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A possible atmospheric source of HNO,: the ammonolysis
reaction of +-N,O, in the presence of water monomer, water
dimer, and sulfuric acid

The effect of H,0, (H,0), and H,SO, on the ammonolysis of
t-N,O, to form HNO, was studied by a quantum chemical
method and Master equation rate calculations. Results
reveal that the ammonolysis of -N,O, with (H,0), and H,SO,
are barrierless or nearly barrierless reactions. Considering
the effective rate constant, (H,0), outperforms the other
catalysts in the range of 280-320 K (O km). Moreover, the
effect of H,SO, is obvious at higher altitudes of 5-30 km. In
general, this work will give new insights into how the neutral
and acidic catalysts affect the formation of HNO,.
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Environmental significance

A possible atmospheric source of HNOz: the
ammonolysis reaction of t-N,O4 in the presence of
water monomer, water dimer, and sulfuric acid+

Ruxue Mu,? Weixin Zhou,? Zhaozhao Hong,? Rui Wang, @2 Quan Liu, ©?
Qiang Zhang, ©2 Min Jiang,? Balaganesh Muthiah @ ® and Tianlei Zhang @ *2

Although the ammonolysis of t-N,O, is one of the potential sources of HNOsz formation, the available
studies have only focused on its naked reaction. Herein, the effect of important neutral and acidic trace
gases, water monomer, water dimer, and sulfuric acid, on the formation of HNO3z from the ammonolysis
of t-N,O4 was studied by the quantum chemical method of CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-
311++G(3df,2pd) the equation/Rice-Ramsperger—Kassel-Marcus  (ME/RRKM)
calculations. The quantum chemical results revealed that the ammonolysis of t-N,O4 with (H,O), and

and Master rate
H,SO4 are barrierless or nearly barrierless reactions, potentially lowering the energy barrier to 3.4-
4.1 kcal mol™. The calculated effective rate constant illustrates that (H,0O), (100% RH) dominates over
H,O and H,SO4 within the range of 280-320 K (0 km), with an effective rate constant that is 1-3 orders
of larger magnitude, whereas H,SO,4 (108 mol cm™) is the most favorable catalyst within the
troposphere between 5 and 30 km. However, the contributions of H,O, (H,O),, and H,SO,4 are not
apparent in the gas-phase ammonolysis of t-N,O4 within the range of 213-320 K and 0—-30 km because
their effective rate constants were at least 4 orders of magnitude lower than the corresponding rate
constant of the ammonolysis of t-N,O4. In general, the current findings shed fresh light on neutral (H,O
and (H,0),) and acidic (H,SO,) catalysts that not only affect energy barriers but also have an impact on

the ammonolysis of t-N,O,4 in neutral and acidic conditions.

Nitrogen tetroxide (N,0,) is considered to be a dimer of nitrogen dioxide (NO,) and plays an important role in the formation of acid rain. The fact is that the

ammonolysis of ¢-N,0, is one of the potential sources of HNO; formation; thus, the effort of water monomer, water dimer, and sulfuric acid on the ammonolysis

of t-N,0, was studied by quantum chemical method and Master equation rate calculations. The quantum chemical results reveal that the ammonolysis of -N,O,

with (H,0), and H,SO, are barrierless or nearly barrierless reactions. In terms of the effective rate constant, (H,0), outperforms the other catalysts in the

temperature range 280-320 K (0 km). Moreover, the effect of H,SO, on the ammonolysis reaction of ¢-N,0, is obvious at higher altitudes of 5-30 km. In general,
this work will give a new insights into how the neutral and acidic catalysts affect the formation of HNO;.

1. Introduction

environmental hazards.? Nitrogen tetroxide (N,O,4), a dimer of
nitrogen dioxide (NO,),* can be used for nitration, nitrosation,

Nitrogen dioxide (NO,),* as one of the most significant NO,, is
not only a precursor to the photochemical formation of ozone in
the troposphere,® but it can also contribute to the formation of
photochemical smog and cause significant health and
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and oxidation.® In addition, N,O, is an oxidizing agent for auto-
igniting fuels and plays an important role in the formation of
acid rain.® Due to the fact that N,0, is a highly toxic chemical
species that hinders experimental studies,” quantum calcula-
tions are a trend in current research to probe the N,O,-related
reaction mechanisms. As the most major loss route of N,O, in
the atmosphere, the hydrolysis of N,O, is potentially important
in the lower atmosphere and plays an important role in the
formation of HONO, a major source of OH pollution in the
urban atmosphere.®®

