Issue 11, 2019

Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics

Abstract

Brain cancer, especially the most common type of glioblastoma, is highly invasive and known as one of the most devastating and deadly neoplasms. Despite surgical and medical advances, the prognosis for most brain cancer patients remains dismal and the median survival rarely exceeds 16 months. Drug delivery to the brain is significantly hindered by the existence of the blood–brain barrier (BBB), which serves as a protective semi-permeable membrane for the central nervous system. Recent breakthroughs in nanotechnology have yielded multifunctional theranostic nanoplatforms with the ability to cross or bypass the BBB, enabling accurate diagnosis and effective treatment of brain tumours. Herein, we make our efforts to present a comprehensive review on the latest remarkable advances in BBB-crossing nanotechnology, with an emphasis on the judicious design of multifunctional nanoplatforms for effective BBB penetration, efficient tumour accumulation, precise tumour imaging, and significant tumour inhibition of brain cancer. The detailed elucidation of BBB-crossing nanotechnology in this review is anticipated to attract broad interest from researchers in diverse fields to participate in the establishment of powerful BBB-crossing nanoplatforms for highly efficient brain cancer theranostics.

Graphical abstract: Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics

Article information

Article type
Review Article
Submitted
10 Feb 2019
First published
15 May 2019

Chem. Soc. Rev., 2019,48, 2967-3014

Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics

W. Tang, W. Fan, J. Lau, L. Deng, Z. Shen and X. Chen, Chem. Soc. Rev., 2019, 48, 2967 DOI: 10.1039/C8CS00805A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements