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1. Introduction

The high-pressure (HP) behaviour of MTO, bimetal oxides has
been the focus of research interest during the last two
decades.”” The main objects of study have been phosphates,**
vanadates,® tungstates,”® molybdates,”’® chromates,'""*
niobates,"'* and tantalates.">'® On the other hand, a group
of compounds that have been barely studied under HP are
orthoantimonates, among which only BiSbO, has been
studied.” Contrary to the rest of the MTO, compounds, this
material shows a surprising structural stability under HP, not
undergoing any phase transition up to 70 GPa, the maximum
pressure reached by studies. Therefore, it is important to study
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Experiments were combined with density-functional theory calculations, which provided information on
the elastic constants and the influence of pressure in the crystal structure and Raman/infrared phonons.
Results are compared with those from other orthoantimonates. Reasons for the difference in the high-
pressure behaviour of YoSbO,4 compared with most antimony oxides will be discussed.

other antimonate compounds under HP to understand the
effect of pressure on their properties.

Among antimonates, lanthanide antimonates are techno-
logically important compounds.'® Their rich luminescent pro-
perties have been proposed for applications such as laser
materials, flat panel displays, cathode ray tubes, up-conversion
devices, and white light-emitting diodes.'® The understanding
of their fundamental physical properties is of importance for
these and other technological applications. It is a very well-
known fact that HP modifies interatomic bonds, triggering
changes in the structural, physical, and chemical properties of
materials.'® Consequently, HP research has made relevant con-
tributions to the understanding of the properties of materials,
and consequently to the progress of materials science.>”

In order to deepen the knowledge of the properties and HP
behaviour of lanthanide antimonates, we have performed a
study on ytterbium orthoantimonate (YbSbO,). We have
studied it by combining HP X-ray diffraction (XRD) measure-
ments and density-functional theory (DFT) calculations. The
crystal structure, its behaviour under HP, and the vibrational
and elastic properties will be reported, discussed, and com-
pared with related compounds.

2. Materials and methods

Polycrystalline YbSbO, was synthesized through a solid-state
reaction following the procedure described by Siqueira et al.*®
The synthesis was made using a stoichiometric mixture of
high-purity Yb,0; (>99.9% Sigma-Aldrich) and high-purity
Sb,05 (>99.9% Sigma-Aldrich), the starting materials were
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mixed with a mortar and pestle and subsequently calcined
with intermediate regrinding until obtaining a single-phase
compound. The composition of the material was verified by
scanning electron microscopy (SEM) and Energy-dispersive
X-ray analysis (EDX) using a Hitachi S-4800 high-resolution
scanning electron microscope, using an accelerating voltage of
30 kv. Ambient pressure structural characterization and phase
identification were performed by powder XRD with a Rigaku
D/max diffractometer using a Bragg-Brentano geometry and
monochromatic Cu-K,; radiation.

Room-temperature HP powder XRD experiments were per-
formed at the BL04-MSPD beamline of the ALBA synchro-
tron.”! We used a diamond-anvil cell (DAC) with culets of
500 pm in diameter and an Inconel gasket. A 250 pm diameter
hole drilled in the center of the gasket served as the pressure
chamber. We used a 16: 3 : 1 methanol-ethanol-water mixture
as a pressure medium®? and XRD of Cu as the pressure scale.”®
We employed a monochromatic X-ray beam (1 = 0.4642 A)
focused to 20 pm x 20 pm (full-width-at-half-maximum) and
collimated with a molybdenum pinhole and a two-dimen-
sional Rayonix SX165 CCD detector. The two-dimensional
diffraction images were transformed into conventional XRD
patterns using DIOPTAS.>* Rietveld refinements were per-
formed with FullProf.>®

Total-energy calculations were performed within the frame-
work of DFT?® using the projector-augmented wave
method®”*® as implemented in the Vienna Ab initio
Simulation Package (VASP).”>° We used a plane-wave energy cut-
off of 520 eV ensuring high precision in our calculations. The
exchange-correlation energy was described within the general-
ized-gradient approximation (GGA) in the Perdew-Burke-
Ernzerhof for solids (PBEsol) formulation.?*® The Monkhorst-
Pack scheme was employed for the Brillouin-zone (BZ) inte-
grations®" with a mesh 3 x 4 x 3 which corresponds to a set of
ten special k-points in the irreducible BZ for the conventional
unit cell. In the relaxed equilibrium configuration, the forces
are less than 0.3 meV per A per atom in each cartesian direc-
tion. The highly converged results on forces are required for
the calculations of the dynamical matrix using the direct force
constant approach.?? This allows us to identify the irreducible
representation and the character of the phonon modes at the
zone center (I" point). The phonon density of states (PDOS) has
been obtained calculating the phonon spectrum in the whole
BZ with a supercell 2 x 2 x 2 times the conventional unit cell
using the PHONON software.*> We computed the elastic con-
stants with a 6 x 8 x 6 k-points mesh with the unit cell, a
plane-wave energy cut-off of 570 eV, and a POTIM parameter of
0.016. The elastic tensor is determined by performing six finite
lattice distortions and deriving the elastic constants from the
strain-stress relationship.*?