Several investigations have shown that the less stable ¢-N,0,
(trans-N,0,) is substantially more reactive than s-ONONO,
(symmetric N,0,); hence, it was selected as a starting point for
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studying the hydrolysis of NO, dimers.®**> The reaction barrier
for the hydrolysis of ¢-N,0, to form HONO was in the range of
10.8-11.9 kecal mol " at different theoretical levels.>*'? Several
groups reported that using H,O and (H,0), as catalysts stabi-
lized the reactant complexes by 3.5-6.9 kcal mol " and reduced
the energy barrier to 6.2 kcal mol*. Consequently, Zhang et al.®
revealed that, for the hydrolysis of +-N,0,, the H,SO, catalyst is
more effective than H,0 and (H,0), catalysts, resulting in not
only a higher binding energy of 15.0 kcal mol " for the reactant
complex but also a lower energy barrier of 3.8 kcal mol .

In the atmosphere, the hydrolysis of #N,0, to produce
HONO is the most major loss route of ¢-N,0,.">** As a comple-
ment to the loss of t-N,0,, the ammonolysis reaction of t-N,0,
can form HNO;,"” which could be competitive with the main
source of HNOj3, the gas-phase reaction of NO, with the hydroxyl
(OH) radical®** during the day and the hydrolysis reaction of
N,Os "*"7 at night, in polluted areas of NH;. The ammonolysis
of +-N,0, (shown in eqn (1) and (2)) investigated by Lin et al.*®
reveals that the energy barrier of the +N,0, + NH; reaction was
determined to be 5.3 kcal mol™" and the corresponding rate
constant at low temperature was not pressure-dependent. As far
as we know, the effect of neutral and acidic gases on the
ammonolysis of -N,0,4, which plays a significant catalytic role

in hydrogen abstraction reactions,>>**” has not been
explored.

N02 + NOz «> l-N204 (1)

I-N204 + NH3 i HNO‘; + NHzNO (2)

As in the previous studies on N,0, + H,0,""> HO, + NO,,*®
H,CO + NH;,* and SO, + NO, *° reactions, water molecules were
found to play an essential role in enhancing the stability of pre-
reactive complexes and lowering the apparent activation ener-
gies of the transition states. In addition to water monomer,
some recent works addressed the potential role of water
dimer,"* which may play a significant catalytic role in
hydrogen abstraction reactions because its concentrations can
reach 9 x 10" mol cm3.%>** Aside from water monomer and
water dimer, acidic>****?” gas species in the atmosphere may
also be effective in lowering the energy barriers for hydrogen
transfer  reactions®*** and  atmospheric  hydrolysis
reactions®'>*~7 in the gas phase. The presence of H,SO,*”** in
the atmosphere was considered to be a more effective catalyst
than neutral catalysts,>>**3%%** which not only greatly reduces
the energy barriers®”*** but also facilitates the transfer of
hydrogen,***** and thus, H,SO, was regarded as either good
acceptors or good donors of H in the catalytic gas reactions.
These situations stimulated our interest in studying the
ammonolysis of ¢-N,0, by neutral (H,O and (H,0),) and acidic
(H,S0,) gases.

In this work, using global minimum searching combined
with quantum chemical methods, we first obtained the stable
structures of the reactant complexes of #N,O,---NH;---X (X =
H,0, (H,0),, and H,SO,). The ammonolysis of ¢-N,0, in the
presence of X was then studied using the stable molecular
clusters t-N,0,---NH;---X. Finally, the effective rate constant for
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the ammonolysis of +N,0, with X was estimated at tempera-
tures ranging from 213 to 320 K and altitudes ranging from 0 to
30 km.

2. Calculation details
2.1 Electronic structure calculations

The molecular geometries of the isolated reactants, pre-reactive
complexes, transition states, post-reactive complexes, and
products of the ammonolysis reaction of ¢-N,0, without and
with X were optimized using the B3LYP-D3 method*~** with 6-
311++G(3df,2pd) basis set in Gaussian 09 suites.** The D3
method has been reliably utilized to describe the noncovalent
interaction and the equilibrium structure of atmospheric clus-
ters and reactions.”™** Notably, the keyword “stable = opt” is
added in the calculations at the B3LYP-D3/6-311++G(3df,2pd)
level to ensure that all the geometries are stable. Frequency
calculations were calculated at the same level for all stationary
points to check that all transition states have the same character
as a first-order saddle point with a single imaginary frequency
and that other stationary points correspond to minima on
potential energy surfaces (PESs). The scaling factor employed to
adjust the ZPEs was 0.969.°*°” To ensure that the optimized
transition state connects the desired pre- and post-reactive
complexes, intrinsic reaction coordinate (IRC) calculations®®*°
were performed at the same level. To improve the accuracy of
the relative energies, single-point energy calculation was per-
formed at the CCSD(T)/aug-cc-pVTZ®* level by using the
Gaussian 09 software.® It was noted that the T, diagnostic
values for closed-shell in Table S31 were 0.02 less than the
standard value,*** showing the multireference calculations for
recovering non-dynamical correlation were not a problem, and
the single reference method of CCSD(T)/aug-cc-pVTZ is reliable
to single point energy calculation.

