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Using novel ionization technologies in single-particle mass spectrometry (SPMS), we analyzed the
polycyclic aromatic hydrocarbons (PAHs) on individual particles from a research ship engine running on
marine gasoil (MGO). We found a rather uniform PAH signature on the majority of particles. The PAH
pattern is stable for all engine loads and particle sizes and differs from typical signatures of other
pyrogenic and petrogenic PAH sources. Based on this observation, we conducted a field experiment and

observed that the appearance of this PAH signature is associated with marine air masses. Moreover, we
Received 17th April 2023

Accepted 12th July 2023 could detect the plume of a single ship passage at 15-20 km distance by the transient appearance of

particles with the same distinct PAH profile. Consequently, we suggest the use of the specific PAH

DOI: 10.1039/d3ea000569 pattern as a new marker to detect and monitor ship emissions, independent of the conventional metal

rsc.li/esatmospheres signatures that are not applicable for compliant fuels in emission control areas and coastal waters.

Environmental significance

Air pollution from ships affects the atmospheric environment, with substantial impact on public health and climate. Emission control areas (ECAs) were
installed worldwide to protect coastal regions against ship emissions by limiting the fuel's sulfur content. In ECAs, the traditional bunker fuels are replaced by
e.g. marine gasoil, which also produces aerosols with severe health effects. Such distillate fuels do not contain metals from the refinery process. Thus, the
traditional marker concept for ship emissions becomes obsolete because it is based on these metals. Ship emission detection, source apportionment and risk
assessment therefore require novel marker concepts. Here we target this gap by introducing a new method to detect ship emission particles by using their

(cc)

content of polycyclic aromatic hydrocarbons.

Introduction

The marine transport sector is a major contributor to the global
burden of air pollution. While nearly all air pollutants in Europe
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and the U.S. have decreased within the last few decades, ship
emissions have changed less and currently contribute substan-
tially to the total emissions of PM 2.5."” Regulations target the
fuel sulfur content by a global 0.5% sulfur cap since 2020 and
a maximum of 0.1% S in sulfur emission control areas (SECAs),
e.g. along the U.S. coast, the entire North Sea and Baltic Sea as well
as in many harbors and coastal regions worldwide.® Shipowners
can either switch to compliant low-sulfur fuels (e.g. marine gasoil
and MGO) or install an exhaust cleaning device (‘scrubber’),
allowing them to use the cheaper high-sulfur heavy fuel oils also
in SECAs.>*® While the sulfur regulations and the resulting
changes to cleaner fuels reduced total particulate matter emis-
sions with benefits for ecosystems and human health,"** the use
of scrubbers can have collateral effects on the environment.'****¢
Beyond the sulfur aspect, the fuel type strongly affects the physical
and chemical properties of the emissions”™ and their health
effects.”>** Most ships in SECAs currently operate with MGO;’

© 2023 The Author(s). Published by the Royal Society of Chemistry
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however, the use of these cleaner fuels without filter technologies
also produces severe health effects.”

Estimates of the burden of air pollution from ships are
mainly based on laboratory/on-ship studies*®**** and transport
modelling.** Monitoring of ship plumes under clean air condi-
tions is possible through gas phase measurements>?” and
transient increases in particle number concentrations, black
carbon or SO,.”** However, in populated coastal regions with
complex aerosols, source apportionment relies on chemical
markers for shipping, usually combinations of the transition
metals vanadium(V), nickel (Ni) and iron (Fe).>**

Single-particle mass spectrometry (SPMS) detects these
particle-bound metals in real time,**° and hence, it is appli-
cable for monitoring ship emissions and source apportionment
in complex environments.*”~*® Recently, the sensitivity of SPMS
to metals has been increased by exploiting laser-atom reso-
nances.* With this approach, individual ship plumes have been
detected in an urban background from >10 km distance, and
also from ships with scrubbers installed.**

Of note, source apportionment based on transition metals is
only applicable if the ships run on residual fuels or on partly
residual fuels such as marine diesel oil. For the distillate fuels
that dominate in SECAs and gain importance in the course of
the new global regulations, novel marker approaches based on
polycyclic aromatic hydrocarbons (PAHs) have been sug-
gested.*>** In parallel, new ionization methods for SPMS were
introduced, yielding detailed mass spectra of PAHs in addition
to the particle's inorganic composition.****¢ Consequently, the
combination of the novel single-particle PAH analyses with PAH
marker concepts opens new avenues for source apportionment.

