

Cite this: *Dalton Trans.*, 2023, **52**, 3786

Received 10th January 2023,
Accepted 23rd February 2023

DOI: 10.1039/d3dt00091e

rsc.li/dalton

Synthesis of mono-, di- and tripalladated 1,3,5-benzenetristyryl complexes. CO insertion to give a dipalladated indenone[†]

Rashmi V. Shenoy,^a Peter G. Jones,^b José Vicente^a and Eloísa Martínez-Viviente^{ID, *a}

The tribrominated arenes 1,3,5-C₆(E-CH=CHAR)₃Br₃ (Ar = Ph, (**I**), *p*-To (**I'**)), add oxidatively to [Pd(dba)₂] ([Pd₂(dba)₃]-dba) in the presence of two equivalents of a phosphine (PPh₃ or PMe₂Ph) to form the mono-palladated complexes *trans*-[Pd{C₆(E-CH=CHAR)₃Br₂}Br(L)₂] (Ar = Ph, L = PPh₃ (**1a**), Ar = *p*-To, L = PPh₃ (**1a'**), Ar = Ph, L = PMe₂Ph (**1b**)), while the reaction in a 1:2:4 arene : Pd : PMe₂Ph molar ratio affords the dipalladated complex [{*trans*-PdBr(PMe₂Ph)₂}₂(μ₂-C₆(E-CH=CHPh)₃Br)] (**2b**). Both **I** and **I'** add oxidatively to 3 equivalents of [Pd(dba)₂] in the presence of the chelating N-donor ligand tmeda (*N,N,N',N'*-tetramethylethylenediamine) to form the tripalladated complexes [{PdBr(tmeda)}₃(μ₃-C₆(E-CH=CHAR)₃)] (Ar = Ph, (**3c**), *p*-To (**3c'**)). Complex **3c** reacts with PMe₃ to form [{*trans*-PdBr(PMe₃)₂}₃(μ₃-C₆(E-CH=CHPh)₃)] (**3d**). Compound **3c** also reacts with CO to give the novel dipalladated indenone [2-Ph-4,6-{PdBr(tmeda)}₂-5,7-(E-CH=CHPh)₂-inden-1-one] (**4**). The crystal structures of **1a'** and **1b** were determined by X-ray diffraction studies.

Introduction

Arylpalladium complexes continue to be a subject of great interest because they are involved in many palladium-catalysed carbon–carbon and carbon–heteroatom bond-forming reactions.^{1–17} Consequently, there are many publications related to their synthesis, characterization, and reactivity.^{18–36} In particular, the presence of organic substituents *ortho* to the Pd atom has been shown to provide a very rich and varied chemistry, because they frequently participate in the reactivity of these complexes, resulting in interesting new structures and the formation of novel and potentially useful organic compounds.^{20–29,33,34,37,38} Some time ago, we started to explore the possibility of extending this chemistry to di^{25,26} and tripalladated^{39–41} benzene derivatives, *ortho*-substituted at each Pd(II) centre. Thus, in 2001 some of us reported the first tripalladated benzene derivative, resulting from the 3-fold oxi-

dative addition of 1,3,5-triiodomesitylene to 3 equivalents of [Pd(dba)₂].³⁹ This complex was shown to act as a metallaligand towards Tl(I) (Scheme 1).⁴¹ We later reported tripalladated derivatives of 1,3,5-triformylbenzene.⁴⁰ Since then, there have been (to the best of our knowledge) no further reports in this area, despite the structural and chemical interest of these complexes. In fact, most of the reports involving polymetalated derivatives of benzene with general formula C₆R_{6–n}M_n (*n* = 3–6) involve main-group elements, mainly Hg,^{42–46} Li,^{44,46–49} Mg,⁴⁴ Ge,^{50,51} and Sn.^{44,46,52–56} There are also reports of transition metal derivatives, which mostly involve metal clusters with face-capping arene ligands coordinated to three metal atoms, such as Co,⁵⁷ Ru,^{58,59} Rh,^{60,61} and Os.^{58,61–63} Murahashi and co-workers have reported several sandwich-type complexes with Pd₃ to Pd₅ clusters bridging two hydrocarbon rings.^{64–68} However, for σ-bonded polymetalated derivatives of benzene, the only examples with Pd are those reported by our group,^{39–41} plus the 3-fold cyclopalladation of a 1,3,5-

^aGrupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30071 Murcia, Spain. E-mail: jvs1@um.es, eloisamv@um.es

^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
E-mail: p.jones@tu-braunschweig.de

[†]Electronic supplementary information (ESI) available: NMR data for complexes **1–4** and arenes **I**, **I'** (table, comments and spectra), X-ray crystallographic data, structure refinements and CIF files for complexes **1a'** and **1b**. CCDC 2195995 and 2195996. For ESI and crystallographic data in CIF or other electronic format see DOI: <https://doi.org/10.1039/d3dt00091e>

Scheme 1 The first tripalladated benzene derivative, acting as a metallaligand towards Tl(I).

tris(di-2-pyridylamino)benzene ring.⁶⁹ There is also a report of a tripalladated arylamine and a tetrapalladated pyrene, obtained by mechanochemical solvent-free oxidative addition of aryl halides to a Pd(0) complex.⁷⁰ Regarding other transition metals, only one trimetalated benzene with Mn, 1,3,5-C₆H₃[Mn(CO)₅]₃,⁷¹⁻⁷³ and two further examples with Fe, 1,3,5-C₆H₃[Fe(*n*⁵-Cp)(CO)₂]₃,⁷¹⁻⁷⁴ and 1,3,5-C₆H₃[Fe(*n*⁵-C₅H₄Me)(CO)₂]₃,⁷⁵ have been reported so far.

In view of the lack of progress in this area, we have resumed our research³⁹⁻⁴¹ on polypalladated benzene derivatives and now report the synthesis of mono-, di- and tripalladated 1,3,5-benzenetristyryl complexes, a set of compounds with a great potential as a branch point in the area of metalladendrimer chemistry.⁷⁶ Their chemistry towards unsaturated molecules is also potentially promising, as it could lead to the Pd-mediated synthesis of organic polycyclic compounds. We have started to investigate this chemistry, and we report here the formation of a novel dipalladated indenone, as a result of a CO insertion into one of the aryl-Pd bonds, followed by a depalladation reaction.

Results and discussion

Synthesis of the complexes

For the synthesis of the new 1,3,5-benzenetristyryl Pd(II) complexes, we have used oxidative addition reactions of the starting tribrominated arenes 1,3,5-C₆(E-CH=CHAr)₃Br₃ (Ar = Ph, (I), *p*-tolyl (I')), to 1, 2 or 3 equivalents of [Pd(dba)₂] ([Pd₂(dba)₃]-dba),^{77,78} in the presence of phosphine ligands (PPh₃ or PMe₂Ph, Scheme 2) or a chelating N-donor ligand (tmada = *N,N,N',N'*-tetramethylethylenediamine, Scheme 3).¹⁹

Reaction with phosphines. 2,4,6-Tribromo-1,3,5-tris(*E*-styryl)benzene (1,3,5-C₆(E-CH=CHPh)₃Br₃, I, Scheme 2) adds oxidatively to one equivalent of [Pd(dba)₂] in the presence of two equivalents of phosphine (PPh₃ or PMe₂Ph) to form *trans*-[Pd{C₆(E-CH=CHPh)₃Br₂}Br(L)₂] (L = PPh₃ (**1a**), PMe₂Ph (**1b**)). Similar reactions with a 1:2:4 arene:Pd:phosphine molar

Scheme 2 Oxidative addition reactions of I, I' to [Pd(dba)₂] in the presence of phosphines, to form mono- (**1a**, **1a'**, **1b**) and dipalladated (**2b**) complexes.

Scheme 3 Oxidative addition reactions of I, I' to [Pd(dba)₂] in the presence of tmada, to form the tripalladated complexes **3c**, **3c'**.

ratio only afford a dipalladated complex, [{*trans*-PdBr(PMe₂Ph)₂}₂{μ₂-C₆(E-CH=CHPh)₃Br}] (**2b**), with PMe₂Ph, as the reaction with PPh₃ again gives complex **1a**. Our previous work had shown that the trihaloarenes 1,3,5-C₆Me₃I₃³⁹ and 1,3,5-C₆(CHO)₃Br₃⁴⁰ also form dipalladated Pd(II) complexes only with the more basic and less sterically demanding phosphine PMe₂Ph, and not with PPh₃, so this seems to be a general trend. Also similarly to those arenes,^{39,40} the 3-fold oxidative addition of I to [Pd(dba)₂] in the presence of any of the phosphine ligands (PPh₃, PMe₂Ph, or PMe₃) was unsuccessful. The related arene 1,3,5-C₆(E-CH=CHTo)₃Br₃ (To = *p*-tolyl, I') reacts with [Pd(dba)₂] and PPh₃ in a 1:1:2 ratio to give a monopalladated complex **1a'** (Scheme 2), which was characterized by X-ray crystallography, as was **1b** (Fig. 1 and 2). Oxidative addition reactions of I' in the presence of PMe₂Ph or PMe₃ were not investigated.