Global minimum searching combined with quantum
chemical methods was employed to obtain the most stable
structures of the reactant complexes of ¢N,O, --NH;---X.
Initially, 500 structures with low energies were auto-produced
by ABCluster software®®® with TIP4P*** model for H,O,
(H,0),, and CHARMM?* force field for +-N,0,, NH;, and H,SO,.
Then, pre-optimized by the semi-empirical method of PM7 " in
MOPAC 2016.7% Next, the structures with the N(#-N,0,)---N(NHj;)
interaction of electron donor-acceptor (EDA) and facilitating
the transfer of hydrogen atom from ¢-N,0, to NH; were selected
to optimize at the B3LYP-D3/6-311+G(d,p) level. Subsequently,
50 isomers with an order of electronic energies were chosen to
optimize at the level of B3LYP-D3/6-311+G(2d,2p). Finally, the
global minimum isomers within 5.0 kcal mol™" (the electric
energy) were re-optimized at the B3LYP-D3/6-311++G(3df,2pd)
level.

2.2 Rate constant calculations

The rate constants for the ammonolysis reaction of ¢N,O,
without and with X were calculated in two steps. First, the high-
pressure-limit (HPL) rate constants were calculated by using the
VRC-VTST calculations in Polyrate 2017 software.” The details

© 2023 The Author(s). Published by the Royal Society of Chemistry
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of VRC-VTST can be seen in Table S7 of the ESIL.T Then, based on
the HPL rate constants, the rate constants for the ammonolysis
reaction of ¢-N,O, without and with X at different temperatures
and pressures were calculated using the Master Equation Solver
for Multi-Energy Well Reactions (MESMER) program.” The
Inverse Laplace Transform (ILT) approach was used to analyze
the barrierless step from distinct reactants to the pre-reactive
complex.”>”® Meanwhile, the transition step from the pre-
reactive complex to the postreactive complex occurring
through the transition state was applied to the RRKM theory.”””®
ILT methods and RRKM theory can be, respectively, expressed
in eqn (3) and (4).

W(E — Ep)

ME) = hp(E)

(3)

L
o(8)

In eqn (3) and (4), where W(E — E,) is the rovibrational sum of
states (SOS) at the optimized transition state (TS) geometry, E, is
the reaction threshold energy, 4 is Planck's constant, p(E) is the
density of rovibrational states of the reactant, and Q(g) is the
corresponding canonical partition function. Moreover, the
electronic geometries, vibrational frequencies, and rotational
constants were calculated at the B3LYP-D3/6-311++G(3df,2pd)
level, and single-point energy calculations were refined at the
CCSD(T)/aug-cc-pVTZ level for the modeling. The one-
dimensional asymmetric Eckart potential was used to treat
the tunneling effect in the RRKM calculation. In addition, the
Lennard-Jones (L-]) parameters ¢/ks = 71.4 K and ¢ = 3.798 A
were used for N,,” ¢/kg = 200.0 K and ¢ = 3.50 A were used for
t-N,0,,% while ¢/ky = 481.0 K and ¢ = 2.92 A were estimated
for NH,.*

€0 = 5 | KEREpsE)E (@)

3. Results and discussions

The pre-reactive complex in each reaction channel was denoted
by “IM” followed by a number, whereas the transition state and
post-reactive complexes were denoted by “TS” and “IMF”,
respectively. Species in the presence of H,0, (H,0),, and H,SO,
were denoted by the suffixes “WM”, “WD”, and “SA”.

