rsc.li/professional-development

Showcasing research from Professor Tianlei Zhang's laboratory, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong, China.

A possible atmospheric source of HNO_3 : the ammonolysis reaction of $t-N_2O_4$ in the presence of water monomer, water dimer, and sulfuric acid

The effect of H_2O , $(H_2O)_2$ and H_2SO_4 on the ammonolysis of $t-N_2O_4$ to form HNO₃ was studied by a quantum chemical method and Master equation rate calculations. Results reveal that the ammonolysis of $t-N_2O_4$ with $(H_2O)_2$ and H_2SO_4 are barrierless or nearly barrierless reactions. Considering the effective rate constant, $(H_2O)_2$ outperforms the other catalysts in the range of 280-320 K (0 km). Moreover, the effect of H_2SO_4 is obvious at higher altitudes of 5-30 km. In general, this work will give new insights into how the neutral and acidic catalysts affect the formation of HNO₃.

As featured in:

See Tianlei Zhang *et al., Environ. Sci.: Atmos.,* 2023, **3**, 1407.

rsc.li/esatmospheres