3. Results and discussion

A SEM image of our sample is shown in Fig. 1(a). In the figure
we highlight the five areas where we collected EDX to study the
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Fig.1 (a) Scanning electron microscopy of the YbSbO, powder
showing five areas where EDX was collected. (b) A zoom of area labeled
as spectrum 2 in (a) showing color images. The red rectangle shown an
area with excess of Yb. (c) EDX spectrum.

composition of the sample. Fig. 1(b) shows a SEM color image
of one of these areas. A region where an excess of Yb was
detected is highlighted within a red rectangle. From EDX
(Fig. 1(c)), we determined that the molar ratio of Yb and Sb in
the synthesized sample is close to 1:1 (Yb 51.2 at% and Sb
48.8 at%) confirming the slight Yb excess.

In Fig. 2(a) we present the powder XRD pattern of YbSbO,
as measured at ambient conditions. Only a single phase was

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 (a) XRD pattern of YbSbO, as measured at ambient conditions.
(b) Crystal structure of YbSbO,4. The Sb and Yb coordination polyhedra
are shown in brown and cyan, respectively.

observed. However, as we will comment when discussing the
HP experiments, synchrotron powder XRD detected and small
amount of Yb,O; impurities, which agrees with the Yb excess
detected by EDX. A possible reason for it is the known fact that
Sb,0;5 has a sublimation tendency due to formation Sb,Os_,
species.>® The XRD pattern was Rietveld refined assuming as
model the structure of a-PrSbO,,*” leading to small R-values (see
Fig. 2(a)), indicating a good fit of the structural model to the
data. The crystal structure including atomic positions is here
reported for the first time. In ref. 18, the same kind of crystal
structure was proposed, but only rough lattice parameters a, b,
and ¢ were reported in a figure, being numerical values not pro-
vided. The crystal structure is monoclinic (space group P2,/c)
and it is represented in Fig. 2(b), while the structural infor-
mation is given in Table 1. The cif file is included in the ESIt
and has been uploaded to the Cambridge Crystallographic Data
Centre (Deposition number 2293383%). The structure can be
visualized as chains of nearly regular corner-sharing SbO¢ octa-
hedra which run parallel to chains of high-distorted edge-
sharing YbOg dodecahedra, which also share edges with adja-
cent SbOg octahedra. Bond distances are also provided in
Table 1. The average Sb-O bond length is 1.961(7) A (the stan-
dard deviation is 0.035 A) and the average Yb-O bond length is
2.404(7) A (the standard deviation is 0.181 A).

This journal is © The Royal Society of Chemistry 2023
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Table 1 Experimental unit-cell parameters, atomic positions, and
bond-distances of YbSbO, at ambient pressure
a=17.5096(8) A, b = 5.2883(5) A, ¢ = 7.4002(7) A, and f§ = 98.978(9)°
Atom Site x y z
Yb 4e 0.35620(3) 0.21570(2) 0.10970(1)
Sb 4e 0.15270(2) 0.72220(4) 0.30550(4)
O, 4e 0.0728(4) 0.1128(4) 0.6943(5)
O, 4e 0.1611(4) 0.6199(5) 0.5625(5)
0, 4e 0.3294(4) 0.5096(5) 0.8799(6)
(o 4e 0.3793(4) 0.5424(5) 0.3290(4)

Sb-0, = 1.905(7) A, Sb-0, = 1.933(7) A, Sb-0; = 1.962(6) A, Sb-0, =
1.969(7) A, Sb-0, = 1.993(7) A, and Sb-0, = 2.005(6) A. Yb-O, = 2.170
(7) A, Yb-0, = 2.289(6) A, Yb-0, = 2.293(6) A, Yb-O, = 2.358(6) A, Yb-
0; = 2.363(7) A, Yb-0O, = 2.482(7) A, Yb-O, = 2.514(7) A, and Yb-O; =
2.763(7) A.