AAE +ZPE) kealemol 1 o’

*2.36
o
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3.1 Mechanism and rate constants for the ammonolysis
reaction of -N,0,

The ammonolysis reaction of #-N,0O, has been extensively
investigated from the theoretical viewpoint.** Here, this reac-
tion has been reinvestigated at the CCSD(T)/aug-cc-pVTZ//
B3LYP-D3/6-311++G(3df,2pd) level to check the catalytic effect
of X. Our results shown in Fig. 1 were found to be very mech-
anistically and energetically similar to the work reported by Lin
et al.® All the relative energy values qualitatively matched (see
Table S27). As seen in Fig. 1, the +-N,0, + NH; reaction occurred
through a ring formation mechanism, resulting in the forma-
tion of a six-membered ring complex ¢N,O, --NH; with
a binding energy of 0.5 kcal mol . Then, the terminal O1 atom
of t-N,0, abstracts the H atom of NH; along with the N-N bond
formation to form the product complex HNOj;---NH,NO. From
an energy point of view, the barrier height of the ¢-N,0, + NH;
reaction was 3.7 kcal mol ', revealing that ¢-N,O, can easily
react with NH; in the gas phase.

The calculated rate constants for the ammonolysis reaction
of t-N,0, are listed in Table 1. In the ammonolysis reaction of ¢-
N,O,, the hindered internal rotation (HIR)””*"*® correction at
760 Torr has a moderate effect, increasing the rate constants by
a factor of 1.25 to 1.28. Meanwhile, the almost unchanged rate
constants for the ammonolysis reaction of +-N,0, at different
atmospheric pressures revealed that the pressure (10-760
Torr)*” has little effect on the ammonolysis reaction of ¢-N,O,
within the temperature range of 280-320 K.**%°

3.2 Mechanism and rate constants for the ammonolysis
reaction of t-N,0, with H,O and (H,0),

Fig. 2a and b show the ammonolysis reaction of +-N,O, assisted
by H,O (Channel WM) and (H,0), (Channel WD), where both
H,O0 and (H,0), served as a “bridge” to promote hydrogen atom
transfer from the N3 atom of NH; to the terminal O1 atom of ¢-
N,0,. In the case of Channel WM, the reaction can occur either
(a) between NH; and monohydrated ¢-N,O, (t-N,O,---H,0) or (b)
between hydrated NH; (NH;---H,0) and #N,0,. The binding
energy of t-N,0,---H,0 was 2.9 kcal mol ', which was consistent
with the previously calculated value of 3.5 kcal mol™" at the
CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/6-311++G(3df,2pd) level.®

10.0-
1?\@ 3.2
0.0 _aEn” \
0.0 —p— . -0.5 __.-" TS X
|-N,O4 + NH; "~ ™ : 138 1
. G T e 9.5
' @w@ L .- 1iNO, + NH,NO
@ -IT Channel R
-20.0 —

Fig.1 Potential energy profiles for the t-N,O4 + NHs — HNOz + NH,NO reaction at the CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3df,2pd)

level.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table1l The rate constants (kr) (cm® mol™t s72) for the t-N,O,4 + NHs reaction without and with HIR treatments within the temperature range of

280-320 K and pressure range of 10-760 Torr

HIR impact® Pressure impact

T(K) With HIR treatments Without HIR treatments ~ Factor” 10 Torr 50 Torr 100 Torr 300 Torr 760 Torr

280  6.67 x 107" 5.20 x 10~ 1.28 5.03 x 1077 514 x 107" 516 x 10" 518 x 107" 520 x 10~
290 7.81 x 107V 6.13 x 107 1.27 5.90 x 1077 6.07 x 1077 610 x 107" 612 x 10"  6.13 x 107
208  8.80 x 107" 6.95 x 107" 1.27 6.65x 107" 6.88x 107" 6.92x 107 6,94 x 107 6.95 x 107"
300  9.06 x 1077 7.17 x 107 1.26 6.84 x 107 7.09 x 107 713 x 107" 7.16 x 1077 7.17 x 107"
310  1.04 x 107 ¢ 8.32 x 107" 1.26 7.84 x 107" 820 x 107" 826 x 10" 830 x 1077 8.32x 10"
320  1.19 x 107*¢ 9.57 x 107 1.25 9.40 x 107" 9.40 x 107 9.55 x 107  9.55 x 1077 9.57 x 10~

“ HIR impact represents the hindered internal rotations treatment. ? Factor denotes the rate ratio between with HIR treatments and without HIR

treatments.