Here we present the first study applying single-particle mass
spectrometry to investigate the fresh emissions of a ship engine.
We used the recently developed SPMS techniques that reveal
signatures of PAHs on a single-particle basis.*® Thus, we were
able to evaluate and establish the predicted PAH markers for
MGO combustion on ships. To prove this new concept for
source apportionment of ship emissions under real-world
conditions, we present the first detection of a ship plume by
using PAH emissions.

Methods

Ship engine and sampling

The laboratory experiments were conducted using a one-
cylinder four-stroke 80 kW research ship engine with common
rail injection. The engine is a well-documented model for ship
propulsion systems,* capable of operating with all common
ship fuels; for details see Streibel et al.'® Four different oper-
ating points were investigated: 100, 75, 50 and 25% load, each
for one hour and with a run-in time of 25 min for stabilization.
The aerosol was sampled, and transported through a cyclone
separator (cutoff diameter 10 pm) at a temperature of 200 °C.
Using a two-stage ejector dilution system (eDiluter, Dekati Ltd.,
Finland), the aerosol was cooled to room temperature and
diluted by a factor of 1 : 25 with clean, dried and particle-free air.
From 1 L min~ " aerosol transported to the SPMS system, 0.1

© 2023 The Author(s). Published by the Royal Society of Chemistry
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L min~" was guided into the instrument. Further details of the
sampling setup were given by Jeong et al.”

SPMS instrumentation

The new laser ionization scheme for combined measurements
of inorganic composition and PAHs has been described in
detail in another publication.*® The instrument and parameters
were not changed. In brief, the particles are accelerated and
focused by an aerodynamic lens system before optical detection
and sizing. When entering the ion source of the mass spec-
trometer, each detected particle is exposed to an IR pulse for
laser desorption (LD) of the organic material. An unfocused UV
beam (A = 248 nm) from a KrF excimer laser intersects the
expanding gaseous plume, inducing resonance-enhanced
multiphoton ionization (REMPI) of PAHs in the plume. The
laser beam is back-reflected and focused into the center of the
plume, where it hits the particle residue for laser desorption/
ionization (LDI) of inorganic and refractory particle
compounds at high laser intensities (~2 GW cm?). The positive
flight tube of the mass analyzer detects the PAHs together with
cations from LDI, while the opposite negative flight tube
measures anions from LDI. Ion signals were recorded with a 14-
bit digitizer (ADQ14, Teledyne SP Devices AB, Sweden) and
custom LabView software. Note that in SPMS, the peak height is
not directly convertible to the mass concentration of a specific
substance. The new method applied here yields PAH mass
spectra from individual particles; however, it cannot distin-
guish between isobar substances, e.g. phenanthrene vs.
anthracene or benzo[a]pyrene vs. perylene.

Analysis of single-particle mass spectra

For the clustering of mass spectral signatures, we used the adap-
tive resonance theory neural network algorithm, ART-2a.*® The
program code was taken from the open-source toolkit FATES* and
embedded in custom Matlab software (MathWorks Inc.). With
regard to the different ionization processes, LDI and REMPI mass
spectra were separately normalized and independently clustered
using a vigilance factor of 0.8, a learning rate of 0.05, and 20
iterations.® In order to identify the main particle classes, we
applied a regrouping algorithm, where clusters from the initial
clustering are merged in a second ART-2a run.”* The results were
regularly cross-checked against those of manual merging.

Ambient air sampling

The field experiments shown here were part of a measurement
campaign at the Swedish West coast.*® The clean air conditions
there required aerosol preconcentration (Model 4240, MSP
corp., USA)*? and drying (Model MD-700-12S-1, Perma Pure LLC,
U.S.). Wind data were acquired from the local station Nidingen,
8 km south of the sampling site.>

