Dalton Transactions

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2023, **52**, 2898

Correction: Wide band gap thiophosphates ASrPS₄ (A = Li, Na, K, Rb, Cs): cation size effect induced successive structural transformation

Yi Huang, a Junben Huang b and Yong Zhang*a,c

DOI: 10.1039/d3dt90024j

Correction for 'Wide band gap thiophosphates ASrPS₄ (A = Li, Na, K, Rb, Cs): cation size effect induced successive structural transformation' by Yi Huang *et al.*, *Dalton Trans.*, 2022, **51**, 15067–15073, **https://doi.org/10.1039/D2DT02321K**.

The authors regret the inconsistences between crystal data in the cif and Table 1 as published in their original submission. The correct Table 1 is as follows:

Table 1 Crystal data and structure refinement for ASrPS₄ (A = Li, Na, K, Rb, Cs)

Empirical formula Formula weight Crystal system Space group Unit cell dimensions (Å)	LiSrPS ₄ 253.77 Tetragonal $I4_1/acd$ a = 11.5042(6) b = 11.5042(6) c = 19.9690(18)	NaSrPS ₄ 269.82 Monoclinic $P2_1/c$ a = 9.128(2) b = 10.429(3) c = 7.0685(16) $\beta = 101.051^\circ$	KSrPS ₄ 285.93 Orthorhombic <i>Pnma</i> a = 16.8490(17) b = 6.6365(6) c = 6.5607(8)	RbSrPS ₄ 332.30 Orthorhombic <i>Pnma</i> a = 17.3427(6) b = 6.6969(2) c = 6.5130(2)	CsSrPS ₄ 379.74 Orthorhombic <i>Pnma</i> a = 18.0743(12) b = 6.7904(5) c = 6.4174(4)
Z/V (Å ³) Density (g cm ⁻³) Absorption coefficient (mm ⁻¹) F (000) Completeness to theta Goodness-of-fit on F^2 Final R indices $[F_0^2 > 2\sigma(F_0^2)]^a$	16/2642.8(4) 2.551 9.529 1920 98% 1.002 $R_1 = 0.0236$, w $R_2 = 0.0636$	$4/660.4(3)$ 2.714 9.603 512 99.7% 1.008 $R_1 = 0.0379$, $wR_2 = 0.0817$	4/733.61(13) 2.589 9.154 544 98.8% 1.183 $R_1 = 0.0770$, $WR_2 = 0.2129$	$4/756.43(4)$ 2.918 14.721 616 99.1% 1.127 $R_1 = 0.0206$, $WR_2 = 0.0458$	4/787.62(9) 3.202 12.553 688 99.7% 1.138 $R_1 = 0.0313$, $WR_2 = 0.0750$
R indices (all data) ^a Largest diff. peak and hole (e \mathring{A}^{-3})	$R_1 = 0.0397,$ $wR_2 = 0.0710$ 0.374 and -0.464	$R_1 = 0.0532,$ $wR_2 = 0.0885$ 0.889 and -0.650	$R_1 = 0.0815,$ $wR_2 = 0.2158$ 3.699 and -1.422	$R_1 = 0.0225$, $wR_2 = 0.0464$ 1.620 and -1.368	$R_1 = 0.0382,$ $wR_2 = 0.0797$ 1.287 and -1.069

 $^{a}R_{1} = F_{o} - F_{c}/F_{o}$ and $wR_{2} = [w(F_{o}^{2} - F_{c}^{2})^{2}/wF_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. E-mail: yongzhang@hit.edu.cn

^bSchool of Materials Science and Engineering, Education Ministry Key Laboratory of Nonferrous Materials Science and Engineering, Central South University, Changsha 410083 Hunan, China

^cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China