
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 2
:1

6:
05

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Expansion of bon
aDepartment of Chemistry, Colorado State U
bBiosciences Center, National Renewable En

E-mail: seonah.kim@colostate.edu; pstjohn@

† Electronic supplementary information
computed and experimental BDE and BD
ALFABET can be found in the
(https://github.com/patonlab/bde-db2).
https://doi.org/10.1039/d3dd00169e

Cite this: Digital Discovery, 2023, 2,
1900

Received 29th August 2023
Accepted 17th October 2023

DOI: 10.1039/d3dd00169e

rsc.li/digitaldiscovery

1900 | Digital Discovery, 2023, 2, 190
d dissociation prediction with
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environmentally relevant chemical space†
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and Robert S. Paton *a

Bond dissociation energetics underpin the thermodynamics of chemical transformations where bonds are

broken or formed and can also be used to predict reaction rates and selectivities. Current machine learning

(ML) models to predict bond dissociation energy (BDE) are largely limited in their elemental coverage to

hydrogen and the second-row elements. This has restricted the applicability of ML-derived BDE

predictions, particularly for molecules of medicinal relevance, since the heteroatoms S, Cl, F, P, Br, and I

are commonly found in approved pharmaceuticals. Atmospherically and environmentally relevant

molecules containing multiple halogen atoms have been similarly inaccessible. In this study, we

considerably expand the size, elemental composition, and bond types of an extensive BDE database and

train a new ML BDE model that includes C, H, N, O, S, Cl, F, P, Br, and I. We curate a new quantum

chemical dataset of 531 244 unique zero-point energy inclusive homolytic dissociations of organic

compounds. We investigate accuracy for out-of-sample molecules and implement iterative training and

testing cycles during model development to improve the model accuracy. Improvements in predictive

accuracy were achieved for datasets of pharmaceutically relevant molecules containing multiple C(sp2)–

halogen bonds from 5.7 to 0.8 kcal mol−1 and polyhaloalkyl compounds with multiple C(sp3)–halogen

bonds from 2.7 to 1.2 kcal mol−1 through the targeted augmentation of training data by as little as eight

additional molecules. Our updated and expanded model (ALFABET) achieves a mean absolute error of

0.6 kcal mol−1 for both enthalpies and free energies compared to the quantum chemical ground truth.

The graph-based representations utilized here outperform traditional cheminformatics features such as

radial fingerprints, and there is no discernible improvement in accuracy by including more expensive

QM-derived parameters, such as optimized bond lengths. Finally, we illustrate high accuracy in external

prediction tasks for large halogenated natural products, pharmaceutically relevant halogenated

molecules, atmospherically important halocarbons, and polyfluoroalkyl substances related to

environmental toxicity.
Introduction

The homolytic bond dissociation enthalpy (BDE) quanties the
thermodynamic stabilities of product radical fragments formed
by the homolysis of a covalent bond in a reactant molecule. The
quantitative evaluation of BDE values provides detailed insight
into the thermodynamics of bond-breaking and forming reac-
tions, and can also be related to kinetics and selectivity by using
niversity, Fort Collins, CO 80523, USA

ergy Laboratory, Golden, CO 80401, USA.

nvidia.com; robert.paton@colostate.edu

(ESI) available: All datasets containing
FE values and the nal GNN model for

open-access GitHub repository
See DOI:

0–1910
linear free-energy relationships or empirical scaling relations.
This fundamental importance has led to the use of BDE (and its
free energy counterpart) values across multiple domains in
chemistry, ranging from the determination of possible reaction
mechanisms to computational mass spectroscopy.1 For
example, BDE values have been used to assess the difference in
bond strengths of primary, secondary, and tertiary C–H bonds,2

to quantify the geometric deformation necessary to reach the
transition structures for Pd-catalyzed carbon-halogen inser-
tion,3 for the prediction of likely molecular fragments observed
in the mass spectra of short peptides,4 breakdown of large
biomass such as lignin,5 comparing the stability of organic
radicals6 and design of de novo radicals for organic redox ow
batteries.7 Due to the broad utility and applicability of BDE
values, signicant effort has been invested in obtaining quan-
titative measurements. Experimental techniques such as
pyrolysis,8 radical kinetics photoionization mass spectrometry,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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acidity/electron affinity cycles,2 and electrochemistry have been
used to obtain BDE measurements.9

Besides experimental measurements, quantum-mechanical
(QM) calculations have become pivotal in assessing and pre-
dicting BDE values. Emerging computational methods for the
automated enumeration and exploration of reaction mecha-
nisms use estimated BDE values to identify energetically
favorable paths among the numerous possibilities.10 High levels
of accuracy are attainable with composite ab initio computa-
tions of BDEs at 0 K (D0). For example, the CBS-QB3 method
yields mean absolute errors (MAEs) of 0.58 kcal mol−l relative to
experimental values for small molecules such as diatomics,
hydrocarbons, and hydrides of N, S, Be, Li, and Si.11,12 However,
density functional theory (DFT) calculations are oen more
practical for larger, conformationally exible compounds and
have been increasingly used to compute BDEs:13 the M06-2X
hybrid meta-GGA functional gives an MAE of 2.1 kcal mol−1