(a) A ME + ZPE) kcalemol™!

t-N204'"H20 %
165, 4
+ NH3 . y
¥ _-3 ] 213
0.0 —premmm—.... 2.9 -0.5 ;
t-N,04 ~:1:--_.:::;==__ 4.7 .- - TS WM .
10.0 1113;10 by VLWL "2
-10. 3 44 292 V66 1.26
NHjzee*H,0, ., 1, : 123 ( oy
-20.0— +2-N,0y4 ) 9 N 225 HNO;e+eH,0
52.21 ,.'1_56 IMF WM’ +NH,NO
k2 '1'9'7@ “285° @ Channel WM
(b) AAE + ZPE) kealsmol ™ A6 ) ®

-N;040¢+(H,0),

1 00 +NH;
0,0 _O»\\- _6.93

t—Nz 4 *\:\ 5.9

+H,0), X y‘.“"‘
0.0 |, NH, 7.9 (04)

NH;e*+(H,0),
- + £-N,0y4 76
9 23.0
-30.0 _] 1.853 : y @ ¥ @ ‘&-"—_‘--HNO?’-“(HZO)Z
@ s 218 ¢ **150 t143 IMF_WD +NH,NO
\ @ Channel WD
°*1.99

Fig. 2 Potential energy profiles for the t-N,O4 + NHz — HNOs + NH,NO reaction catalyzed by H,O and (H,0O), at the CCSD(T)/aug-cc-pVTZ//
B3LYP-D3/6-311++G(3df,2pd) level (a—c) denotes the values respectively reported from ref. 9, 90, and 91.

The binding energy of NH;---H,0 was 4.4 kcal mol ", which
agreed well with the calculated values of 4.4-4.6 kcal mol %>
The stability of NH;---H,O was 1.5 kcal mol~* higher than that
of t-N,0,---H,0. So, the ammonolysis of ¢-N,O, in the presence
of H,0 mainly takes place via the collision of NH;---H,O with ¢-
N,O, to form the quasi-planar eight-membered ring reactant
complex IM_WM1. The energy of the reactant complex
IM_WMT1 was 4.7 kcal mol " lower than that of the isolated
reactants ¢-N,O, + H,O + NH;. In the complex IM_WM1, H,O
played the roles of a single acceptor and donor of hydrogen

1410 | Environ. Sci. Atmos., 2023, 3, 1407-1417

bonds. After the formation of the complex IM_WM]1, the reac-
tion proceeded to form a hydrogen-bonded complex, HNO;:--
H,0---NH,NO (denoted IMF_WM), through the transition state
TS_WM, with an energy barrier of 4.2 kcal mol .

The reaction ¢-N,0, + NH; + (H,0), can be initiated by the
reactant complex IM_WD1, which can be formed from ¢N,0,- -
(H,0), + NH; or t-N,0, + NH;3--:(H,0),. It is clear from Fig. 2b
that NH; was most likely bound to (H,0), prior to #N,0,. The
reactant complex IM_WD1 has a quasi-planar structure similar
to that of complex IM_WM1 and can be regarded as H,O in

© 2023 The Author(s). Published by the Royal Society of Chemistry
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IM_WM1, which was replaced by (H,0),. The binding energy of
IM_WD1 was 1.7 kcal mol ™" from #-N,0, + NH;:-(H,0),. After
complex IM_WD1, the ammonolysis reaction of ¢N,0, with
(H,0), can form the product complex HNO;---(H,0),---NH,NO
(labeled as IMF_WD) through the transition state TS_WD with
an energy barrier of 0.3 kcal mol '. Three hydrogen atom
transfer mechanisms occurred at TS_WD, as well as the
simultaneous formation of the N(2)---N(3) bond. In comparison
to H,O0 in Channel WM, (H,0), in Channel WD played a more
obvious catalytic role in promoting the ammonolysis reaction of
t-N,04. When (H,0), was used as a catalyst in Channel WD, it
stabilized the reactant complex by a further 4.9 kcal mol™* and
decreased the reaction barrier by 3.9 kcal mol *. The more
pronounced catalytic effect of (H,0), could be attributed to two
factors. On the one hand, (H,0), may improve the N(¢N,O,4)- -
N(NH;) interaction compared to H,O. For example, in the
reactant complex IM_WD1, the strengthening of the N(¢
N,0,)---N(NHj;) interaction was shown by the shortening of the
bond distance N(2)---N(3) (2.18 A, shown in Fig. 2b), which is
less than the corresponding value in the reactant complex
IM_WMT1 (2.21 A, shown in Fig. 2a). On the other hand, when
H,0 was replaced by (H,0),, however, the transition state
extended from an eight-member ring (TS_WM) to a ten-member
ring (TS_WD). This structural change reduces the ring tension
of the transition state to a certain extent, lowering the reaction
energy barrier.

