Showcasing research from Professor Yun-Hong Zhang's laboratory, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.

Directly measuring Fe(III)-catalyzed SO₂ oxidation rate in single optically levitated droplets

We directly measure the kinetics of Fe(III)-catalyzed SO₂ oxidation at the surface of a single droplet trapped by optical tweezers. The Fe(III)-catalyzed SO₂ reactive uptake coefficient is 2 or 3 orders higher than that of the auto-oxidization without TMI. The reaction rate decreases by up to a decade when the Fe(III)/S(VI) coexisting time increases, owing to a complexation between Fe(III) and S(VI).

See Pai Liu, Yun-Hong Zhang et al., Environ. Sci.: Atmos., 2023, 3, 298.
Directly measuring Fe(III)-catalyzed SO₂ oxidation rate in single optically levitated droplets†

Xue Cao, Zhe Chen, Yu-Xin Liu, Xin-Bo Jing, Lin-Fang Li, Pai Liu* and Yun-Hong Zhang†*

Sulfate aerosols are produced in China’s winter haze at an unresolved rapid rate. Such fast kinetics may arise from a heterogeneous SO₂ conversion in urban aerosols, which differs significantly from the aqueous S(IV) oxidation in bulk solutions. Given the uniqueness of aerosols as a multiphase reactor, it is preferable to measure the heterogeneous SO₂ conversion rate in situ, ideally in levitated microdroplets. Here, we directly measure the Fe(III)-catalyzed SO₂ conversion in single microdroplets trapped and levitated with a gradient-force aerosol optical tweezer. The sulfate formation rate was inferred from the droplet’s growth rate driven by the heterogeneous reaction. Our results show that the Fe(III)-catalyzed SO₂ conversion in aerosols is 2 to 3 decades faster than that determined in bulk solutions. The SO₂ reactive uptake coefficient at pH ~5.0 and 298 K is on the order of 10⁻⁴ to 10⁻³. The reaction rate scales with droplet surface area, indicating that the major reaction location is the air–water interface. This interfacial reaction is further corroborated by a positive kinetic salt effect, a trait of the interaction between ions and the neutral molecules, such as Fe(III) ions and SO₂ molecules. The reaction rate decreases by up to a decade, as the Fe(III)/S(IV) coexisting time increases, possibly owing to a complexation between Fe(III) and S(IV) ions.

Environmental significance

Sulfate is a major secondary inorganic component of atmospheric particulate matter, and its production is closely related to urban haze formation. Sulfate can be produced rapidly via a heterogeneous process, in which SO₂ molecules are directly converted at the aerosol surface, catalyzed by the transition metal ions. In this study, we directly measure the kinetics of Fe(III)-catalyzed SO₂ oxidation at the aerosol surface. The kinetic effects of SO₂ concentration, total Fe(III) molar fraction, ambient humidity, and hours of S(IV)/Fe(III) coexistence are investigated. We emphasize that the SO₂ conversion rate in incipient aerosols and in aged ones can differ by nearly a decade, which should be incorporated in the air-quality models.

1 Introduction

The rapid formation of sulfate aerosols is the chemical driver of the severe winter haze events in China, exerting tremendous negative impacts on social economy and public health.¹⁻⁴ During the past decade, SO₂ emission in China’s urban area has been effectively controlled: The annual average SO₂ concentration decreased from 9.1 ppb in 2013 to 1.7 ppb in 2018.⁵ Yet, during the same period, sulfate aerosol concentration in polluted air only decreased moderately, from 19.2 to 12.1 μg m⁻³.⁶ And severe air pollution events still occurred in winter seasons.⁷⁻⁹ To further contain secondary sulfate pollutants, we need to thoroughly understand the mechanisms and kinetics of SO₂ conversion in polluted air.