In Fig. 3 we report a selection of HP XRD patterns at
different pressure points. We have found that all of these pat-
terns can be identified with a crystal structure isomorphic to

—
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Fig. 3 HP XRD patterns measured at different pressure. In the pattern
at the lowest pressure the experiment (refinement) is shown with black
circles (red line). The black line is the residual and the vertical ticks
shown the position of Bragg peaks. Asterisks identify peaks of Cu
(pressure marker) and the dagger symbols the most intense peaks of the
Yb,O3 minority phase.
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that of the low-pressure phase. A Rietveld refinement is
included at the lowest pressure environment to support this
statement. The small residuals and R-values obtained in the
refinement (Fig. 3) confirm that we succeed in the data ana-
lysis. Similar quality refinements were obtained at all press-
ures. In the HP experiments we have detected the presence of
a minor amount of unreacted Yb,03;, which however did not
preclude the determination of the crystal structure of YbSbO,
at any pressure. This finding is consistent with EDX experi-
ments, which determined a slightly excess of Yb in the sample
composition. As can be observed in Fig. 3, with increasing
pressure, XRD peaks gradually shift towards higher angles,
due to the decrease of unit-cell parameters. We did not
observe any evidence of the occurrence of a phase transition.
However, a gradual merging of some of the peaks occurs,
caused by the slightly anisotropic compressibility, as explained
in the paragraph where axial compressibility is discussed.
From the Rietveld refinements of the experimental patterns,
we have obtained the pressure dependence of the unit-cell
parameters. The refinements were performed subsequently
from the lowest to the highest pressure assuming the values
obtained at a given pressure as the starting values for the next
pressure. In the refinements the Bragg peak profiles were mod-
elled using a pseudo-Voigt function. The occupancy and the
overall atomic displacement factors were constrained to 1 and
B = 0.025 A% respectively, a typical approach used in DAC XRD
experiments where the angular aperture is limited.*® In a first
step we fitted the lattice parameters (keeping atomic positions
fixed). This was followed by the refinement of atomic positions
(keeping lattice parameters fixed). To allow an estimation of
the validity of our analysis, in Table 2 we present the lattice
parameters and the R-values of the refinements corresponding
to the pressures of the six XRD patterns shown in Fig. 3. The
pressure dependence of unit-cell parameters is presented in
Fig. 4. In the figure, it can be seen a good agreement between
experiments and calculations. Computer simulations slightly
overestimate the lattice parameters a, b, and ¢ and slightly the
parameter § (a = 7.55677(2) A, b = 5.29890(1) A, ¢ = 7.44748(2)
A, and g = 98.15606(3)°; for a comparison with experiments,
see Table 1). The volume is overestimated by 1.5% by DFT
simulations. This difference is typical of DFT calculations per-
formed within the GGA approximation and it is related to the
approximation used to describe the exchange-correlation
energy.’” Notice that the results of our DFT calculations agree

Table 2 Lattice parameters obtained from the Rietveld refinement of
X-ray diffraction patterns for YbSbO, at different pressures. R-values of
the refinements are included

P(GPa) a(d)  b(A) (B  p() Rp (%) Rwe (%)
0.4 7.5032  5.28 7.397 98.9347  2.88 7.07
3.3 7.4583 5.245 7.358 98.6739  2.97 7.63
6.2 7.4088  5.218 7.3335 98.4561 3.13 8.20
10.3 7.3349  5.198 7.2677  98.11 3.29 8.76
16.0 7.2721 5.1542  7.2028 97.6861 3.45 9.16
21.1 7.233 5.1261  7.167 97.5246  3.52 9.22
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results from experiments (calculations). The dashed line in (c) is the EoS
fitting of experiments. (d) B’y versus By including the one-sigma confi-
dence ellipse of fit to results from experiments (square) and calculations
(circle). When not shown errors are smaller than symbols.

better with experiments than those of DFT calculations
reported in the Materials Project®® (a = 7.42 A, b =5.14 A, ¢ =
7.86 A, and § = 98.00°) which overestimate the unit-cell volume
by 2.5% and the lattice parameter ¢ by 5%.