As shown in Table 2, within the range of 213-320 K and 0-30
km,***° the rate constant for the ammonolysis reaction of t-N,0,
assisted by H,O (kwy) was predicted to be 3.94 x 1072° to 1.93
x 107" ecm® mol™' s7', which was 2-3 orders of magnitude
lower than that of the naked ammonolysis reaction of ¢N,0,.
The calculated rate constant for the ammonolysis reaction of ¢-
N,0, assisted by (H,0), (kwp) was 3.66 x 10 *° t0 1.98 x 10~ *°
em?® mol~" s™*, which was 1-2 orders of magnitude greater than
the naked ammonolysis reaction of ¢-N,0,. The ammonolysis
reaction of ¢N,0, assisted by (H,0), was more Kkinetically
favorable than the ammonolysis reaction of +-N,0, with H,O,
with a rate constant that was 3-5 orders of magnitude greater.

View Article Online
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3.3 Mechanism and rate constants for the ammonolysis
reaction of t-N,0, with H,SO,

As shown in Fig. S3,7 nine geometrical isomers of the reactant
complex +-N,O,---NH;---H,SO, (labeled as IM_SAn, n = 1-9) were
found at the B3LYP-D3/6-311++G(3df,2pd) level, with complex
IM_SA1 being the most stable. Based on complex IM_SA1, Fig. 3
presents the potential energy surface (PES) for the ammonolysis
of t-N,0, in the presence of H,SO, (Channel SA). In the case of
Channel SA, the reaction can occur (a) between NH; and ¢
N,0,4 --H,SO, or (b) between ¢N,0, and NHj---H,SO,. The
binding energy of NH;---H,SO, was 14.7 kcal mol ", which was
in good agreement with the previously reported value.> The large
binding energy of NH;---H,SO, indicates that in the reaction of t-
N,O, + NH; + H,SO,4, NH; is easily bound to the isolated H,SO,.
In this sense, the ammonolysis reaction of N,0, with H,SO,
mainly takes place via the collision of ¢-N,0, with NH;---H,SO,,
resulting in the reactant complex IM_SA1.

The energy of the reactant complex IM_SA1 was
15.0 keal mol ™" lower than that of the separate reactants t-N,Oy,
NH;, and H,SO,. In the complex IM_SA1, H,SO, served as
a single donor and acceptor of hydrogen bonds to form a ring-
like structure with the binary complex of #-N,0,:--NH;. The
stability of complex IM_SA1 increased by 5.4-10.3 kcal mol ™"
when compared to the reactant complexes IM_WM1 and
IM_WD1, with the distance of the N(#N,O,)---N(NH;) bond
reduced by 0.01-0.04 A. After the formation of the complex
IM_SA1, Channel SA proceeded through the transition state
TS_SA to form a ten-membered ring hydrogen-bonded complex
HNO;---H,S0,---NH,NO (labeled as IMF_SA). Similar to the
transition state TS_WM described above, TS_SA was in the
middle of a double hydrogen atom transfer process, with the
H,SO, moiety serving as a bridge for the hydrogen transfer. From
the viewpoint of the energy barrier height, Channel SA was
a barrierless process. In comparison to H,O and (H,0),, H,SO,
could lower the energy barrier, at least by 0.7-4.6 kcal mol ™.
Complex IMF_SA showed a ten-membered ring structure. It had
a binding energy of 28.0 kcal mol " to the separate reactants ¢-
N,0,, NH;, and H,SO,, which was 13.0 kcal mol " lower than the

Table 2 Calculated rate constants (k, cm® mol ™t s™?) for the t-N»,O4 + NH3 reaction with H,O, (H,0O),, and H»SO, calculated by master equation

within the range of 213-320 K and 0-30 km“?

Altitude T (K) kr Fwm kwp ksa
0 km 280 5.20 x 10~ %7 1.16 x 107" 6.05 x 107 ¢ 1.49 x 107 ¢
290 6.13 x 107 1.33 x 10°*° 5.29 x 107¢ 1.50 x 1076
298 6.95 x 107 1.48 x 107 % 4.76 x 107 ¢ 1.50 x 10~ ¢
300 7.17 x 107Y 1.52 x 107*° 4.64 x 107 1.51 x 107¢
310 8.32 x 10~ Y7 1.72 x 107" 411 x 107 1.52 x 107 '¢
320 9.57 x 107 1.93 x 107*° 3.66 x 107 1.54 x 107¢
5 km 259.3 3.59 x 107" 8.59 x 107> 8.30 x 107'® 1.48 x 107 ¢
10 km 229.7 1.92 x 107 5.32 x 1072° 1.40 x 107 1.51 x 107¢
15 km 212.6 1.24 x 107" 3.94 x 102 1.98 x 10~ *° 1.56 x 10~ ¢
20 km 215.5 1.28 x 107 4.15 x 107 1.86 x 107 *° 1.55 x 107¢
25 km 218.6 1.37 x 10~ Y7 4.38 x 10°%° 1.74 x 10~ *° 1.54 x 10 ¢
30 km 223.7 1.55 x 107 4.79 x 107 1.57 x 107*° 1.53 x 107¢