Reactions with tmada. The arene I reacts with [Pd(dba)₂] and the chelating N-donor ligand tmada to form the tripalladated complex [{PdBr(tmada)}₃{μ₃-C₆(E-CH=CHPh)₃}] (**3c**,

Fig. 1 Thermal ellipsoid plot (50% probability level) of **1b**. Selected bond lengths (Å) and angles (°): Pd(1)-C(1) = 2.010(3), Pd-P(1) = 2.3138(9), Pd(1)-P(2) = 2.3116(9), Pd(1)-Br(1) = 2.5180(4), Br(2)-C(3) = 1.916(3), Br(2)-C(5) = 1.916(3), C(1)-Pd(1)-P(1) = 89.85(8), C(1)-Pd(1)-P(2) = 90.17(8), P(2)-Pd(1)-P(1) = 177.54(3), C(1)-Pd(1)-Br(1) = 177.05(9), P(1)-Pd(1)-Br(1) = 90.00(2), P(2)-Pd(1)-Br(1) = 90.10(2).

Fig. 2 Thermal ellipsoid plot (30% probability level) of **1a'**. Selected bond lengths (Å) and angles (°): Pd(1)–C(1) = 2.022(2), Pd–P(1) = 2.3334(6), Pd(1)–P(2) = 2.3680(6), Pd(1)–Br(1) = 2.5201(3), Br(2)–C(3) = 1.915(2), Br(2)–C(5) = 1.919(2), C(1)–Pd(1)–P(1) = 87.39(6), C(1)–Pd(1)–P(2) = 91.05(6), P(1)–Pd(1)–P(2) = 174.70(2), C(1)–Pd(1)–Br(1) = 176.24(6), P(1)–Pd(1)–Br(1) = 88.987(18), P(2)–Pd(1)–Br(1) = 92.648(18).

Scheme 3), even if substoichiometric amounts of Pd and tmada are used (1:1:1 or 1:2:2 arene:Pd:tmada ratio, instead of the required 1:3:3 ratio, which, nonetheless, results in a cleaner reaction). A similar tripalladated complex, $[\text{PdBr(tmada)}]_3\{\mu_3\text{-C}_6(\text{E-CH=CHTo})_3\}$ (**3c'**), can be isolated from the reaction of $1,3,5\text{-C}_6(\text{E-CH=CHTo})_3\text{Br}_3$ (**I'**) with $[\text{Pd}(\text{dba})_2]$ and tmada, although **3c'** forms alongside minor amounts of another complex, presumably a lower nuclearity analogue. Curiously, we have found that a substoichiometric arene:Pd:tmada ratio (such as 1:2:2) increases the yield of **3c'**, which was purified by TLC (see Experimental). Our previous work^{39,40} had shown that similar reactions with the arene $1,3,5\text{-C}_6\text{Me}_3\text{I}_3$ ³⁹ also afforded tripalladated complexes $[\text{Pd}(\text{N}^{\text{N}}\text{N})_3\{\mu_3\text{-C}_6\text{Me}_3\}]$ ($\text{N}^{\text{N}}\text{N}$ = bpy, tbpbpy), even with substoichiometric arene:Pd:N^NN ratios, while the oxidative addition of $1,3,5\text{-C}_6(\text{CHO})_3\text{Br}_3$ ⁴⁰ to $[\text{Pd}(\text{dba})_2]$ in the presence of N^NN ligands afforded mixtures of mono-, di- or tripalladated complexes (depending on the stoichiometric reactant ratio), from which the separate complexes could be isolated and characterized (with N^NN = bpy the solubility was very low, and only a monopalladated complex was isolated, while with N^NN = tmada and tbpbpy the mono-, di- and tripalladated complexes could be separated by TLC and fully characterized). Clearly, the strong electron-withdrawing character of the formyl groups in $1,3,5\text{-C}_6(\text{CHO})_3\text{Br}_3$ did not favour the successive oxidative additions,⁴⁰ allowing a certain degree of selectivity in the palladation of the arene, in contrast to $1,3,5\text{-C}_6\text{Me}_3\text{I}_3$,³⁹ and the arenes **I** and **I'** described here.

Reactions of **I** and **I'** with $[\text{Pd}(\text{dba})_2]$ in the presence of other chelating N^NN ligands such as tbpbpy (4,4'-di-*tert*-butyl-2,2'-bipyridine) or bpy (2,2'-bipyridine), or a chelating phosphine ligand, dppe, resulted in mixtures of compounds, which could not be characterized.

Reactions with complex 3c. The tripalladated complex $[\text{PdBr(tmada)}]_3\{\mu_3\text{-C}_6(\text{E-CH=CHPh})_3\}$ (**3c**) reacts with excess PMe_3 (1:12 ratio) at 50 °C to form $[\text{trans-PdBr}(\text{PMe}_3)_2]_3\{\mu_3\text{-C}_6(\text{E-CH=CHPh})_3\}$ (**3d**, Scheme 4), which could not be pre-

Scheme 4 Ligand displacement reaction on **3c**.

pared by direct oxidative addition (see above). This reactivity is also consistent with previous observations,^{39,40} showing that the failure to obtain tripalladated complexes by oxidative addition in the presence of PMe_3 is probably the result of kinetic, and not thermodynamic, effects. A similar ligand displacement reaction with **3c'** was not pursued.

We have started to explore the reactivity of **3c** towards unsaturated organic molecules, which could potentially insert into the C–Pd bonds, resulting in novel polynuclear complexes or polycyclic organic compounds (see the Introduction). Frequently, this reactivity is promoted by TiOTf, but when **3c** was reacted with alkynes ($\text{RC}\equiv\text{CR}$, R = Me, Ph, COOMe) in the presence of TiOTf, the product was the same as in the reaction with TiOTf alone, and was presumably a complex between **3c** and TiOTf, similar to that shown in Scheme 1 (Introduction),⁴¹ but which we have not been able to characterize fully. Reactions of **3c** with alkynes in the absence of TiOTf yielded only the starting material, and the use of AgClO_4 instead of TiOTf resulted in mixtures of compounds, which could not be characterized. Reactions of **3c** with XyNC also failed to yield a major characterizable product, but when **3c** was reacted with CO, the dipalladated indenone, $[\text{2-Ph-4,6-}\{\text{PdBr(tmada)}\}_2\text{-5,7-}(\text{E-CH=CHPh})_2\text{-inden-1-one}]$ (**4**, Scheme 5), formed as a major product, which was purified from the minor impurities by preparative TLC and isolated with a very good yield (76%). Complex **4** is the result of the insertion of CO into only one of the three aryl-Pd(II) bonds in **3c**, followed by depalladation in that position, and has been fully characterized by NMR. No further CO insertions into the two remaining aryl-Pd(II) bonds (to form a *C*3-symmetric tri-indenone derivative) were achieved, even if the reaction was carried out in excess CO and

Scheme 5 CO insertion in **3c** to form the dipalladated indenone **4**.

heating at 60 °C (see Experimental). Attempts to further react **4**, once isolated, with CO have also been unsuccessful. Thus, the formation of the first indenone ring seems to deactivate the complex towards successive insertions. Although the palladium-catalyzed synthesis of indenones by annulation of alkynes and CO with *ortho*-functionalized arenes has been described before,^{79–82} in those reports the intermediate *ortho*-alkenylarylpalladium complexes were not isolated. Moreover, this is the first time that such a CO insertion reaction is carried out in a polypalladated complex, thus affording a dipalladated indenone, a type of dinuclear Pd(II) complex that has not been described before. The reactivity of the PMe₃ complex **3d** towards CO was not similar to that of **3c** and provided no clean result. Complex **3c'** was not considered a suitable starting material for this research, because of the difficulties related to its purification (see above). The reactivity of the mono- and dipalladated complexes **1a**, **1a'**, **1b** and **2b** towards unsaturated molecules has not been investigated so far.

Structure of the complexes

The ¹H, ¹³C and ³¹P NMR data of complexes **1–4** agree with the structures proposed in Scheme 2–5 (see Table 1 in the ESI† for a comparative assignment). The 16 Hz value for the ³J_{HH} coupling constant between the alkenyl protons confirms the *E* geometry for all the complexes. The tripalladated complexes **3c** and **3c'** show a 1 : 2 pattern for all the NMR resonances, as one of the [PdBr(N⁺N)] groups is oriented in the opposite direction to the other two with respect to the aryl plane (the rotation around the Pd–C bonds is hindered). The mono- (**1a**, **1a'**, **1b**) and dipalladated (**2b**) phosphine complexes also show a 1 : 2 pattern in the ¹H and ¹³C-NMR spectra, as a result of the substitution pattern around the aryl ring. In contrast, the tripalladated PMe₃ complex **3d** shows a single set of resonances, both in the ¹H and in the ¹³C spectra, as this molecule has a 3-fold axis perpendicular to the aryl plane.

The phosphine complexes, **1a**, **1a'**, **1b**, **2b** and **3d**, have an all-*trans* geometry and thus they have a symmetry plane in the aryl ring and show a single ³¹P resonance. As usual, the ³¹P chemical shift decreases in the order PPh₃ (δ ca. 21 ppm for **1a**, **a'**) > PMe₂Ph (δ –9.9 ppm for **1b** and –12.4 ppm for **2b**) > PMe₃ (δ –19.2 ppm for **3d**).^{39,40}

The ¹³C NMR resonances of complexes **1–4** were fully assigned with the help of 2D NMR experiments (see Table 1 in the ESI†). The highest chemical shifts correspond to the aryl carbon atoms directly bonded to Pd: ca. 152 ppm for the tmeda complexes and slightly higher (161–165 ppm) for the phosphine complexes, as is usual.^{19,40,83} The aryl carbon atoms bonded to the alkenyl substituents appear in the range 136–146 ppm, similar to the starting arenes **I**, **I'** (139.6 ppm), with the highest chemical shifts when this carbon is *ortho* to two [PdBrL₂] moieties (L = phosphine, complexes **2b** and **3d**). The C–Br carbon atoms resonate at lower frequencies, 122–126 ppm (similar to 124 ppm in **I**, **I'**). See the ESI† for a more detailed discussion of the NMR data.

The crystal and molecular structures of the monopalladated complexes **1a'** (Fig. 1) and **1b** (Fig. 2) were determined by X-ray

diffraction studies (Table 1 in ESI†). The structures show somewhat distorted square planar coordination around the Pd atoms. R.m.s. deviations from the best plane through Pd and the four donor atoms are 0.056 Å for complex **1a'** and 0.021 Å for **1b**. The Pd–C bond distances are 2.022(2) Å for **1a'** and 2.010(3) Å for **1b**, similar to the value found for the related complex *trans*-[Pd(C₆(CHO)₃Br₂)Br(PPh₃)₂] (2.0163(15) Å).⁴⁰ The Pd–P (2.3426(4) Å and 2.3279(4) Å) distances in that complex⁴⁰ are also similar to those found in **1a'** (2.3334(6) Å, 2.3680(6) Å) and **1b** (2.3138(9) Å, 2.3116(9) Å). In contrast, the Pd–Br distance, 2.4865(2) Å,⁴⁰ is slightly shorter than in **1a'** (2.5201(3) Å) and **1b** (2.5180(4) Å), an indication that the 1,3,5-benzenetrityl ring has a larger *trans* influence than the 1,3,5-benzenetricarboxaldehyde. The styryl substituents of the central aromatic ring C1–6 of the tritylbenzene moieties are differently disposed in the two structures; for **1a'** all the styryl double bonds point to the same side of the ring, whereas for **1b**, C₇=C₈ and C₉=C₁₀ point in the opposite direction to C₁₁=C₁₂ [cf. (a) torsion angles C1–C₂–C₇–C₈, C₃–C₄–C₉–C₁₀ and C₅–C₆–C₁₁–C₁₂, which are 51.5, 61.9 and 48.7° for **1a'**, but 29.8, 91.9 and –156.3° for **1b** and (b) interplanar angles to the central ring: C₄₁–C₄₆ 72°, C₅₁–C₅₆ 29°, C₆₁–C₆₆ 79° for **1a'** but 3°, 84°, 9° for **1b**]. The bromine atom Br₁ of **1b** lies appreciably outside the ring plane (by 0.36 Å, in the opposite direction to the styryl groups).

Experimental

The starting arenes, *trans*-1,3,5-C₆(E-CH=CHAR)₃Br₃, (Ar = Ph, **I**, *p*-Tol (**I'**)) were prepared by a 3-fold HWE (Horner-Wadsworth-Emmons) reaction on the phosphonate 2,4,6-tribromo-1,3,5-tris(diethoxyphosphorylmethyl)benzene,⁸⁴ which, in turn, was prepared from 1,3,5-tribromo-2,4,6-tris(hydroxymethyl)benzene⁸⁵ by reaction with P(OEt)₃. See ESI† for a depiction of the synthetic route. The conditions for the HWE were analogous to those described in the literature for related, non-brominated aromatic phosphonates.⁸⁶

Nuclear magnetic resonance (NMR) spectra (¹H, ¹³C and ³¹P) were recorded on 400 MHz and 600 MHz Bruker Avance spectrometers at room temperature. Chemical shifts are given in ppm (δ) relative to TMS (¹H, ¹³C) or H₃PO₄ (³¹P). Infrared spectra were recorded on a PerkinElmer 16F-PC-FT spectrometer with Nujol mulls between polyethylene sheets. Melting points were determined on a Reichert apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. All experiments were conducted under N₂ atmosphere using Schlenk techniques. CH₂Cl₂ was distilled before use. “[Pd(dba)₂]^{77,78} was prepared according to literature procedures. Tmeda (Fluka), bpy (Fluka), PPh₃ (Fluka), PMe₂Ph (Aldrich) and PMe₃ (Aldrich) were used as received.

Synthesis of *trans*-1,3,5-C₆(E-CH=CHPh)₃Br₃ (**I**)

2,4,6-Tribromo-1,3,5-tris(diethoxyphosphorylmethyl)benzene (1.53 g, 2.00 mmol) and benzaldehyde (0.61 mL, 6.00 mmol)

were mixed in THF (20 mL) under N_2 . KO^tBu (673 mg, 6.00 mmol) was added in small portions and the mixture was stirred for 3 h at RT. On hydrolysis with water (70 mL) a thick white precipitate formed, and the suspension was further stirred for 30 min. After centrifugation the precipitate was separated by decantation and washed with water (2×50 mL) and EtOH (2×5 mL). Finally, filtration yielded 2,4,6-tribromo-1,3,5-tristyrylbenzene as colourless feathery crystals. Yield: 1.12 g (90%). Mp: 226–228 °C. IR: no relevant signals. 1H NMR (400 MHz, $CDCl_3$): δ 7.56 (d, 6H, o -H Ph, $^3J_{HH} = 7$ Hz), 7.40 (t, 6H, m -H Ph, $^3J_{HH} = 8$ Hz), 7.32 (t, 3H, p -H Ph, $^3J_{HH} = 8$ Hz), 7.00 (AB, 3H, α -CH, $^3J_{HH} = 16$ Hz), 6.79 (AB, 3H, β -CH, $^3J_{HH} = 16$ Hz). $^{13}C\{^1H\}$ NMR (75.5 MHz, $CDCl_3$): δ 139.6 (3C, C-alkenyl), 136.8 (3C, β -CH=), 136.5 (3C, i -C Ph), 129.0 (6C, m -CH Ph), 128.63 and 128.59 (3C each, α -CH= and p -CH Ph), 127.0 (6C, o -CH Ph), 124.1 (3C, C-Br). Anal. Calcd for $C_{30}H_{21}Br_3$: C, 58.00; H, 3.41. Found: C, 57.81; H, 3.35.

Synthesis of *trans*-1,3,5-C₆(E -CH=CH(*p*-Tol))₃Br₃ (I')

2,4,6-Tribromo-1,3,5-tris(diethoxyphosphorylmethyl)benzene (3.62 g, 4.73 mmol) and *p*-tolylaldehyde (1.69, 14.2 mmol) were mixed in THF (60 mL) under N_2 . KO^tBu (1.59 g, 14.2 mmol) was added in small portions and the mixture was stirred for 6 h at RT. On hydrolysis with water (200 mL) a thick white precipitate formed, and the suspension was further stirred for 30 min. After centrifugation the precipitate was separated by decantation and washed with water (2×50 mL) and EtOH (2×5 mL). Finally, filtration yielded 2,4,6-tribromo-1,3,5-tris-(*E*-2-(*p*-tolyl)ethenyl)benzene as an off-white solid. Yield: 1.75 g (56%). Mp: 185–187 °C. IR: no relevant signals. 1H NMR (600 MHz, $CDCl_3$): δ 7.43 (AA'BB', 6H, o -H Tol, $^3J_{HH} = 8$ Hz), 7.17 (AA'BB', 6H, m -H Tol, $^3J_{HH} = 8$ Hz), 6.93 (AB, 3H, α -CH, $^3J_{HH} = 16$ Hz), 6.75 (AB, 3H, β -CH, $^3J_{HH} = 16$ Hz), 2.36 (s, 9H, CH_3). $^{13}C\{^1H\}$ NMR (150.9 MHz, $CDCl_3$): δ 139.6 (3C, C-alkenyl), 138.5 (3C, *p*-C Tol), 136.7 (3C, β -CH=), 133.8 (3C, i -C Tol), 129.6 (6C, m -CH Tol), 127.8 (3C, α -CH=), 126.9 (6C, o -CH Tol), 124.0 (3C, C-Br), 21.5 (3C, Me). Anal. Calcd for $C_{33}H_{27}Br_3$: C, 59.76; H, 4.10. Found: C, 59.77; H, 3.94.

Synthesis of *trans*-[Pd{C₆(E -CH=CHPh)₃Br₂}Br(PPh₃)₂] (1a)

[Pd(dba)₂] (277 mg, 0.48 mmol), PPh₃ (252 mg, 0.96 mmol) and C₆(E -CH=CHPh)₃Br₃ (300 mg, 0.48 mmol) were mixed under N_2 atmosphere in dry degassed toluene (20 mL). The mixture was stirred at 50 °C for 5 h until the dark red colour of [Pd(dba)₂] was no longer observed. The brownish suspension was then evaporated to dryness and the residue was extracted with CH_2Cl_2 (20 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (20 mL) was added and a solid formed, which was filtered off, thoroughly washed with Et₂O and dried *in vacuo* to give 1a as a pale yellow solid. Yield: 278 mg (46%). Mp: 223–225 °C (dec). IR: no relevant signals. 1H NMR (600 MHz, $CDCl_3$): δ 7.53 (d, 2H, o -H Ph, $^3J_{HH} = 8$ Hz), 7.40–7.26 (several m, 9H, m , p -H), 7.40–7.26 (very broad, 18H, o , p -H PPh₃), 7.24 (AB, 2H, α -CH=, $^3J_{HH} = 16$ Hz), 7.19 (d, 4H, o -H Ph, $^3J_{HH} = 8$ Hz), 7.13 (very broad, 12H, m -H PPh₃), 6.77 (AB, 1H, α -CH=, $^3J_{HH} = 16$ Hz),

6.59 (AB, 2H, β -CH=, $^3J_{HH} = 16$ Hz), 6.47 (AB, 1H, β -CH=, $^3J_{HH} = 16$ Hz). $^{13}C\{^1H\}$ NMR (150.9 MHz, $CDCl_3$): δ 165.4 (m, 1C, C1-Pd), 140.4 (t, 2C, C2-alkenyl, $^3J_{PC} = 3$ Hz), 137.5 (s, 2C, i -C To), 137.2 (s, 1C, i -C To), 136.1 (t, 1C, C4-alkenyl, $^5J_{PC} = 1$ Hz), 135.1 (s, 1C, β -CH=), 134.3 (s, 2C, β -CH=), 131.2 (t, 2C, α -CH=, $^4J_{PC} = 2$ Hz), 130.9 (vt, 6C, i -C PPh₃, $^1J_{PC} + ^3J_{PC} = 46$ Hz), 130.6 (s, 1C, α -CH=), 130.7 (very broad, 12C, o -CH PPh₃), 128.9 (s, 2C, m -CH To), 128.8 (s, 4C, m -CH To), 128.0 (s, 1C, p -CH To), 128.0 (very broad, 12C, m -CH PPh₃), 127.9 (s, 2C, p -CH To), 127.0 (s, 4C, o -CH To), 126.7 (s, 2C, o -CH To), 122.3 (s, 2C, C3-Br) (resonance for p -CH PPh₃ not observed). $^{31}P\{^1H\}$ NMR (161.9 MHz, $CDCl_3$): δ 20.7 (s). Anal. Calcd for C₆₆H₅₁Br₃Pd: C, 63.31; H, 4.11. Found: C, 63.48; H, 4.49.

Synthesis of *trans*-[Pd{C₆(E -CH=CHTo)₃Br₂}Br(PPh₃)₂] (1a')

[Pd(dba)₂] (132 mg, 0.23 mmol), PPh₃ (121 mg, 0.46 mmol) and C₆(E -CH=CHTo)₃Br₃ (150 mg, 0.23 mmol) were mixed under N_2 atmosphere in dry degassed toluene (15 mL). The mixture was heated at 60 °C for 3.5 h until the dark red colour of [Pd(dba)₂] was no longer observed. The brownish suspension was then evaporated to dryness and the residue was extracted with CH_2Cl_2 (20 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. A mixture of Et₂O (5 mL) and hexane (15 mL) was added and a solid formed, which was filtered off, washed with boiling hexane (2×10 mL) and dried *in vacuo* to give 1a' as a pale yellow solid. Yield: 101 mg, 34%. Single crystals of 1a' were obtained by slow diffusion of hexane into an Et₂O solution of 1a'. Yield: 77 mg, 26% Mp: 248–250 °C. IR: no relevant signals. 1H NMR (400 MHz, $CDCl_3$): δ 7.7–7.0 (very broad, 30H, PPh₃), 7.43–7.07 (several m, 14H, o , m -H Ph, α -CH=), 6.72 (AB, 1H, α -CH=, $^3J_{HH} = 16$ Hz), 6.54 (AB, 2H, β -CH=, $^3J_{HH} = 16$ Hz), 6.42 (AB, 1H, β -CH=, $^3J_{HH} = 16$ Hz), 2.46 (s, 6H, Me To), 2.37 (s, 3H, Me To). $^{13}C\{^1H\}$ NMR (100.8 MHz, $CDCl_3$): δ 164.9 (m, 1C, C1-Pd), 140.4 (t, 2C, C2-alkenyl, $^3J_{PC} = 3$ Hz), 137.9 (s, 1C, p -C Ph), 137.7 (s, 2C, p -C Ph), 136.2 (t, 1C, C4-alkenyl, $^3J_{PC} = 1$ Hz), 134.9 (s, 1C, β -CH=), 134.7 (s, 2C, i -C Ph), 134.4 (s, 1C, i -C Ph), 134.2 (s, 2C, β -CH=), 131.0 (vt, 6C, i -C PPh₃, $^1J_{PC} + ^3J_{PC} = 46$ Hz), 130.3 (very broad, 12C, o -CH PPh₃), 130.2 (t, 2C, α -CH=, $^3J_{PC} = 2$ Hz), 129.7 (s, 1C, α -CH=), 129.5 (s, 2C, m -CH Ph), 129.4 (s, 4C, m -CH Ph), 127.9 (very broad, 12C, m -CH PPh₃), 127.0 (s, 4C, o -CH Ph), 126.6 (s, 2C, o -CH Ph), 122.2 (s, 2C, C3-Br), 21.6 (s, 2C, Me To), 21.5 (s, 1C, Me To). $^{31}P\{^1H\}$ NMR (161.9 MHz, $CDCl_3$): δ 20.7 (s). Anal. Calcd for C₆₉H₅₇Br₃Pd: C, 64.03; H, 4.44. Found: C, 64.04; H, 4.20.

Synthesis of *trans*-[Pd{C₆(E -CH=CHPh)₃Br₂}Br(PMe₂Ph)₂] (1b)

[Pd(dba)₂] (92 mg, 0.16 mmol), PMe₂Ph (45 μ L, 0.32 mmol) and C₆(E -CH=CHPh)₃Br₃ (99 mg, 0.16 mmol) were mixed under N_2 atmosphere in dry degassed toluene (20 mL). The mixture was stirred at 50 °C for 16 h until the dark red colour of [Pd(dba)₂] was no longer observed. The brownish suspension was then evaporated to dryness and the residue was extracted with CH_2Cl_2 (20 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (10 mL) was added and a clear solution was

obtained, to which cold hexane (10 mL) was added. A solid formed, which was filtered off, washed with a small amount of cold Et₂O (2 mL) and dried *in vacuo* to give **1b** as a beige solid. Single crystals of **1b** were grown by slow diffusion of hexane into an Et₂O solution of **1b**. Yield: 69 mg (43%). Mp: 220–222 °C. IR: no relevant signals. ¹H NMR (600 MHz, CDCl₃): δ 8.13 (AB, 2H, β-CH=, ³J_{HH} = 16 Hz), 7.55 (d, 2H, o-H Ph, ³J_{HH} = 7 Hz), 7.46 (AB, 2H, α-CH=, ³J_{HH} = 16 Hz), 7.43–7.38 (m, 6H, o,m-H Ph), 7.35 (t, 4H, m-H Ph), 7.33–7.26 (m, 7H, o-H PPh + p-H Ph), 7.21 (t, 2H, p-H PPh, ³J_{HH} = 7 Hz), 7.13 (t, 4H, m-H PPh, ³J_{HH} = 7 Hz), 6.87 (AB, 1H, α-CH=, ³J_{HH} = 16 Hz), 6.54 (AB, 1H, β-CH=, ³J_{HH} = 16 Hz), 1.61 (vt, 12H, PMe, ²J_{PH} + ⁴J_{PH} = 7 Hz). ¹³C{¹H} NMR (150.9 MHz, CDCl₃): δ 161.8 (t, 1C, C1-Pd, ²J_{PC} = 2 Hz), 139.8 (t, 2C, C2-alkenyl, ³J_{PC} = 2 Hz), 137.4 (s, 2C, i-C Ph), 137.1 (s, 1C, i-C Ph), 135.6 (t, 1C, C4-alkenyl, ⁵J_{PC} = 1 Hz), 135.5 (s, 1C, β-CH=), 133.8 (vt, 2C, i-C PMe₂Ph, ¹J_{PC} + ³J_{PC} = 45 Hz), 132.7 (t, 2C, α-CH=, ⁴J_{PC} = 1 Hz), 131.8 (t, 2C, β-CH=, ⁵J_{PC} = 2 Hz), 130.5 (vt, 4C, o-CH PMe₂Ph, ²J_{PC} + ⁴J_{PC} = 10 Hz), 130.2 (s, 1C, α-CH=), 129.6 (s, 2C, p-CH PMe₂Ph), 129.1 (s, 4C, m-CH Ph), 128.9 (s, 2C, m-CH Ph), 128.1 (s, 1C, p-CH Ph), 128.02 (s, 2C, p-CH Ph), 127.99 (vt, 4C, m-CH PMe₂Ph, ³J_{PC} + ⁵J_{PC} = 9 Hz), 126.8 (s, 4C, o-CH Ph), 126.7 (s, 2C, o-CH Ph), 123.7 (s, 2C, C3-Br), 14.0 (vt, 4C, PMe, ¹J_{PC} + ³J_{PC} = 31 Hz). ³¹P{¹H} NMR (161.9 MHz, CDCl₃): δ −9.9 (s). Anal. Calcd for C₄₆H₄₃Br₃P₂Pd: C, 55.03; H, 4.32. Found: C, 54.67; H, 4.43.

Synthesis of [{trans-PdBr(PMe₂Ph)₂}_2{μ₂-C₆(E-CH=CHPh)₃Br}] (2b)

[Pd(dba)₂] (737 mg, 1.28 mmol), PMe₂Ph (364 μL, 2.56 mmol) and C₆(E-CH=CHPh)₃Br₃ (398 mg, 0.64 mmol) were mixed under N₂ atmosphere in dry degassed toluene (20 mL). The mixture was heated at 50 °C for 16 h until the dark red colour of [Pd(dba)₂] was no longer observed. The brownish suspension was then evaporated to dryness and the residue was extracted with CH₂Cl₂ (20 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (5 mL) was added and a clear solution was obtained to which cold hexane (10 mL) was added. A solid formed, which was filtered off, washed with a small amount of cold Et₂O (2 mL) and dried *in vacuo* to give **2b** as a beige solid. Yield: 234 mg (26%). Mp: 206–208 °C. IR: no relevant signals. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (AB, 1H, β-CH=, ³J_{HH} = 16 Hz), 8.26 (AB, 1H, α-CH=, ³J_{HH} = 16 Hz), 8.12 (AB, 2H, β-CH=, ³J_{HH} = 16 Hz), 7.81 (AB, 2H, α-CH=, ³J_{HH} = 16 Hz), 7.66–7.60 (m, 8H, Ph), 7.4–6.9 (several m, 27H, Ph), 1.48 and 1.27 (vt, 12H each, PMe, ²J_{PH} + ⁴J_{PH} = 7 Hz). ¹³C{¹H} NMR (75.5 MHz, CDCl₃): δ 160.7 (m, 2C, C1-Pd), 146.0 (m*, 1C, C2-alkenyl), 138.2 (m, 2C, C3-alkenyl), 137.8 (s, 2C, i-C Ph), 137.6 (s, 1C, i-C Ph), 137.4 (m, 1C, α-CH=), 134.7 (vt, 4C, i-C PMe₂Ph, ¹J_{PC} + ³J_{PC} = 44 Hz), 134.0 (m, 2C, β-CH=), 131.7 (vt, 8C, o-CH PMe₂Ph, ²J_{PC} + ⁴J_{PC} = 12 Hz), 130.5 (m, 2C, α-CH=), 129.9 (s, 5C, β-CH= + p-CH PMe₂Ph), 129.0 (s, 4C, m-CH Ph), 128.5 (s, 2C, m-CH Ph), 128.4 (vt, 8C, m-CH PMe₂Ph, ³J_{PC} + ⁵J_{PC} = 10 Hz), 127.6 (s, 2C, p-CH Ph), 127.0 (s, 1C, p-CH Ph), 126.74 (s, 2C, o-CH Ph), 126.70 (s, 4C, o-CH Ph), 126.3 (s, 1C, C4-Br),

15.8 (vt, 4C, PMe₂Ph, ¹J_{PC} + ³J_{PC} = 30 Hz), 13.3 (vt, 4C, PMe₂Ph, ¹J_{PC} + ³J_{PC} = 30 Hz). ³¹P{¹H} NMR (161.9 MHz, CDCl₃): δ −12.4 (s). Anal. Calcd for C₆₂H₆₅Br₃P₄Pd₂: C, 53.70; H, 4.72. Found: C, 53.88; H, 4.80.

Synthesis of [{PdBr(tmada)}₃{μ₃-C₆(E-CH=CHPh)₃}] (3c)

[Pd(dba)₂] (576 mg, 1.00 mmol), tmada (150 μL, 1.00 mmol) and C₆(E-CH=CHPh)₃Br₃ (205 mg, 0.33 mmol) were mixed under N₂ atmosphere in dry degassed toluene (30 mL). The mixture was heated at 65 °C for 2.5 h until the dark red colour of [Pd(dba)₂] was no longer observed. The dark green suspension was then concentrated *in vacuo* and the residue was extracted with CH₂Cl₂ (40 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (20 mL) was added and a solid formed, which was filtered off, thoroughly washed with Et₂O and dried *in vacuo* to give **3c** as a yellow solid. Yield: 252 mg (59%). Mp: 209–210 °C (dec). IR: no relevant signals. ¹H NMR (600 MHz, CDCl₃): δ 9.63 (AB, 1H, β-CH=, ³J_{HH} = 16 Hz), 9.25 (AB, 2H, α-CH=, ³J_{HH} = 16 Hz), 9.23 (AB, 1H, α-CH=, ³J_{HH} = 16 Hz), 8.85 (AB, 2H, β-CH=, ³J_{HH} = 16 Hz), 7.80 (d, 4H, o-H Ph, ³J_{HH} = 8 Hz), 7.71 (d, 2H, o-H Ph, ³J_{HH} = 8 Hz), 7.34 (t, 4H, m-H Ph, ³J_{HH} = 8 Hz), 7.30 (t, 2H, m-H Ph, ³J_{HH} = 8 Hz), 7.18 (t, 2H, p-H Ph, ³J_{HH} = 7 Hz), 7.11 (t, 1H, p-H Ph, ³J_{HH} = 7 Hz), 2.73, 2.61, 2.54, 2.33, 2.27 and 2.20 (s, 6H each, Me), 2.6–2.2 (several m, 12H, CH₂). ¹³C{¹H} NMR (150.9 MHz, CDCl₃): δ 152.1 (2C, C3-Pd), 151.7 (1C, C1-Pd), 141.4 (2C, C2-alkenyl), 141.2 (1C, i-C Ph), 140.52 (1C, C4-alkenyl), 140.49 (2C, i-C Ph), 138.9 (1C, α-CH=), 137.7 (2C, α-CH=), 128.8 (4C, m-CH Ph), 128.7 (2C, m-CH Ph), 128.3 (2C, β-CH=), 126.12 (2C, o-CH Ph), 126.08 (4C, o-CH Ph), 125.9 (2C, p-CH Ph), 125.6 (1C, p-CH Ph), 125.2 (1C, β-CH=), 63.2 (1C, CH₂), 63.0 (2C, CH₂), 58.32 (2C, CH₂), 58.26 (1C, CH₂), 51.7 (4C, Me), 51.0, 49.2, 48.55 and 48.50 (2C each, Me). Anal. Calcd for C₄₈H₆₉Br₃N₂Pd₃: C, 44.72; H, 5.40; N, 6.52. Found: C, 44.40; H, 5.43; N, 6.31.