Per the traditional view, SO₂ in the gas phase is oxidized by OH radicals⁸ and stable Criegee intermediates.⁹ Aqueous reaction pathways include the oxidation of S(IV) by O₃, O₂ (catalyzed by transition metal ions, TMI), and H₂O₂ dissolved in cloud and fog droplets.¹⁰⁻¹² But these mechanisms cannot explain the rapid sulfate PM₂.₅ formation in the north China plain (NCP). The sulfate PM₂.₅ concentration simulated with air quality models¹¹ were 3–4 times lower than that measured in the atmosphere. This gap has motivated many research efforts to discover the hitherto unidentified sulfate sources in polluted environments.¹¹,¹⁴⁻²² New aqueous SO₂ conversion mechanisms have been identified, and the kinetics of existing mechanisms have been updated.

The significance of aqueous SO₂ conversion, however, was questioned in recent kinetic studies.¹¹² The concern partly arises from a reaction space constraint.¹¹⁻²² The volume of aerosol water in polluted air is several decades smaller than that of clouds, and such small aerosol water volume precludes large-scale sulfate formation via aqueous routes.¹ Instead, interfacial reactions – a direct conversion of SO₂ molecules at the
aerosol surface – can exploit the large surface area of micro-droplets and thereby produce sulfate rapidly. Wang et al.\(^1\) reported that the Mn(II)-catalyzed SO\(_2\) oxidation at the aerosol surface is two decades faster than that in bulk solutions. A subsequent air-quality model simulation\(^2\) showed that this Mn(II)-catalyzed interfacial reaction accounts for 92.5% of the sulfate in the NCP haze events. These lab studies and model simulations indicate that the dominating sulfate formation mechanism in polluted air is interfacial SO\(_2\) oxidation catalyzed by TMI, primarily by Mn(II) ions.\(^3,23\)

The recent studies emphasized the significance of TMI-catalyzed SO\(_2\) oxidation at aerosol surface,\(^3,23\) but some knowledge gaps still exist in our understanding of this reaction route. For example, the reaction kinetics of Fe(III)-catalyzed SO\(_2\) oxidation remain unconstrained. In traditional solution chemistry, both Fe(III) and Mn(II) ions were found for their catalytic effects expediting the aqueous S(IV) oxidation.\(^4,24\) And when Fe(III) and Mn(II) coexist, a synergistic effect\(^25\) leads to a reaction rate faster than the summation of the rates of the reactions catalyzed by individual Fe(III) or Mn(II). But recent chamber studies\(^4,26\) showed that the Fe(III)-catalyzed reaction did not produce sulfate aerosols at a rate as rapid as the Mn(II)-catalyzed one. Zhang et al.\(^26\) reported that the Fe(III)-catalyzed reaction is inmeasurably slow; When both Fe(III) and Mn(II) were added, very limited synergistic effects were observed. Wang et al.\(^1\) also reported that adding Fe(III) ions did not accelerate sulfate formation; When Fe(III) and Mn(II) coexist, an increase in Fe(III) mixing fraction did not cause any increase in reaction rate. Another recent study by Angle et al.\(^17\) showed that the TMI-catalyzed oxidation of aqueous S(IV) is faster in microdroplets than in bulk solution, possibly owing to a rate-enhancing effect of the air-water interface. Such a rate enhancement was observed for both the Mn(II)-catalyzed reactions and the Fe(III)-catalyzed ones.\(^17\) It remains unclear why the Fe(III) ions lose their capability when the reaction occurs at the aerosol surface.

These knowledge gaps have motivated the present study. Here, we directly measured the rate of Fe(III)-catalyzed SO\(_2\) oxidation in single (NH\(_4\))\(_2\)SO\(_4\) droplets levitated by an aerosol optical tweezer (AOT).\(^17,26\) The AOT utilizes optical gradient force to steadily trap a single droplet,\(^27,28\) allowing us to measure the reaction rate in it with Raman spectroscopy.\(^17,26\) Measuring kinetics in a single levitated droplet has the following advantages. First, when the target being measured is a single droplet, it is much easier to manipulate the droplet properties (size, composition, and ionic strength) and ambient conditions (gas concentration, humidity).\(^15,17,26\) Second, when a droplet is levitated at the optical trap, the backscattered Raman light can be exploited for an \textit{in situ} kinetic measurement\(^17,26\) during reactions. Third, a single droplet is an optical resonant cavity, and the cavity-enhanced Raman spectra (CERS) reveal the reaction-induced hygroscopic growth of the droplets with a nanometer precision.\(^27,28\) This one-nanometer droplet growth can then be used to infer the sulfate production at a 10\(^{-14}\) mol precision.\(^26\)