Results and discussion
Particle types emitted by the laboratory ship engine

First, we investigated the ship engine's exhaust aerosol with
respect to the single-particle chemical composition of inorganic
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Fig. 1 Mass spectra of the eight main particle classes from ART2a-clustering of bipolar LDl mass spectra (black) for 60 kW (75%) load of the
research ship engine. The inorganic particle composition via LDI reveals distinct particle classes, e.g. soot particles indicated by carbon clusters
C,, of both polarities. Of note, the PAH pattern from REMPI (red) is very similar for these particle groups, showing strong signals from alkylated
phenanthrenes. Important PAH fragments appear at m/z = 165 and m/z = 189.

substances from laser desorption/ionization (LDI), similar to
previous studies on light duty®*** and heavy-duty vehicles.*® Fig. 1
shows the weight matrices (mass spectra of cluster centers) of the
ART2a-clustering and regrouping of LDI mass spectra from 84
143 individual particles measured during engine operation with
60 kW (75%) load. The inorganic composition of the main
particle types resembles previous experiments on truck engines,>®
with the majority of soot-dominated particles and peaks from
organic fragments. Strong signals from Ca’ and phosphate
signatures can be attributed to lube oil residues.’** Particle-
bound Fe is resonantly ionized in our SPMS, leading to
substantial signal enhancement.*

PAH signatures and their distribution over the particle
ensemble

The new ionization method used here yields PAH mass spectra
from about 50% of all ship emission particles in the current
measurement. This equals the typical hit rate for PAHs with this
technology*® and thus suggests that the majority of detected
particles contain PAHs. This is not surprising because a large
fraction of the PAHs is in the gas phase after combustion and
condenses on the particles when the temperature drops in the
exhaust system. The average PAH mass spectra of the LDI-
derived particle types are shown as red bars in Fig. 1. Inde-
pendent of the particle type, the PAH mass spectra are domi-
nated by a signal series in m/z sequences of 14 Da beginning at
m/z = 178 - a profile that has previously been associated with
ship engine emissions from distillate fuel operation, both in on-

M36 | Environ. Sci.: Atmos., 2023, 3, 134-1144

line measurements of the hot flue gas as well as in filter
samples.’®**%® The peak at m/z = 178 can stem from both
phenanthrene and anthracene; however, anthracene is nearly
exclusively produced in the combustion process and has a lower
degree of substitution.®® The pronounced alkylation pattern in
our experiments indicates the dominance of phenanthrene and
its alkylated derivatives over anthracene. In piston engines, the
combustion temperature determines the number of rings as
well as the degree of substitution, e.g. alkylation,” and large
diesel engines show higher alkylation degrees resulting from
higher amounts of unburnt fuel.?***

Of note, the average PAH signatures of all particle types are
nearly identical, as apparent from the average PAH mass spectra
in the respective groups (red bars in Fig. 1). In order to prove the
stability of this signature among the individual particles - and
therefore its suitability as a marker profile - we performed
a statistical analysis of their homogeneity in the particle
ensemble. The violin plots in Fig. 2 show the distribution of the
congruence coefficients rc for each 25000 particle LDI mass
spectra (blue) and the respective PAH mass spectra (red)

according to
E XijVij
iy

) (5w

with x and y representing the individual mass spectra. The

rc =

distribution of 7 as a measure of the similarity between mass

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Distribution of the congruence coefficients rc between the
single-particle mass spectra. The median rc from the PAH mass
spectra (white circle in the red probability density plot) is higher and its
distribution is narrower compared to that from the LDI mass spectra of
the same particles. The high similarity between PAH mass spectra
supports their capability as a marker signature. Grey bars: interquartile
range, n = 25000.

spectra shows that the individual PAH signatures are much
more uniform than the signatures of the particle's inorganic
composition from LDI. The higher similarity of PAH spectra is
likely a result of incomplete combustion and imprints of the
fuel signature, emphasizing the suitability of single-particle
PAH spectra as fuel markers.