“ kg, kwm, kwp, and ks, were respectively denoted the rate constants for the -N,O, + NHj3, t-N»,O, + NH3---H,0, t-N,0,4 + NH;---(H,0),, and ¢-N,O, +
NH,---H,S0, reactions. ® The 0-30 km data were reported from ref. 88 and 89.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Potential energy profiles for the t-N,O4 + NHs — HNO3 + NH,NO reaction catalyzed by H,SO,4 at the CCSD(T)/aug-cc-pVTZ//B3LYP-

D3/6-311++G(3df,2pd) level (a) The values was reported from ref. 92.

reactant complex IM_SA1. The rate constant of the #N,0, +
NH;---H,SO, reaction is one order of magnitude more than that
of the ammonolysis reaction of ¢N,O, without a catalyst, as
shown in Table 2. This result revealed that H,SO, in the -N,0, +
NH;---H,SO, reaction plays a favorable catalytic role in
promoting the ammonolysis reaction of #N,O,. Thus, the
ammonolysis reaction of +N,0, assisted by (H,0), and H,SO,
was more kinetically favorable than the reaction with H,O.

3.4 Kinetics and implication in atmospheric chemistry

According to previous reports,”?° it is clear that the rate
constant listed in Table 2 is insufficient to predict the atmo-
spheric importance of the ammonolysis reaction of #N,O,
assisted by (H,O), and H,SO,. To understand the atmospheric
effect of (H,0), and H,S0, on the ammonolysis reaction of ¢
N,0,, we introduced the effective rate constants (k) to calculate
the relative efficiency of neutral and acid trace gases affecting
the atmospheric reaction®”** and to compare the rate constant
for the naked reaction.

On the basis of the rate constant for Channels WM, WD, and
SA, the equilibrium constant for the bimolecular formation
(NH3---H,0, NHj---(H,0),, and NH;---H,SO,) and the

Table 3 The effective rate constants (K, cm® molecule™ s™) for the t-

temperature range of 280-320 K*? (0 km)

concentrations of H,0, (H,0),, and H,SO, are listed in Tables
S4-6, as stated in eqn (5)-(7).

k,WM = kwwm X Keq(NH3"'H20) x [H,O] (5)
Kwp = kwp X Keq(NH;-++(H20),) x [(H:0),] (6
k,SA = kSA X ch(NH3"'H2SO4) X [HQSO4] (7)

where kww, kwp, and kga are the bimolecular rate constants for
Channel WM, Channels WD, and SA, respectively; Keq(NH;---
H,0), K.q(NH;-(H,0),), and K.q(NH; --H,SO,) are the equi-
librium constants for the formation of complexes NH;--H,O,
NH;--(H,0),, and NH;---H,S0,. [H,0], [(H20),], and [H,SO,]
represent the concentrations of H,O, (H,0),, and H,SO, taken
from previous reports.**” The k' for the ammonolysis reaction
of t-N,0, with X at 0 km altitude and at different altitudes (5-30
km) in the troposphere was calculated.

3.4.1 Zero kilometer altitude. As seen in Table 3, the
calculated value of k'sy can compete with k'wp at 280 K. With
increasing temperature, the calculated k'sy was ~1-3 orders of
magnitude smaller than the values of & wp, showing that the
ammonolysis reaction of ¢-N,0, was superior to that of an acidic

N>O4 + NHs reaction assisted by H,O, (H,0),, and H,SO4 within the

Catalysts ~ T/K 280 K 290 K 298 K 300 K 310K 320K

K'wu 100% RH 4.29 x 10 %2 6.96 x 102 1.02 x 10! 1.11 x 10~ 1.70 x 10~ ** 2.49 x 10!
Kwo 100% RH" 2.45 x 107 3.68 x 107> 5.16 x 107> 5.46 x 107" 7.70 x 107> 1.02 x 107°
Ksa [H,50,])° = 10° mol em?® 1.39 x 107! 5.49 x 10> 2.72 x 107 2.32 x 107> 1.03 x 10 % 471 x 10°%