In the following, we first describe the experimental setup of AOT that facilitated measuring reaction kinetics in levitated droplets. This is followed by a recap on how to infer reaction rate from droplets’ hygroscopic growth. Next, we discuss the reaction rate as a function of SO\(_2\) concentration, droplet size, Fe(III) concentration, ionic strength, and aging time. We conclude with the atmospheric implication of our findings.

2 Methods

2.1 Aerosol optical tweezer

The AOT system is the same one used in our previous study,\(^26\) and one may refer to the ESI† of that paper for details of AOT schematics and gas-flow arrangements. Here, we only provide a brief recap on the key specifications of the apparatus. The optical trap was constructed with a 532 nm Gaussian beam tightly focused inside a 6 mL sample cell. Specifically, this beam was focused with a 100× oil immersion objective scope (Olympus UIS2 PlanCN) with a numerical aperture of 1.25. Similar to the design by Reid and coworkers,\(^27\) our system uses the 532 nm beam, which constructs the optical trap, to serve as the incident light for Raman scattering. When a single aerosol droplet was trapped and levitated, the backscattered Raman signal was captured with a spectrometer (Zolix Omnic λ-500, 1200 grooves per mm grating) with a time resolution of one frame per second.

2.2 Aerosol generation

Aerosols were generated by nebulizing standard solutes comprising a mixture of ammonium sulfate (AS, (NH\(_4\))\(_2\)SO\(_4\)), ammonium bisulfate (ABS, NH\(_4\)HSO\(_4\)), and iron sulfate (IS, Fe\(_2\)(SO\(_4\))\(_3\)). These chemicals were purchased from Sinopharm Chemical Reagent Co. (analytical reagents, purity ≥ 99.0%) without further purification. The molar ratio of AS and ABS was either 1:1 or 1:0; the molar fraction of IS was fixed at 0.001, 0.01, or 0.1%. One may refer to Table S1 in ESI† for the initial droplet compositions. Ultrapure water (18.2 MΩ cm, Barnstead Easypure II) was used to prepare the solution. The ultrasonic nebulizer was produced by Yuyue (402AI model).

2.3 Aerosol pH and ionic strength

Droplet pH was maintained at ~5.0 by dissolving 8.00 ppm NH\(_3\) gas into the droplet water comprising a mixture of AS and IS (or AS/ABS and IS). The ionic strength (\(I\)) was adjusted between about 15 and 36 mol kg\(^{-1}\) by changing the ambient relative humidity (RH) condition between 80% and 60%. The variation of RH during an experiment was maintained within ±1%. The values of droplet initial pH and \(I\) were computed with E-AIM model III,\(^29\) per:

\[
\text{pH} = -\log(\gamma_{H^+}m_{H^+})
\]

and

\[
I = \frac{1}{2} \sum_i m_i \times z_i^2.
\]

Here, \(\gamma_{H^+}\) and \(m_{H^+}\) respectively denote proton activity coefficient and molality; \(m_i\) and \(z_i\) respectively denote the molality and charge number of major ions in the droplet. These parameters at initial were regarded as representative to the droplet
undergoing reaction. These parameters are tabulated in Table S1.† Note that the concentration of reactant gases was estimated with their dilution ratio. This technique is the same as that in our previous publication.26