Synthesis of [{PdBr(tmada)}₃{μ₃-C₆(E-CH=CHTo)₃}] (3c')

[Pd(dba)₂] (173 mg, 0.30 mmol), tmada (45 μL, 0.30 mmol) and C₆(E-CH=CHTo)₃Br₃ (100 mg, 0.15 mmol) were mixed under N₂ atmosphere in dry degassed toluene (15 mL). The mixture was heated at 70 °C for 1.5 h until the dark red colour of [Pd(dba)₂] was no longer observed. The dark green suspension was then concentrated *in vacuo* and the residue was extracted with CH₂Cl₂ (20 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (15 mL) was added and a solid formed, which was filtered off and thoroughly washed with Et₂O. This solid was purified by a preparative TLC on silica gel using a mixture of acetone/hexane (1 : 1.25) as eluent. The yellow band with R_f = 0.6 was collected, and the product was extracted with acetone (30 mL). Evaporation of the acetone and addition of Et₂O (15 mL) precipitated a solid, which was filtered off, thoroughly washed with Et₂O and dried *in vacuo* to give **3c'** as a yellow solid. Yield: 77 mg, 58%. Mp: 210–212 °C (dec). IR: no relevant signals. ¹H NMR (400 MHz, CDCl₃): δ 9.57 (AB, 1H, β-CH=, ³J_{HH} = 16 Hz), 9.20 (AB, 2H, α-CH=, ³J_{HH} = 16 Hz), 9.16 (AB,

1H, α -CH=, $^3J_{HH}$ = 16 Hz), 8.82 (AB, 2H, β -CH=, $^3J_{HH}$ = 16 Hz), 7.71 (d, 4H, *o*-H Ph, $^3J_{HH}$ = 8 Hz), 7.62 (d, 2H, *o*-H Ph, $^3J_{HH}$ = 8 Hz), 7.18–7.10 (m, 6H, *m*-H Ph), 2.73, 2.62 and 2.54 (s, 6H each, Me tmeda), 2.36 (s, 9H, Me To), 2.34, 2.32 and 2.26 (s, 6H each, Me tmeda), 2.75–2.15 (several m, 12H, CH₂). **¹³C{¹H} NMR** (75.5 MHz, CDCl₃): δ 151.6 (2C, C3-Pd), 151.1 (1C, C1-Pd), 141.3 (2C, C2-alkenyl), 140.4 (1C, C4-alkenyl), 138.4 (1C, *p*-C To), 138.0 (1C, α -CH=), 137.7 (2C, *p*-C To), 136.6 (2C, α -CH=), 135.4 (2C, *i*-C To), 135.1 (1C, *i*-C Tl), 129.51 (4C, *m*-CH To), 129.45 (2C, *m*-CH To), 128.1 (2C, β -CH=), 126.0 (6C, *o*-CH To), 124.9 (1C, β -CH=), 63.1 (1C, CH₂), 63.0 (2C, CH₂), 58.25 (2C, CH₂), 58.20 (1C, CH₂), 51.7 (4C, Me tmeda), 51.0 and 49.1 (2C, Me tmeda), 48.5 (4C, Me tmeda), 21.40 (2C, Me To), 21.36 (1C, Me To). Anal. Calcd for C₅₁H₇₅Br₃N₆Pd₃: C, 46.02; H, 5.68; N, 6.31. Found: C, 45.97; H, 5.36; N, 6.11.

Synthesis of [{trans-PdBr(PMe₃)₂}₃{μ₃-C₆(E-CH=CHPh)₃}] (3d)

3c (100 mg, 0.077 mmol) and PMe₃ (924 μ L of a 1 M solution in toluene, 0.924 mmol) were mixed under N₂ atmosphere in dry degassed THF (15 mL). The mixture was heated at 50 °C for 6 h, during which the precipitation of a pale green solid was observed. The reaction mixture was then evaporated to dryness and the residue was extracted with CH₂Cl₂ (30 mL). The extract was filtered through Celite and the filtrate was evaporated to dryness *in vacuo*. Et₂O (20 mL) was added and a solid formed, which was filtered off, thoroughly washed with Et₂O and dried *in vacuo* to give **3d** as a pale green solid. Yield: 92 mg (86%). Mp: 208–209 °C (dec). IR: no relevant signals. **¹H NMR** (600 MHz, CDCl₃): δ 8.76 (AB, 3H, β -CH=, $^3J_{HH}$ = 16 Hz), 8.59 (AB, 3H, α -CH=, $^3J_{HH}$ = 16 Hz), 7.63 (d, 6H, *o*-H Ph, $^3J_{HH}$ = 7 Hz), 7.39 (t, 6H, *m*-H Ph, $^3J_{HH}$ = 7 Hz), 7.23 (t, 3H, *p*-H Ph, $^3J_{HH}$ = 7 Hz), 1.29 (vt, 54H, PMe₃, $^2J_{PH}$ + $^4J_{PH}$ = 7 Hz). **¹³C{¹H} NMR** (150.9 MHz, CDCl₃): δ 162.8 (m, 3C, C1-Pd), 143.6 (m, 3C, C2-alkenyl), 139.3 (m, 3C, α -CH=), 138.4 (s, 3C, *i*-C Ph), 129.4 (s, 6C, *m*-CH Ph), 127.2 (s, 3C, *p*-CH Ph), 126.3 (s, 6C, *o*-CH Ph), 125.2 (m, 3C, β -CH=), 15.7 (vt, 18C, PMe₃, $^1J_{PC}$ + $^3J_{PC}$ = 30 Hz). **³¹P{¹H} NMR** (121.4 MHz, CDCl₃): δ –19.2 (s). Anal. Calcd for C₄₈H₇₅Br₃P₆Pd₃: C, 41.27; H, 5.41. Found: C, 41.62; H, 5.43.

Synthesis of 2-Ph-4,6-{PdBr(tmeda)}₂-5,7-(E-CH=CHPh)₂-inden-1-one (4)

CO was bubbled for 5 min through a solution of complex **3c** (60 mg, 0.047 mmol) in dry degassed THF (25 mL) in a Carius tube, and the solution was then heated at 60 °C for 2 h. The dark red solution was then filtered through MgSO₄ and the filtrate was evaporated to dryness *in vacuo*. The residue was redissolved in the minimum amount of CH₂Cl₂ and the solution was chromatographed by preparative TLC on silica gel using a mixture of acetone/hexane (2 : 3) as eluent. The brick-red band with R_f = 0.75 was collected and extracted with acetone (30 mL). The acetone solution was concentrated to a small volume and addition of Et₂O (15 mL) precipitated a solid, which was filtered off and dried *in vacuo* to give **4** as a brick-red solid. Yield: 36 mg (76%). Mp: 208–209 °C (dec). IR: ν (CO): 1676 cm^{–1}. **¹H NMR** (300 MHz, CDCl₃): δ 9.54 (d, 1H, β ^{II}-CH=,