The effect of the particle size

SPMS yields the individual particle size; however, the optical
detection efficiency drops rapidly for particles smaller than
200 nm, and thus, the instrument probes the fraction of the
largest emitted particles. Of note, this size mode includes many
particles of aged ship plumes in field applications* and coincides

free running mode
sizing mode

View Article Online
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with the size of long-range transported particles.®* Because of the
instrument's bias towards large particles in conventional SPMS
sizing mode, we performed additional experiments in the so-
called free running mode that includes ultrafine particles. In
this operation mode, the instrument's optical detection- and
sizing unit is inactive and the desorption- and ionization lasers
fire with a 100 Hz repetition rate into the particle beam, hitting
particles on a random basis. Thus, the limits of optical particle
detection can be overcome, however, at the cost of lost size
information. Fig. 3(a) shows that the particle size distribution
measured via a scanning mobility particle sizer (SMPS) peaks at
around 80 nm. The SMPS-derived size distribution combined
with the lower limit of SPMS spectrum generation at around 50
nm (ref. 62) suggests that particles between 50 and 150 nm size
are dominant in the mass spectra measured in free running
mode. Fig. 3(b) shows the average mass spectra of 5000 particles
measured in free running mode in comparison to Fig. 3(c) where
the average mass spectra of the same number of particles
measured in conventional sizing mode are shown. The smaller
particles measured in free running mode are soot-dominated and
the larger particles show stronger phosphate and nitrate signals
and more fragment peaks from organic carbon, e.g. in the PAH
spectrum. This behavior can be attributed to a larger fraction of
soot particles in the ultrafine mode and stronger contributions
from lube oil and cold zones near the cylinder walls for the larger
particles; see Toner et al.>® The PAH mass spectra in free running
mode show a slightly lower contribution from parent PAHs and
fragments; the reason is not known. However, the PAH signature
is still characterized by the intense homologue series of alkylated
phenanthrenes. A cluster analysis of particle spectra in free
running mode is provided in ESI, Fig. S1.F

The effect of the engine load

The third investigated key parameter with potential influence on
the PAH signatures is the engine load, as shown by a direct

- .
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(a) Particle size distribution of the research ship engine running on MGO at 60 kW load, measured by using a scanning mobility particle

sizer (model 3082, TSI, U.S.). The blue shaded area illustrates the particle detection range of the SPMS in free running mode where particles of all
sizes are hit at random, but size information from this instrument is not available. The red area indicates the coverage in normal sizing mode. The
comparison of average mass spectra obtained in (b) free running mode (more smaller particles) and (c) in sizing mode (more larger particles)
reveals that the characteristic series of alkylated phenanthrenes appears at all sizes. The additional series (m/z = 231 + n x 14) is formed by

fragments.5*

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 With increasing engine load, the only noticeable change in the average PAH mass spectra (each n = 3500) is a subtle shift towards lighter
PAHs. The pronounced alkylated phenanthrenes as the key feature indicating ship emissions from distillate fuels are hardly affected as well as the

inorganic particle composition from LDI.

comparison of average mass spectra in Fig. 4. While the particle's
organic content is highest at low load*® and total PAH signals are
slightly decreasing with increasing load (compensated by signal
normalization as shown in Fig. 4), the general profile with strong
alkylated phenanthrenes remains clearly visible. The inorganic
composition reveals an increase in the nitrate signals with higher
engine load and combustion temperature. The particle size
distribution for all loads is given in ESI, Fig. S2.f

In summary, the vast majority of PAH-containing particles
from MGO operation show a characteristic PAH pattern whose
key feature, a dominant row from phenanthrene and its alky-
lated derivatives, is nearly unaffected by the particle type, size
and engine load. The measured PAHs are a mixture of
combustion products and residues of unburnt fuel and lube
0il.»*** Spencer et al. found comparable PAH signatures in the
majority of the droplets of sprayed diesel fuel using LDI-based
SPMS.** Of note, the parent PAHs (e.g. m/z = 178) were nearly
absent in this study as they originate from reactions between
hydrocarbon radicals during combustion® while the alkylated
species appear to be mainly fuel residues.”® A further key
difference between the droplet studies and our emission
experiments is the much higher concentration of PAHs in the
diesel fuel droplets,'®*®%* and thus, they were detectable via
LDI even in negative mode.*

We also investigated the diversity of PAH signatures by
ART2a-clustering of single-particle REMPI mass spectra and
analyzed the corresponding inorganic particle composition.
Only a minority of particles produce substantially different PAH
mass spectra, as shown in ESI, Fig. S3.1

Ship plume detection via PAHs in the field

To demonstrate the field applicability of our PAH-marker
approach, we re-analyze subsets of the data from a field study
at the Swedish coast in autumn 2019, see Passig et al.>® for
details. Briefly, we used the same SPMS system and the same