2.4 Measuring reaction rate
When RH is fixed, the sulfate solute molarity, \([S(vI)]\), is also a constant, owing to an equilibrium of water partition. At such an equilibrium condition, an increasing sulfate mass inside the droplet will cause an increasing droplet volume. In other words, converting SO2 to sulfate inside a droplet will induce a hygroscopic growth of the droplet. Such reaction-induced droplet growth facilitates us to measure the reaction rate precisely, if we can measure the droplet size precisely, for example:

\[
R_{S(VI)} = \frac{dS(VI)}{dt} \approx \frac{[S(VI)] \times 4\pi r^2 dr}{dt}
\]

Here, \(R_{S(vI)}\) is the reaction rate in mol s\(^{-1}\); \(r\) is droplet radius, subscript zero indicates the initial state, and \(t\) is time. The droplet size during the reaction, \(r(t)\), was inferred from the whispering gallery mode wavelength \(\lambda_{WGM}\) per the Mie scattering calculation28 established by Preston and Reid (refer to ESI Fig. S1† for typical droplet growth data). It is also implicitly assumed in eqn (3) that the curvature effect of the droplet surface is insignificant. Such an assumption requires that the increase in droplet radius during the reaction is negligible when compared with the initial radius. In the experiments, we guaranteed that the increase in \(r\) is always less than 5% of \(r_0\). The reactant SO2 concentration ranged between 25 and 103 ppb. Each kinetic measurement was conducted at fixed RH conditions (60, 70, or 80%). The O2 in the background air served as the oxidizer.

3 Results and discussion

3.1 Influence of SO2 concentration
We first discuss the kinetic effect of SO2 concentration. In these experiments, the droplet pH was maintained at \(\sim 5.0\); the ambient RH, at \(\sim 60\%\); Fe(II) molar fraction, 0.01%. SO2 concentration varied between 25 and 103 ppb. Fig. 1 plots the reaction rate \(R_{S(vI)}\) as a function of SO2 concentration. Note that the unit of \(R_{S(vI)}\) here is mole of sulfate produced in a unit time per a single droplet. The trends in Fig. 1 show that the sulfate formation rate correlates positively with SO2 concentration. Quantitatively, we show that a linear fitting (red line in Fig. 1) describes the data best, indicating that the reaction rate is first order in SO2. This observation agrees with our knowledge of the Fe(II)-catalyzed SO2 conversion.26

3.2 The location of heterogeneous reaction
The size dependence of reaction rate provides us insight on the location of heterogeneous reactions.26 For example, if SO2 are first dissolved in aerosol water and the \(S(vI)\) are oxidized homogeneously therein, the reaction rate will be proportional to droplet volume, \(R_{S(vI)} \propto r_0^3\); if the SO2 are directly converted at the droplet surface, the reaction rate will be proportional to droplet surface area, \(R_{S(vI)} \propto r_0^2\). We evaluated these scaling laws by using the droplet growth rate, \(dR/dt\), which was measured directly during reactions. Eqn (3) indicates that \(dR/dt \propto R_{S(vI)} \times r_0^{-2}\) holds for short-range droplet growth driven by sulfate formation. Then, the kinetic scaling laws can be reduced to \(dR/dt \propto r_0\) for aqueous reaction, and to \(dR/dt = \text{constant}\) for the interfacial reaction.

Fig. 2 shows the \(dR/dt\) of droplets within two size bins: the smaller droplets around 4.5 \(\mu\)m radii, and the larger ones around 7.0 \(\mu\)m radii. The pH of these droplets was maintained at \(\sim 5.0\); the SO2 concentration, at 25 ppb; Fe(II) molar fraction, at 0.01%; RH, at \(\sim 60\%\). Inside these two size bins, we repeatedly
measured \(\frac{dr}{dt} \) more than ten times (see the gray circles). Then we calculated the mean values for \(dr/dt \) and \(r_0 \), as well as their one standard deviation (black circles and error bars). Despite the fluctuation, the mean \(dr/dt \) values for droplets inside each size bin are clearly independent of the corresponding mean \(r_0 \) values. The mean \(dr/dt \) was 0.0131 ± 0.002 nm s\(^{-1}\) and 0.0128 ± 0.002 nm s\(^{-1}\), respectively, when the mean \(r_0 \) was 4.525 ± 0.308 \(\mu \)m and 6.936 ± 0.207 \(\mu \)m.) With this constant \(dr/dt \), we infer that the reaction occurs primarily at the droplet surface. Were aqueous reactions the case, \(dr/dt \) would increase linearly with \(r_0 \), and the \(dr/dt \) data at \(\sim 7 \mu \)m would instead be clustered around 0.02 nm s\(^{-1}\).