$^3J_{HH}$ = 16 Hz), 9.31 (d, 1H, α ^I-CH=, $^3J_{HH}$ = 16 Hz), 8.87 (d, 1H, β ^I-CH=, $^3J_{HH}$ = 16 Hz), 8.59 (d, 1H, α ^{II}-CH=, $^3J_{HH}$ = 16 Hz), 8.28 (s, 1H, H7), 7.86–7.83 (m, 2H, *o*-H Ph^I), 7.83–7.80 (m, 2H, *o*-H Ph^{III}), 7.72 (d, 2H, *o*-H Ph^{II}, $^3J_{HH}$ = 7 Hz), 7.44–7.39 (m, 2H, *m*-H Ph^I), 7.39–7.36 (m, 2H, *m*-H Ph^{III}), 7.36–7.32 (m, 2H, *m*-H Ph^{II}), 7.30–7.27 (m, 1H, *p*-H Ph^I), 7.27–7.24 (m, 1H, *p*-H Ph^{III}), 7.24–7.20 (m, 1H, *p*-H Ph^{II}), 2.75–2.2 (several m's, 8H, CH₂), 2.70 (s, 9H, Me), 2.59, 2.36 and 2.31 (s, 3H each, Me), 2.63 (s, 6H, Me). **¹³C{¹H} NMR** (75.4 MHz, CDCl₃): δ 199.8 (CO), 152.3 (C3-Pd), 151.4 (C2-alkenyl), 148.6 (CH7), 145.6 (C6), 145.0 (C1-Pd), 139.2 (*i*-C Ph^I), 138.8 (*i*-C Ph^{II}), 137.6 (α ^I-CH=), 136.5 (C4-alkenyl), 133.4 (β ^{II}-CH=), 133.2 (*i*-C Ph^{III}), 132.4 (C8), 130.9 (β ^I-CH=), 128.9 (2C, *m*-CH Ph^I), 128.6 (2C, *m*-CH Ph^{II}), 128.2 (2C, *m*-CH Ph^{III}), 127.4 (2C, *o*-CH Ph^{III}), 127.3 (α ^{II}-CH=), 127.1 (*p*-CH Ph^{II}), 127.0 (*p*-CH Ph^{III}), 126.8 (3C, *o*-CH Ph^{II} and *p*-CH Ph^I), 126.2 (2C, *o*-CH Ph^I), 125.1 (C5), 62.92, 62.86, 58.4 and 58.3 (CH₂), 51.8, 51.6, 51.5, 51.2, 49.1, 48.7, 48.6 and 48.3 (Me). Anal. Calcd for C₄₃H₅₂Br₂N₄OPd₂: C, 50.96; H, 5.17; N, 5.53. Found: C, 51.03; H, 5.56; N, 5.59. **Exact mass (ESI+ TOF):** *m/z* calculated for [4-Br]⁺ (C₄₃H₅₂Br₂N₄OPd₂): *m/z*: 933.1407, found: 933.1394, Δ = 1.3 ppm.

Conclusions

We have described a novel family of mono-, di-, and tripalladated benzene derivatives, with alkenyl substituents in *ortho* position to the Pd(II) atoms. These complexes possess a great chemical potential regarding their reactivity towards organic molecules. Thus, a dipalladated indenone has been obtained by CO insertion into one of the aryl-Pd bonds of a tripalladated complex, followed by depalladation in that position. Further research in this area will be pursued.

Author contributions

Rashmi V. Shenoy: investigation and writing – original draft preparation. Peter G. Jones: X-ray crystallography and manuscript editing. José Vicente: conceptualization, methodology, project administration, funding acquisition. Eloísa Martínez-Viviente: methodology, supervision, writing – original draft preparation, reviewing and editing, visualisation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial support from the Spanish Ministry of Science and Innovation/FEDER (grant PGC2018-100719-B-100) and Séneca Foundation of the Region of Murcia (Ayudas a Grupos de Excelencia, grant 19890/GERM/15) is gratefully

acknowledged. R. S. is grateful to the European Commission for a Marie Curie Individual Fellowship (PIIF-GA-2008-219687).

References

- 1 R. B. Bedford, C. S. J. Cazin and D. Holder, *Coord. Chem. Rev.*, 2004, **248**, 2283–2321.
- 2 G. Zeni and R. C. Larock, *Chem. Rev.*, 2004, **104**, 2285–2309.
- 3 *Metal-Catalyzed Cross-Coupling Reactions*, ed. A. de Meijere and F. Diederich, Wiley, 2004.
- 4 G. Zeni and R. C. Larock, *Chem. Rev.*, 2006, **106**, 4644–4680.
- 5 D. S. Surry and S. L. Buchwald, *Chem. Sci.*, 2011, **2**, 27–50.
- 6 A. C. Sather and S. L. Buchwald, *Acc. Chem. Res.*, 2016, **49**, 2146–2157.
- 7 P. Ruiz-Castillo and S. L. Buchwald, *Chem. Rev.*, 2016, **116**, 12564–12649.
- 8 J. He, M. Wasa, K. S. L. Chan, Q. Shao and J.-Q. Yu, *Chem. Rev.*, 2017, **117**, 8754–8786.
- 9 A. Biffis, P. Centomo, A. Del Zotto and M. Zecca, *Chem. Rev.*, 2018, **118**, 2249–2295.
- 10 H. Zhang, P. Ruiz-Castillo and S. L. Buchwald, *Org. Lett.*, 2018, **20**, 1580–1583.
- 11 H. A. Dondas, M. d. G. Retamosa and J. M. Sansano, *Organometallics*, 2019, **38**, 1828–1867.
- 12 J. F. Hartwig, K. H. Shaughnessy, S. Shekhar and R. A. Green, *Org. React.*, 2019, **100**, 853–943.
- 13 S. L. Buchwald and J. F. Hartwig, *Isr. J. Chem.*, 2020, **60**, 177–179.
- 14 H. Zhang, P. Ruiz-Castillo, A. W. Schuppe and S. L. Buchwald, *Org. Lett.*, 2020, **22**, 5369–5374.
- 15 J. Rayadurgam, S. Sana, M. Sasikumar and Q. Gu, *Org. Chem. Front.*, 2021, **8**, 384–414.
- 16 K. R. Holman, A. M. Stanko and S. E. Reisman, *Chem. Soc. Rev.*, 2021, **50**, 7891–7908.
- 17 U. S. Kanchana, E. J. Diana, T. V. Mathew and G. Anilkumar, *ChemistrySelect*, 2021, **6**, 1579–1588.
- 18 A. L. Casado, P. Espinet and A. M. Gallego, *J. Am. Chem. Soc.*, 2000, **122**, 11771–11782.
- 19 J. Vicente, J. A. Abad, E. Martínez-Viviente, M. C. Ramírez de Arellano and P. G. Jones, *Organometallics*, 2000, **19**, 752–760.
- 20 J. Vicente, J. A. Abad, R. Bergs, M. C. Ramírez de Arellano, E. Martínez-Viviente and P. G. Jones, *Organometallics*, 2000, **19**, 5597–5607.
- 21 J. Vicente, J. A. Abad, B. López-Peláez and E. Martínez-Viviente, *Organometallics*, 2002, **21**, 58–67.
- 22 J. Vicente, J. A. Abad, E. Martínez-Viviente and P. G. Jones, *Organometallics*, 2002, **21**, 4454–4467.
- 23 J. Vicente, J. A. Abad, E. Martínez-Viviente and P. G. Jones, *Organometallics*, 2003, **22**, 1967–1978.
- 24 J. Vicente and I. Saura-Llamas, *Comments Inorg. Chem.*, 2007, **28**, 39–72.
- 25 J. Vicente, E. Martínez-Viviente, M. J. Fernández-Rodríguez and P. G. Jones, *Organometallics*, 2009, **28**, 5845–5847.
- 26 M. J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente and P. G. Jones, *Organometallics*, 2015, **34**, 2240–2254.
- 27 M. J. Fernández-Rodríguez, E. Martínez-Viviente, J. Vicente and P. G. Jones, *Organometallics*, 2015, **34**, 3282–3291.
- 28 R. Frutos-Pedreño, E. García-Sánchez, M. J. Oliva-Madrid, D. Bautista, E. Martínez-Viviente and I. Saura-Llamas, *Inorg. Chem.*, 2016, **55**, 55020–55533.
- 29 M. J. Fernández-Rodríguez, E. Martínez-Viviente, P. G. Jones and J. Vicente, *Dalton Trans.*, 2016, **45**, 820–830.
- 30 B. T. Ingoglia and S. L. Buchwald, *Org. Lett.*, 2017, **19**, 2853–2856.
- 31 K. Kubota, P. Dai, B. L. Pentelute and S. L. Buchwald, *J. Am. Chem. Soc.*, 2018, **140**, 3128–3133.
- 32 M. R. Uehling, R. P. King, S. W. Krska, T. Cernak and S. L. Buchwald, *Science*, 2019, **363**, 405–408.
- 33 J.-A. García-López, M. J. Oliva-Madrid, D. Bautista, J. Vicente and I. Saura-Llamas, *Organometallics*, 2021, **40**, 539–556.
- 34 J.-A. García-López and I. Saura-Llamas, *Eur. J. Inorg. Chem.*, 2021, 3655–3683.
- 35 R. P. King, S. W. Krska and S. L. Buchwald, *Org. Lett.*, 2021, **23**, 7927–7932.
- 36 R. P. King, S. W. Krska and S. L. Buchwald, *Org. Lett.*, 2021, 6030–6034.
- 37 J. Vicente, J. A. Abad, R. M. López-Nicolás and P. G. Jones, *Organometallics*, 2011, **30**, 4983–4998.
- 38 M. Pérez-Gómez, L. Navarro, I. Saura-Llamas, D. Bautista, M. Lautens and J.-A. García-López, *Organometallics*, 2017, **36**, 4465–4476.
- 39 J. Vicente, M. Lyakhovich, D. Bautista and P. G. Jones, *Organometallics*, 2001, **20**, 4695–4699.
- 40 J. Vicente, R. V. Shenoy, E. Martínez-Viviente and P. G. Jones, *Organometallics*, 2009, **28**, 6101–6108.
- 41 J. Vicente, R. V. Shenoy, E. Martínez-Viviente and P. G. Jones, *Inorg. Chem.*, 2011, **50**, 7189–7194.
- 42 G. B. Deacon and G. J. Farquharson, *Aust. J. Chem.*, 1977, **30**, 1701–1713.
- 43 V. I. Popov, M. Lib and A. Haas, *Ukr. Khim. Zh.*, 1990, **56**, 1115–1116.
- 44 N. Rot and F. Bickelhaupt, *Organometallics*, 1997, **16**, 5027–5031.
- 45 H. Layeghi, W. Tyrra and D. Naumann, *Z. Anorg. Allg. Chem.*, 1998, **624**, 1601–1610.
- 46 N. Rot, F. J. J. de Kanter, F. Bickelhaupt, W. J. J. Smeets and A. L. Spek, *J. Organomet. Chem.*, 2000, **593–594**, 369–379.
- 47 J. R. J. Baran, C. Hendrickson, D. A. Laude and R. J. Lagow, *J. Org. Chem.*, 1992, **57**, 3759–3760.
- 48 G. A. Adamson and C. W. Rees, *J. Chem. Soc., Perkin Trans. 1*, 1996, 1535–1543.
- 49 C. H. Winter, K. N. Seneviratne and A. Bretschneider-Hurley, *Comments Inorg. Chem.*, 1996, **19**, 1–23.
- 50 W. Weissensteiner, I. I. Schuster, J. F. Blount and K. Mislow, *J. Am. Chem. Soc.*, 1986, **108**, 6664–6668.
- 51 T. Yamakawa, H. Kagechika, E. Kawachi, Y. Hashimoto and K. Shudo, *J. Med. Chem.*, 1990, **33**, 1430–1437.
- 52 G. Schultz, I. Hargittai, N. Rot and F. Bickelhaupt, *Struct. Chem.*, 1998, **9**, 209–214.