“ k'wm, k' wp, and ks, were respectively denoted the effective rate constants for the £-N,0, + NH;+-H,0, t-N,0, + NH;- -(H,0)y, and ¢t-N,0,4 + NH3-
H,S0, reactions. ? The values of temperature were reported from ref. 88 and 89. © The values of concentrations were reported from ref. 44 and 87.
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Table 4 The effective rate constants (k', cm® molecule * s7%) for the t-N,O4 + NHs reaction with H,O, (H,0),, and H,SO, at different altitudes in

troposphere®

Altitude (km)® T (K)? P (torr)? K'wm K 'wo K sa K'sa/keot

5 259.3 406.75 5.62 x 10° >3 1.50 x 10?2 1.81 x 10~ 5.05 x 10°°
10 229.7 202.16 2.12 x 1072 1.74 x 107%2 9.47 x 107> 4.93 x 107*
15 212.6 91.20 1.38 x 107 %° 2.95 x 10 2° 3.74 x 10 % 3.02 x 10
20 215.5 41.04 6.12 x 1072¢ 4.52 x 107% 4.00 x 1072 3.11 x 107°
25 218.6 19.00 3.05 x 1072¢ 8.56 x 10 %8 2.71 x 10 1.97 x 10°*
30 223.7 8.36 1.33 x 107%¢ 1.12 x 10728 7.88 x 107> 5.06 x 10~*

% k'wm, k'wp, and k' sy were respectively denoted the effective rate constants for the +-N,0,4 + NH;---H,0, t-N,0, + NH;---(H,0),, and -N,0, + NH3-
H,S0, reactions; kit = kg + kK wp + k sa. © The values of altitude, temperature and pressure were reported from ref. 87, 88 and 89.

(H,SO,) catalyst in the presence of neutral (H,O and (H,0),)
catalysts. However, the H,SO,-catalyzed reaction can be
neglected because its calculated k'sa was at least 4 orders of
magnitude lower than the corresponding value of kg in the
naked reaction of the ammonolysis reaction of #N,0,. This
indicated that the contributions of H,SO, to the ammonolysis
reaction of +-N,0O, in atmospheric chemistry are not obvious
within the temperature range of 280-320 K (at 0 km altitude).

3.4.2 Higher altitudes. The &’ for the ammonolysis reaction
of -N,0, with H,0, (H,0),, and H,SO, were calculated within
the 5-30 km altitude range, and the calculated &’ is listed in
Table 4. It can be seen in Table 4 that the contribution of H,SO,
was most obvious in the catalysts of H,0, (H,0),, and H,SO,
within the altitude range of 5-30 km, since the value of K sa was
larger by 1-8 orders of magnitude than that of k' wp. In order to
quantitatively assess the impact of H,SO, on the ammonolysis
reaction of -N,Q,, the total rate constant k., can be calculated
using eqn (8). The branching ratio for k'ss/ko¢ in Table 4 was
calculated to be 3.11 x 10 °-5.06 x 10 * at 5-30 km. This
indicates that the contribution of the H,SO,-assisted ammo-
nolysis reaction of +-N,0, can be negligible in atmospheric gas-
phase chemistry.

kit = kr 4+ K wp + K 'sa (8

4. Summary and conclusions

In this work, the favorable route for the ammonolysis reaction
of t-N,0, in the presence of neutral (H,O and (H,0),) and acidic
(H,S0O,) catalysts was investigated using the quantum chemical
method of CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3df,2pd)
and the master equation. The calculated results show that the
energy barrier for the ammonolysis reaction of ¢-N,0, increased
when H,0 was present, but when (H,O), was present, the
reaction energy barrier decreased to 0.3 kcal mol ", which was
3.4 keal mol " lower than the ammonolysis reaction of t-N,O,
without the catalyst, especially when H,SO, was directly
involved in the reaction that is a barrierless process. In terms of
the effective rate constant, (H,0), outperforms the other cata-
lysts in the temperature range of 280-320 K (0 km). Moreover,
the effect of H,SO, on the ammonolysis reaction of -N,O, is
obvious at higher altitudes of 5-30 km. Overall, this work will

© 2023 The Author(s). Published by the Royal Society of Chemistry

give a new insight into how the neutral and acidic catalysts
affect the formation of HNO; from the ammonolysis reaction of
t-N,0,. As HNO; is an important source of acid rain, the present
work will provide a potential formation pathway for HNO;,
which plays a crucial role in the formation of acid rain.
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