In the following, we normalize the sulfate formation rate with \(SO_2 \) concentration and droplet surface area per the expression of reactive uptake coefficient \(\Gamma_{SO_2} \):

\[
\Gamma_{SO_2} = \frac{dS(VI)/dt}{Z}
\]

and

\[
Z = \frac{1}{4} \sqrt{\frac{8RT}{\pi M_{SO_2}}} A \left[SO_2(g) \right].
\]

Here, \(Z \) is the collision efficiency between \(SO_2 \) molecules and droplet (unit, mol s\(^{-1}\)); the parameters \(R, T, M_{SO_2}, A, \) and \([SO_2(g)] \) are gas constant (J mol\(^{-1}\) K\(^{-1}\)), temperature (K), \(SO_2 \) molecular weight (kg mol\(^{-1}\)), and droplet initial surface area (m\(^2\)), and \(SO_2 \) gas concentration (mol m\(^{-3}\)), respectively.

3.3 Influence of metal concentration

Not all Fe(\(\text{III} \)) in aerosol water are soluble. The soluble Fe(\(\text{III} \)) ions include FeOH\(^{2+}\), Fe(OH)\(_2^+\), and Fe\(_2\)(OH)\(_4^+\); their concentration in dilute solution might be estimated per the precipitation equilibrium relationship. But it remains unclear whether such a relationship still provides accurate predictions in aerosol water at the non-ideal, high-ionic-strength condition. Here, we empirically measured the reaction rate at changing concentrations of total Fe(\(\text{III} \)), including both soluble and insoluble Fe(\(\text{III} \)). In these experiments, droplet pH was maintained at \(\sim 5 \); ambient RH, at \(\sim 60\% \). The molar fraction of total Fe(\(\text{III} \)) in droplet solute varied between 0.0001% and 0.1% (correspondingly, the total Fe(\(\text{III} \)) concentration varied between \(\sim 6.2 \mu \)M and \(\sim 6.2 \text{mM} \)).

The results are shown in Fig. 3. Although the total Fe(\(\text{III} \)) varied across three orders of magnitude, the reaction rate at pH \(\sim 5 \) remains a constant. This constant reaction rate indicates that most of the Fe(\(\text{III} \)) in droplets was insoluble. Such an observation of excessive total Fe(\(\text{III} \)) agrees with traditional kinetic studies. For example, Martin \(et \ al. \) found that, at pH \(\sim 5 \), the first-order rate coefficient of Fe(\(\text{II} \))-catalyzed oxidation of aqueous S(\(\text{IV} \)) is also independent of Fe(\(\text{III} \)) concentration. In polluted air, the Fe(\(\text{III} \)) concentration is about 18 ng m\(^{-3}\), and the aerosol water content is about 300 \(\mu \)g m\(^{-3}\). These conditions suggest that the total Fe(\(\text{III} \)) molarity in aerosol water is \(\sim 1 \text{mM} \) (dotted line in Fig. 3), far beyond the solubility limit. Therefore, one may assume that the reaction kinetics at fixed pH conditions is zeroth order in the total airborne Fe(\(\text{III} \)).