NM38 | Environ. Sci.: Atmos., 2023, 3, 134-1144

configuration as in the laboratory but with additional particle
concentration (see the “Methods” section above) to account for
the general clean air conditions with less than 10 ug m ™3 PM2.5.
In the timeframe considered, circulating winds transported
both terrestrial as well as marine aerosols to the sampling site
(Fig. 5). From 292 242 chemically characterized particles in the
period, 3746 particles showed PAH signals. Fig. S4 in the ESIT
shows one of the resulting clusters exhibiting a PAH spectrum
with dominant alkylated phenanthrenes, similar to the experi-
mental results with the research ship engine. The correspond-
ing inorganic composition from LDI reveals soot with Ca and Fe
contributions, organic carbon (OC) peaks and some ageing
signatures (e.g. **C,H;0" contribution at m/z = 43). In order to
investigate the sources of these particles, we correlated their
appearance time with local wind data. Fig. 6(a) shows the
distance from the intersection point of the wind trajectory with
the main shipping lane to the measurement site as a function of
time.

The wind speed is plotted in Fig. 6(b). The detection time
and the size of all PAH-containing particles are depicted in
Fig. 6(c) as grey dots, and the red dots represent the particles
with dominant alkylated phenanthrenes. Obviously, these
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Fig. 5 Overview map of the region and the sampling site.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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particles were mainly detected during periods of short distance
travel to the ship lane and at low wind speeds, while at high
wind speeds and especially during wind from land (distance >
100 km as shown in in Fig. 6(a)) they were only rarely detected.
This behavior points to ship traffic as a probable source and
indicates that land-based sources are of minor importance for
this PAH signature.

Fig. 6(c) also shows a transient event of rather small particles
(circled) indicating a single, less distant source. These particles
also show the mentioned PAH profile but smaller peaks from
OC, see ESI, Fig. S4(b)t for an average spectrum. Ship tran-
sponder data (AIS) revealed a ferry heading north at about 15-20
km distance to the sampling site 45 min before the event, see
the inset of Fig. 5. The ferry traveled closer to the coastline than
most other ships, and its lights were visible in the night. The
ship was not equipped with a scrubber, so it is mandatory for it
to use distillate fuel (i.e. MGO).

Complementarity with previous concepts

Our findings emphasize the potential of single-particle PAH
measurements for ship plume detection and source appor-
tionment of ship emissions. Previous SPMS approaches without
PAH evaluation were based on a unique combination of tran-
sition metals from bunker fuel residues; however, the global
change to cleaner fuels requires novel strategies.®® Apart from
transition metals, conventional SPMS can identify soot particles
from many sources. However, it can hardly differentiate

Period with (1) distance to ship lane in wind direction <100 km and (1) wind speed <5 m/s

Period with distance to ship lane in wind direction <100 km
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between the emissions from different engine types, although
rather subtle changes in the SPMS mass spectra have been
described.’*****% The approach presented here focuses on
organic fuel residues and combustion products, harnessing the
high sensitivity for PAHs based on the resonant ionization
process. Consequently, it reveals fuel and combustion charac-
teristics beyond metals or lube oil additives. PAHs can also be
detected with conventional SPMS, however, with less sensitivity
and strong fragmentation that affects the reproducibility of
mass spectra.*®¢7-*

Potential ambiguities and interferences with land-based
diesel emissions

An important limitation could arise from interferences with
other sources with potentially similar PAH emission profiles.
Czech et al performed gas phase analyses of PAHs from
different sources emphasizing a unique profile of large (ship)
diesel engines.** However, this study included the signatures of
the lighter two-ring PAHs which are limited to the gas phase and
not available here to differentiate between ship engines running
on MGO and smaller diesel engines. Spencer et al. found
comparable PAH signatures in lube oil and diesel droplets®
where they have high concentrations,* but not in the exhaust
emissions, probably because of lower sensitivity to PAHs in the
LDI ionization used by their SPMS instrument.*®”® A minor class
of PAH-containing particles was determined in a study on
heavy-duty vehicle emissions using the same instrument.” The