53 S. E. Gibson, J. W. Steed and S. Sur, *J. Chem. Soc., Perkin Trans. 1*, 2001, 636–641.

54 E. F. Corsico and A. R. Rossi, *J. Org. Chem.*, 2002, **67**, 3311–3316.

55 P. M. Fidelibus, G. F. Silvestri, M. T. Lockhart, S. D. Mandolesi, A. B. Chopra and J. C. Podestá, *Appl. Organomet. Chem.*, 2007, **21**, 682–687.

56 M. J. Lo Fiego, M. A. Badajoz, G. F. Silvestri, M. T. Lockhart and A. B. Chopra, *J. Org. Chem.*, 2008, **73**, 9184–9187.

57 H. Wadeohl, K. Büchner, M. Herrmann, A. Metz and H. Pritzkow, *J. Organomet. Chem.*, 1998, **571**, 267–278.

58 A. J. Blake, P. J. Dyson, B. F. G. Johnson, C. M. Martin, J. G. M. Nairn, E. Parisini and J. Lewis, *J. Chem. Soc., Dalton Trans.*, 1993, 981–984.

59 K. Lee, H.-F. Hsu and J. R. Shapley, *Organometallics*, 1997, **16**, 3876–3877.

60 J. Müller, C. Hirsch, A. Guo and K. Qiao, *Z. Anorg. Allg. Chem.*, 2000, **626**, 2069–2076.

61 J. P.-K. Lau, Z.-Y. Lin and W.-T. Wong, *Angew. Chem., Int. Ed.*, 2003, **42**, 1935–1937.

62 B. F. G. Johnson, J. Lewis, M. Gallup and M. Martinelli, *Faraday Discuss.*, 1991, **92**, 241–254.

63 M. A. Gallop, M. P. Gomez-Sal, C. E. Housecroft, B. F. G. Johnson, J. Lewis, S. M. Owen, P. Raithby and A. H. Wright, *J. Am. Chem. Soc.*, 1992, **114**, 2502–2509.

64 T. Murahashi, M. Fujimoto, M. Oka, Y. Hashimoto, T. Uemura, Y. Tatsumi, Y. Nakao, A. Ikeda, S. Sakaki and H. Kurosawa, *Science*, 2006, **313**, 1104–1107.

65 T. Murahashi, M. Fujimoto, Y. Kawabata, R. Inoue, S. Ogoshi and H. Kurosawa, *Angew. Chem., Int. Ed.*, 2007, **46**, 5440–5443.

66 T. Sugawa, K. Yamamoto and T. Murahashi, *Chem. Commun.*, 2018, **54**, 5878–5878.

67 K. Yamamoto, T. Sugawa and T. Murahashi, *Coord. Chem. Rev.*, 2022, **466**, 214575.

68 K. Yamamoto, T. Sugawa, M. Kondo, S. Masaoka and T. Murahashi, *Dalton Trans.*, 2022, **51**, 1901–1906.

69 C. J. Sumby and P. J. Steel, *Organometallics*, 2003, **22**, 2358–2360.

70 K. Kubota, R. Takahashi and I. Hajime, *Chem. Sci.*, 2019, **10**, 5837–5842.

71 D. J. B. Hunter and A. B. Szigety, *Organometallics*, 1989, **8**, 2670–2679.

72 G. A. Artamkina, E. A. Shilova, M. M. Shtern and I. P. Beletskaya, *Russ. J. Org. Chem.*, 2003, **39**, 1282–1291.

73 G. A. Artamkina and I. P. Beletskaya, *Mendeleev Commun.*, 2003, **13**, 43–45.

74 A. D. Hunter, *Organometallics*, 1989, **8**, 1118–1120.

75 A. D. Hunter and J. L. McLernon, *Organometallics*, 1989, **8**, 2679–2688.

76 G. R. Newkome, E. He and C. N. Moorefield, *Chem. Rev.*, 1999, **99**, 1689–1746.

77 Y. Takahashi, S. Ito, S. Sakai and Y. Ishii, *J. Chem. Soc., Chem. Commun.*, 1970, 1065–1066.

78 R. F. Heck, *Palladium Reagents in Organic Synthesis*, Academic Press, New York, 1985.

79 E. Negishi, C. Coperet, S. M. Ma, T. Mita, T. Sugihara and J. M. Tour, *J. Am. Chem. Soc.*, 1996, **118**, 5904–5918.

80 S. V. Gagnier and R. C. Larock, *J. Am. Chem. Soc.*, 2003, **125**, 4804–4807.

81 J. Song, H. Sun, W. Sun, Y. Fan, C. Li, H. Wang, K. Siao and Y. Qian, *Adv. Synth. Catal.*, 2019, **2019**, 5521–5527.

82 D.-K. Li, B. Zhang, Q. Ye, W. P. Deng and Z.-Y. Xu, *Organometallics*, 2022, **41**, 441–449.

83 E. Martínez-Viviente, P. S. Pregosin and M. Tschoerner, *Magn. Reson. Chem.*, 2000, **38**, 23–28.

84 G. Mehta and P. V. V. Srirama Sarma, *Tetrahedron Lett.*, 2002, **43**, 9343–9346.

85 D. Bruns, H. Miura and K. P. C. Vollhardt, *Org. Lett.*, 2003, **5**, 549–552.

86 E. Díez-Barra, J. C. García-Martínez, S. Merino, R. del Rey, J. Rodríguez-López, P. Sánchez-Verdú and J. Tejeda, *J. Org. Chem.*, 2001, **66**, 5664–5670.