3.4 Influences of ambient humidity

We next investigate the influence of ambient humidity on reaction rate. In these experiments, the \(SO_2 \) was maintained at 25 ppb; Fe(\(\text{II} \)) molar fraction, at 0.01%. Ambient RH varied among 60, 70, and 80%. The results are plotted in Fig. 4. As RH decreases from 80 to 60%, the mean reaction rate increases by a factor of \(\sim 2 \). The faster reaction at lower RH conditions may arise from the kinetic salt effect. When RH decreases, droplet water becomes more concentrated, and droplet ionic strength \(I \)
increases. (For example, ESI Fig. S2† shows that the I of ammonium sulfate droplet increases from \sim17 to 35 mol, as the ambient RH decreases from 80 to 60%.) Reactions are accelerated at the high I condition if the rate-limiting step of the reaction involves an interaction between charge neutral molecules and ions here, the neutral SO$_2$ molecules and the Fe(iii) ions. This positive kinetic salt effect also indicates that SO$_2$ is directly converted at the droplet surface, without an a priori dissolution and dissociation. For example, SO$_2$ and O$_2$ may react with Fe(iii) at droplet surface, producing Fe(ii) and SO$_5$ radicals. Instead, if the SO$_2$ were first dissolved and dissociated into S(iv) ions, then the rate-limiting step would involve an interaction between S(iv) ions and Fe(iii) ions. Such ion–ion reaction would be inhibited when I is large. One may refer to Angle et al.’s recent kinetic study17 for such a slower TM-like catalysis of S(iv) oxidation at higher I conditions.

The faster reaction rate at lower RH conditions is unlikely due to the enrichment effect (i.e., droplet solvent evaporates, the aqueous reactant is concentrated, and the reaction is accelerated.) We find that this explanation is not very compelling, because when the SO$_2$ molecules are directly converted at the aerosol surface, their availability is unaffected by the enrichment of the aqueous phase. The Fe(iii) catalysts do exist in the aqueous phase. But, when the total Fe(iii) concentration is much greater than the solubility limit, the actual concentration of soluble Fe(iii) is unlikely to be affected by the enrichment of droplet water either.

3.5 Influence of Fe(iii)/S(vi) coexisting time

The aqueous Fe(iii)-catalyzed S(vi) conversion is self-inhibiting because the reaction product S(vi) is an effective complexation agent to the Fe(iii) radicals.17,24 Martin and Hill24 reported that the Fe(iii)-catalyzed reaction in bulk solution decelerates significantly when the S(vi) concentration increases from a mM to a mM level. Here, we investigate the influence of Fe(iii)/S(vi) coexisting time on the heterogeneous reaction rate. In this part of experiment, we aged the AS/IS mixture solutions for 12, 36, or 48 hours before nebulizing them into aerosols. The reaction rate in the droplets aged from solutions was then compared with that in the droplets made from the fresh solution. The SO$_2$ was maintained at 25 ppb; Fe(iii) molar fraction, at 0.01%. Ambient RH, at 60%. Fig. 5 plots the Γ_{SO_2} as a function of the Fe(iii)/S(vi) coexisting time. The reaction rate decelerates by almost a decade, as the Fe(iii)/S(vi) coexisting time increased from 0 to 48 hours. This observation indicates that the Fe(iii)/S(vi) complexation is also a significant factor affecting the heterogeneous SO$_2$ conversion. The Fe(iii)-catalyzed reaction may be a decade slower in real-world sulfate aerosols that have gone through an elongated aging process.

3.6 Comparing with other reaction mechanisms

Table 1 compares the kinetic data obtained in the present study with those reported in ref. 1, 26 and 31. Per our present study, the Fe(iii)-catalyzed SO$_2$ oxidation occurs primarily at aerosol surface. At room temperature and a pH \sim5 condition, such a reaction exhibits Γ_{SO_2} on the order of 10^{-4}. This reaction rate is 2–3 decades faster than what the solution chemistry predicts. For example, Martin et al.31 reported that the Fe(iii)-catalyzed S(vi) oxidation in bulk solution at pH 5.0 has a first-order rate coefficient of $\sim$$10^{-3}$ s$^{-1}$. This rate coefficient corresponds to a Γ_{SO_2} of $\sim$$1.7 \times 10^{-6}$ for the heterogeneous reaction inside the droplets with a $\sim$$10$ μm radius (refer to Table 1 footnotes for details of calculation).