PAH containing particle
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Fig.6 Time course of wind data and particle detection events. (a) Distance from the measurement site to the main ship lane in the wind direction
as derived from data of the local meteorological station. (b) Local wind speed from the same data. (c) Particle sizes and detection times for all
PAH-containing particles (grey dots). The red dots represent PAH-containing particles with strong signals of alkylated phenanthrenes, belonging
to the cluster shown in the ESI, Fig. S4(a).t Of note, the appearance of such particles is associated with light onshore winds and rather small
distances to the ship lane in the wind direction (dark blue shaded periods). Only few particles of this type were detected in winds from the land,
despite a motorway (20 km distance), the city of Gothenburg and active farming in the region. A transient signal of small particles from this type
can even be attributed to an individual ship passage (circled).
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PAHs in these experiments were dominated by the four-ring
parent PAHs at m/z = 202 in contrast to the strong alkylated
phenanthrenes observed here for ship emissions.

We have conducted unpublished experiments with different
kinds of logwood, biomass burning and brown coal so far; all of
them have not produced similar PAH signatures, as shown in
ESI, Fig. S5(a) and (b).T Using gas chromatography MS, Martens
et al. found a ratio between phenanthrene and the sum of its
alkylated derivatives of 2-6 for logwood and 0.4-4 for brown
coal combustion,” while this factor is 0.4-1 in the experiments
shown here, dependent on the engine load. However, in
a preliminary experiment with a 5.7 kW diesel power generator,
we observed PAH profiles comparable to that of the ship engine
with MGO described here, see ESI, Fig. S5(c)t for a mass spec-
trum. We therefore assume that particles from diesel engines
without exhaust cleaning devices bear the highest potential for
interferences with the proposed ship emission markers. We
expect that these interferences are of minor importance for two
reasons: firstly, since most road traffic vehicles are nowadays
equipped with particle filters, the quantity of land-based diesel
particle emissions from such old cars, tractors, stationary
engines, etc. is much lower compared to ship traffic emissions.?
Secondly, if the measurements are performed close to the
coastline during on-shore winds, e.g. for ship plume detection,
particles of terrestrial origin reveal ageing markers in the SPMS.
Actually, during our ambient air campaign with several thou-
sand PAH-containing particles, the described pattern with
dominant alkylated phenanthrenes predominantly
observed in soot particles during on-shore winds, as shown in
Fig. 6.

Additional ambiguity arises from the different degradation
dynamics of individual PAH compounds which have been dis-
cussed as a key limitation for the diagnostic ratio approach in
source apportionment of PAHs.”*”7> However, the atmospheric
residence time for the particles is in the range of minutes to
a few hours before individual ship plumes disintegrate by
dispersion and mixing.”® We expect therefore, a limited effect of
aging on the characteristic pattern of PAHs. Note that hetero-
geneous PAH degradation in the atmosphere is often much
slower than in lab experiments,” for example, from shielding
effects.”®”®

Both the plume travel distance and wind speed are compa-
rable to those of former experiments where resonant ionization
of metals has been applied for sensitivity enhancement to Fe, Ni
and V,**®* so it is a realistic scenario and detection range for
optimized SPMS methods.

was

Conclusions

Our study showed the application of a new ionization method in
SPMS to identify ship emission particles based on their PAH
composition. The laboratory experiments indicate a high
stability of the proposed marker signature throughout different
particle types, engine loads and particle sizes. The respective
particles can be found in ambient air and are associated with
a marine background. Moreover, under appropriate wind
conditions, individual plumes from ships running on MGO can
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be detected over a distance of several kilometers. A major
ambiguity of this approach results from interferences with
diesel-powered engines that not equipped with exhaust treat-
ment. However, considering the local geography and weather
conditions, these inaccuracies in source apportionment can
easily be minimized.

To further emphasize the real-world application of the new
PAH-based concept, future experiments will focus on many ship
plumes in contrast to the occasional event presented here.
Therefore, the optical particle detection of the instrument will
be improved towards higher sensitivity and the measurement
site will be closer to the shipping lane. This method is currently
under evaluation for the identification of different types of
distillate and residual fuels that gain importance with new
regulations.'®®* In combination with the resonant ionization of
metals that substantially improves the detection of the tradi-
tional metal markers,*>** the approach could be generalized for
the coverage and identification of all relevant ship fuels
currently on the market. Further interesting applications will be
the real-time measurement of ship plume ageing effects and
PAH deposition in the surface water.
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