Fig. 4(a) shows that the lattice parameter a is more com-
pressible than the lattice parameter ¢, both becoming nearly
identical at the maximum pressure covered by experiments.
On the other hand, the lattice parameter f also decreases
under compression (see Fig. 4(b)). Regarding the pressure
dependence of the volume (see Fig. 4(c)), we have found that it
can be described by a third-order Birch-Murnaghan equation
of state (BM Eo0S).*° According to the fits, the experimental
unit-cell volume at zero pressure, bulk modulus, and its
pressure derivative are V, = 290.5(2) A*, B, = 155(6) GPa, and
B’y = 6.6(7), respectively, while the corresponding theoretical
values are V, = 294.8(2) A, B, = 143(5) GPa and B', = 4.4(6). The

This journal is © The Royal Society of Chemistry 2023
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compressibility given by calculations is slightly higher than
the one obtained by the fits performed on the experimental
data, because of the overestimation of the unit-cell volume at
zero pressure by calculations.®” The slightly larger compressi-
bility obtained from calculations can be concluded from the
one-sigma confidence ellipses of the B, versus B, plot shown
in Fig. 4(d). We have also analysed the changes induced by
pressure in the unit-cell parameters. In a monoclinic structure,
the compressibility tensor is not diagonal in the setting
defined by the unit cell. Thus, the compressibility should be
described by the eigenvalues and eigenvectors of the isother-
mal compressibility tensor.?’ In YbSbO,, the main axes of
compressibility are [908], [010], and [809], and their corres-
ponding compressibilities are 2.4(1) 10~ GPa™', 2.0(1) 107°
GPa™', and 1.1(1) 107 GPa™ ', respectively. Thus, the most and
least compressible axes are in the plane perpendicular to the
unique axis of the structure. Notice that [908] and [809] form
and angle of 3.4° with [101] and [101], respectively, which for
practical reasons can be considered the most and least com-
pressible axis. Their compressibilities slightly change to 2.38
(10) 107 GPa™' and 1.08(10) 10~ GPa™", respectively, which
agree within errors with the compressibilities along [908] and
[809].

From the Rietveld refinements of the XRD patterns, we have
obtained the experimental pressure dependence of bond dis-
tances. In Fig. 5 we present the pressure dependence of the
average Sb-O and Yb-O bond distances, the distortion index
(DIndex) of the bonds, and the effective coordination number
(ECN). These parameters were calculated using VESTA*' (defi-
nitions can be found in the VESTA manual). In the figure, it is
observed the change induced by pressure in Sb-O and Yb-O
distances is comparable. Both distances are reduced approxi-
mately a 10% from 0.1 MPa to 20 GPa. Therefore, both the
SbOs and YbOg polyhedra contribute to the volume change
under compression. Indeed, using a 2" order BM EoS a bulk
modulus of 165(6) GPa is determined for YbOg and a bulk
modulus of 162(6) GPa is determined for SbOs. Both bulk
moduli agree within error bars with the experimental bulk
modulus of YbSbO,, 155(6) GPa. This result is unusual for
MTO, bimetal oxides, where usually the polyhedra of the
smaller cation is less compressible than the polyhedra of the
larger cation.! The similar compressibility of both polyhedra
suggest that there could be a charge transfer between Yb®" and
Sb>*, which could be mediated by oxygen atoms.*’ Such
phenomenon has been found before in antimony oxides is
often called “valence skipping”.*” Such phenomenon could
promote Cooper pairing and hence superconductivity, a fact
that deserves to be studied in future experiments combining
low-temperature and high-pressure. We also found that the
SbOs octahedron is basically not distorted by pressure,
because DIndex changes little from 0 to 20 GPa. In contrast,
the distortion of the YbOg polyhedron is reduced as pressure
increases, as shown in Fig. 5. Another difference between the
effect of pressure in both polyhedra is that the ECN is not
affected by pressure for Sb. However, it increases with pressure
for Yb.

This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Pressure dependence of the average bond distances, the distor-
tion index (DIndex), and the effective coordination number (ECN).