The much faster reaction rate observed in our present study is not an experimental artefact. Previously, Chen et al.26 used the AOT to measure the uncatalyzed SO$_2$ oxidation rate in levitated droplets. In that study, we conducted the experiment by using the same AOT apparatus and the same ammonium sulfate chemicals, but we did not intentionally add any Fe(iii) to the droplets. At such conditions, the reaction at pH \sim5.0 exhibited a Γ_{SO_2} on the order of 10^{-7} to 10^{-6}. This comparison indicates that the 2-to-3-decade faster reaction observed here is due to our intentional addition of Fe(iii) to droplet water. In other words, if such faster kinetics were a systematic artefact of the AOT apparatus, Chen et al. would also observe a Γ_{SO_2} on the order of 10^{-4} for the uncatalyzed reactions.

One should also note that the Γ_{SO_2} on the order of 10^{-4} to 10^{-3} is even greater than what is needed to explain the missing sulfate in haze events. Such an observation indicates that the Fe(iii)-catalyzed heterogeneous SO$_2$ oxidation in the atmosphere is not as fast as that in the laboratory aerosols, particularly those freshly-made ones. As we discussed earlier, the catalytic capability of Fe(iii) is impaired if Fe(iii) and S(vi) coexists for a long time. On the other hand, recent studies proposed that a strong electric field exists at the air–water interface, triggering a spontaneous conversion of some OH$^-$ ions at droplet surface into OH radicals and free electron.31,34 Such unique environment at air–water interface may also alter the kinetics of redox reactions.
chamber. The dissociation equilibrium constants of sul
the heterogeneous reaction occurs primarily at the air
surface area. Such a surface scaling law in turn suggests that
droplets. Our
G
manuscript.

There are no con
icts of interest.

Conflicts of interest
There are no conflicts to declare.

4 Conclusion
In this work, we directly measured Fe(III)-catalyzed SO2 conversion inside optically levitated microdroplets. We show that aerosol optical tweezers – coupled with cavity-enhanced Raman spectroscopy – can be utilized to determine the rate of heterogeneous reactions between SO2 gas and micro-droplets. Our findings show that the rate of Fe(III)-catalyzed SO2 oxidation is first order in SO2 concentration. During the heterogeneous reaction, the droplet growth rate is independent of the droplet initial radius, indicating that the sulfate production rate (per droplet) is proportional to the droplet surface area. Such a surface scaling law in turn suggests that the heterogeneous reaction occurs primarily at the air–water interface. The reaction rate is faster at lower RH conditions, possibly owing to a positive kinetic salt effect for ion–molecule reactions. The reaction rate at pH ~ 5 remains constant despite the total Fe(m) molar fraction varies across three decades, indicating that most Fe(m) is insoluble. This excessive Fe(m) condition also holds valid for real-world aerosols in polluted air. The reaction rate decelerates nearly one decade as the Fe(m)/S(vi) coexists for two days, indicating that the contribution of the Fe(m)-catalyzed reaction to sulfate may significantly diminish in aged aerosols.

Author contributions
P. L. and Y. Z. designed the research; X. C. and Z. C. performed the experiments; P. L. performed the theoretical calculations; P. L. and X. C. wrote the first draft of the manuscript; and all of the authors analyzed the data and contributed to revising the manuscript.

Acknowledgements
We are grateful to Prof. Dr Jonathan P. Reid at the University of Bristol for helping us set up the aerosol optical tweezer and for sharing the spectra inversion algorithm. This study was supported by the National Natural Science Foundation of China (No. 42205113, 42127806, 91544223, 91844301, and 21806169), and Beijing Institute of Technology Research Fund Program for Young Scholars.

References
4 H. He and J. Hao, Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days, Sci. Rep., 2014, 4, 4172.
5 F. Yan, W. Chen and X. Wang, Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis, Atmos. Environ., 2020, 242, 117817.

34 D. Xing and X. Zhang, Capture of hydroxyl radicals by hydronium cations in water microdroplets, *Angew. Chem.*, 2022, **61**, e202207587.