We will now compare the behaviour of YbSbO, with other
antimony oxides. YbSbO, has found a large structural stability
as BiSbO,."” Not only that, but their bulk moduli are also
similar, 155(6) GPa in YbSbO, and 149(6) GPa in BiSbO,."”
However, this behaviour contrasts with Sb,0;** and SbPO,.**
Sb,0; undergoes phase transitions at 3.5 and 10 GPa, and it is
highly compressible with a bulk modulus of 20(2) GPa.*?
SbPO, experiences a transition at 9 GPa and is also highly com-
pressible, B, = 36(3).** The notorious difference in the beha-
viours is related to the different activity of the lone-electron
pair (LEP) of Sb. In Sb,05; and SbPO,, Sb atoms are 4-fold co-
ordinated to O in a trigonal-bipyramidal fashion. The distor-
tion of the Sb polyhedron is caused by the strong LEP, which
points to the opposite direction of the base of the pyramid.
This fact favours compressibility and triggers structural
instabilities causing phase transitions at low pressure. In the
case of YbSbO, and BiSbO,, the LEP is not active, and Sb is
6-fold coordinated, resembling the coordination polyhedron of
a platonic octahedron, making the structure extremely stable
and with a compressibility comparable to that of lanthanide
phosphates and smaller than that of vanadates and most
MTO, bimetal oxides.*>*® Given the structural similitudes
between YbSbO, and the rest of lanthanide antimonates, we
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can foresee that all these compounds will have a similar
pressure stability than YbSbO, and similar mechanical
properties.

DFT calculations agree with experiments regarding the
changes induced by pressure in the crystal structure and
confirm the dynamical and mechanical stability of the low-
pressure phase. Table 3 shows the calculated elastic constants.
The obtained constants fulfil the generalized Born criteria,*”
confirming that the structure of YbSbO, is mechanically
stable. From the elastic constants, we have calculated the
elastic moduli within the Hill approximation.*® The obtained
bulk modulus, 148.33 GPa, agrees with the values obtained
from experiments and total-energy calculations. The Young
modulus, E = 124.14 GPa, is comparable to the bulk modulus,
but the shear modulus, G = 45.62 GPa, is considerably smaller.
Thus, elastic constant calculations confirm that YbSbO, is a
non-compressible material with a large tensile (or compres-
sive) stiffness when a force is applied lengthwise. On the other
hand, shear deformations are favoured over volume contrac-
tion, making YbSbO, susceptible to large non-hydrostatic
stresses.” In addition, according to the calculated Vickers
Harness (Hy) and the B/G ratio (>1.75), we can postulate that
YbSbO, is probably a ductile material.>® Notice that according
to our DFT calculations the Poisson ratio is v = 0.361, being
this result consistent with the hypothesis that YbSbO, is a
ductile material. However, this fact needs confirmation from
single crystal measurements.>*

The calculated phonon dispersion and phonon density of
states at different pressures are shown in Fig. 6. The phonon
dispersion shows that there are no imaginary phonon
branches in the pressure range of this study. This supports the
dynamical stability of YbSbO,. We have also calculated the
phonon frequencies and their pressure dependence for
Raman-active and infrared (IR)-active modes. The results are
summarized in Table 4, where they are compared with pre-
vious Raman experiments.'® The agreement for Raman fre-
quencies at ambient pressure is quite good. Therefore, our cal-
culations can be used for mode assignment and for validation
of future HP Raman and IR experiments. Using group theory,

Table 3 Calculated elastic constants C; for YbSbO, at ambient
pressure. The bulk (B), shear (G), and Young (E) moduli, Poisson ratio (n),
B/G ratio, and Hardness (Hy) are also included

Cyj (GPa) Property

Cn 229.01 B (GPa) 148.33
Caa 282.52 G (GPa) 45.62
Css 270.88 E (GPa) 124.14
Cua 89.59 v 0.361
Css 64.26 B/IG 3.251
Ces 7.40 H, (GPa) 3.600
Cra 101.00

Cis 86.98

Cis 18.38

Cos 96.65

Cas 15.71

Css 0.44

Cue —-1.08
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Fig. 6 Phonon dispersion and Phonon Density of States (PDOS) of
YbSbO, at different pressures. (a) 0 GPa, (b) 10.93 GPa, and (c) 20.19 GPa.

the following 72 vibrational modes are predicted at the I" point
of the BZ; I' = 18A, + 18B, + 18A, + 18B,. Among them, A, +
2B, are the acoustic modes. The rest of the modes are all

This journal is © The Royal Society of Chemistry 2023
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pressure coefficients daw/dP (in cm™ GPa™?), and Griineisen parameter y

for YbSbO4 at ambient pressure. Raman results are compared with previous experiments (wexp)18

Raman IR

Mode Dexp @ dw/dP V4 Mode @ dw/dP 4

By 70 68.25 0.893 2.115 Ay 78.56 1.832 3.467
Ay 82 80.66 0.546 1.167 By 117.79 0.722 1.058
Ay 96 97.74 1.267 2.094 B, 129.70 0.933 1.221
By 105 108.01 1.176 1.783 Ay 134.57 —0.390 —-0.490
Ay 113 122.59 1.024 1.405 B, 142.04 2.266 2.511
By 117 123.83 0.901 1.236 Ay 149.71 1.023 1.160
Ay 124 138.90 0.768 0.954 Ay 167.69 0.950 0.974
Ay 130 147.91 0.646 0.759 Ay 197.91 0.960 0.836
By 147 157.75 1.505 1.585 B, 198.15 0.437 0.405
By 161 181.23 2.434 2.157 By 211.99 1.084 0.878
Ay 173 187.84 1.378 1.239 Ay 212.96 0.899 0.733
By 200 222.36 1.089 0.846 By 248.72 0.508 0.362
Ay 229.74 2.067 1.495 Ay 257.66 2.079 1.354
By 242 245.11 2.553 1.714 By 269.17 1.345 0.861
Ay 252 264.90 2.713 1.686 B, 288.01 4.270 2.353
By 272 279.47 2.009 1.216 Ay 294.55 1.577 0.923
Ay 292 315.30 2.130 1.151 Ay 303.46 3.143 1.706
By 312 326.54 2.794 1.432 By 339.58 2.406 1.199
Ay 342.89 2.561 1.258 Ay 384.52 2.353 1.046
Ay 328 349.13 4.035 1.884 Ay 394.83 3.020 1.290
By 336 353.76 3.122 1.471 B, 418.64 2.736 1.118
Ay 357 393.16 4.125 1.726 By 435.69 3.479 1.339
By 385 399.93 2.057 0.886 Ay 442.36 3.942 1.485
By 410 436.36 3.348 1.295 Ay 470.32 3.898 1.391
By 459.81 3.658 1.337 B, 484.69 3.729 1.298
Ay 465 463.74 2.578 0.955 By 532.49 3.087 0.994
Ay 479.39 3.617 1.274 Ay 533.56 3.239 1.039
Ay 501 511.58 3.890 1.283 Ay 597.41 4.154 1.181
By 520.02 3.784 1.234 B, 641.11 4.119 1.097
By 530 535.43 3.227 1.028 Ay 656.05 4.326 1.123
By 557 584.80 4.306 1.246 B, 691.25 3.914 0.973
Ay 570 645.65 4.463 1.174 By 693.28 4.335 1.069
By 658.22 4.259 1.104 Ay 731.58 3.967 0.934
Ay 665 663.16 4.104 1.058

Ay 719 691.90 4.334 1.070

By 746 729.44 4.046 0.954

optical modes. Among them, 36 are Raman-active modes (18A,
+18B,), and 33 are IR-active modes (17A, + 16B,). As shown in
Table 4, one IR A, mode (o = 134.57 cm™') softens with
pressure, while the other IR and Raman modes harden under
compression with pressure coefficients comparable to those of
BiSbO,."” All modes have Griineisen parameters between 0.8
and 1.8 with only few exceptions, like the lowest-frequency
Raman-active B, mode and the lowest-frequency IR-active A,
mode. In addition, there is an IR-active Au mode with a nega-
tive pressure Griineisen parameter. The existence of a mode
that gradually softens under compression suggests that struc-
tural instabilities may arise at pressures higher than covered
by this work.>”

From the phonon density of states (see Fig. 6), we can see
that high-frequency modes correspond to vibrations of oxygen
atoms. In particular, the modes with frequencies higher than
590 cm™' are mainly due to internal stretching vibrations of
the SbOg octahedron. The modes with frequencies between
430 and 560 cm™" are associated to bending vibrations of the
same octahedron. The rest of the modes correspond to

This journal is © The Royal Society of Chemistry 2023

vibrations involving Yb atoms and SbOg octahedra movements
as rigid units.

4. Conclusions

By means of high-pressure X-ray diffraction experiments and
density functional theory calculations we have found that,
similarly to BiSbO,, YbSbO, does not undergo any phase tran-
sition in the pressure range covered by this study. This behav-
iour is very different from that of other antimony oxides which
undergo phase transition below 10 GPa. The difference in the
high-pressure behaviour is related to the inactive lone electron
pair in YbSbO,. It has also been found that YbSbO, is among
the least compressible MTO, bimetallic oxides, which could be
probably related to a charge transfer between cations.
Calculations also provide information on the elastic constants,
phonon frequencies and their pressure dependence, which
could be relevant for applications of YbSbO,. The possibility of

Dalton Trans., 2023, 52,14517-14526 | 14523
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the occurrence of charge transfer between cations is also
discussed.
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