relative to experimental hydrocarbon BDE measurements.14,15

Compared to experimental measurements, which typically give
information about the weakest bond(s) in a molecule, compu-
tations can be used to study all possible homolytic dissocia-
tions. However, due to the exponential scaling of electronic
structure calculations with the number of basis functions (and
hence molecular size), performing quantum chemical predic-
tions for larger molecules or sizable datasets is challenging, if
not intractable. Additionally, a detailed analysis of conforma-
tional space may be necessary to identify the most important
stationary points on the potential energy surface of both the
parent molecule and the two radicals formed upon homolysis.
These practical limitations have led to the development of
alternative approaches for BDE estimation, such as quantitative
structure–property relationship (QSPR) and machine learning
(ML) models.16–18 A machine learning derived, fast, accurate
bond dissociation enthalpy tool (ALFABET), which uses a 2D
graph representation of the molecules where atom and bonds
are encoded as nodes and edges respectively, achieved an MAE
of 0.58 kcal mol−l (vs. anM06-2X/def2-TZVPP oracle) for BDEs of
unseenmolecules containing C, H, N, O atoms using amessage-
passing graph-convolutional neural network (GNN), and has
found utility in multiple applications.14,19 Rapid and accurate
predictions of BDEs have enabled the application of ML to
various domains of chemistry including biological metabolism
and combustion chemistry. However, these models have been
predominantly limited in element scope to second-row
elements. This has restricted the application of BDE predic-
tions in medicinal, atmospheric, and environmental domains,
where molecules containing multiple larger heteroatoms or
halogen atoms are frequently encountered.

Herein, we present an expanded and updated GNNmodel for
BDE prediction. We also consider BDFE (bond dissociation free
energy) values, the standard free energy change associated with
the dissociation. The inclusion of S, Cl, F, P, Br, and I was
motivated by the frequency of these elements alongside C, H, N,
and O in approved drugs and enables ML-based BDE predic-
tions to be applied routinely to medicinally and pharmaceuti-
cally relevant molecules. We describe the development of a large
dataset (BDE-db2) containing over 530 000 uniqueM06-2X/def2-
© 2023 The Author(s). Published by the Royal Society of Chemistry
TZVP computed BDE and BDFE values, which underpins this
effort. We explore the performance of the model on focused
datasets of C(sp2) and C(sp3) halogenated molecules relevant to
medicinal (polyhalogenated building blocks), atmospheric
(halocarbons), and environmental chemistry (per- and poly-
uoroalkyl substances, PFAS). Improvements in predictive
performance are obtained by analyzing the latent space covered
by these datasets and by the addition of a small number of new
training samples. The expanded model retains the same levels
of accuracy for C, H, N, and O as in previous work while
signicantly expanding the applicability to new bond types,
which are predicted with similarly high levels of accuracy.

Results and discussion
Computational BDE dataset curation

Efforts to construct generalizable models for BDE prediction of
multiple bond types have been greatly enabled by the develop-
ment of large computational datasets. Aires-de-sousa and
coworkers developed a dataset17 of computed BDE values for
1000 neutral molecules from the fragment-like subset of the
ZINC database.20,21 Reference bond dissociation energies
exclusive of zero-point vibrational energy (ZPE) were generated
for 12 834 unique bonds (single and double) between C, H, N, O,
and S at the B3LYP/6-311++G(d,p) level of theory. All geometries
were optimized with the semi-empirical DFTB3 Hamiltonian.
Subsequently, St. John and coworkers developed the BDE-db
dataset,22 taking 42 557 neutral CxHyOzNm molecules from the
PubChem compound database. This study used an automated
fragmentation, conformer generation, and DFT computation
workow to obtain 290 664 unique ZPE-inclusive bond disso-
ciation enthalpies at the M06-2X/def2-TZVP level of theory,23

which gave the best empirical performance when compared
with values from the experimental iBond database.14,24 Moti-
vated by energy storage and electrolyte applications, Persson
and coworkers constructed the BDNCM dataset of 64 312
homolytic and heterolytic bond dissociations for 8518 neutral
and charged molecules containing C, H, O, F, and Li. BDFE
values were obtained at the SMD-uB97X-V/def2-TZVPPD level of
theory. Additionally, DiLabio and coworkers have curated
a high-quality benchmark dataset including 4502 datapoints of
bond separation energies including H, B, C, N, O, F, Si, P, S, and
Cl atoms at (RO)CBS-QB3 level of theory.25

In this work, we describe one of the most comprehensive
quantum chemical bond dissociation datasets, BDE-db2, con-
taining 531 244 unique homolytic BDE and BDFE values at the
M06-2X/def2-TZVP level of theory (Fig. 1A). 332 035 unique
dissociations absent from other datasets have been newly
added. We included the ten most common elements in
approved pharmaceuticals: C, H, O, N, S, Cl, F, P, Br, and I
atoms (in order of their abundance).26 In addition to
compounds originally sourced from PubChem present in BDE-
db, we sourced 38 277 additional small molecules (10 heavy
atoms or fewer) containing the above heteroatoms from the
ZINC15 and PubChem compound libraries. M06-2X/def2-TZVP
enthalpies (including the unscaled ZPE) and RRHO Gibbs
energies (1 atm, 298 K) were computed: the accuracy of this level
Digital Discovery, 2023, 2, 1900–1910 | 1901
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of theory for halogenated molecules has been benchmarked,
showing that hybrid functionals with a high proportion of exact
exchange or long-range corrections are more accurate.27–30 An
automated workow generated the structures of parent and
radical fragments from SMILES inputs by enumerating all
possible exocyclic single-bond dissociations. Following confor-
mational analysis with RDKit, the most stable conformers were
optimized with DFT (further details in Section 1 ESI†). Struc-
tures with imaginary frequencies or having undergone struc-
tural rearrangements or fragmentations were removed. Further,
recent studies highlighting unphysical and anomalous
harmonic vibrations computed for open-shell species (with
double-hybrid density functionals)31 led us to implement an
additional lter for dissociations with abnormally large contri-
butions from DZPE: 373 further dissociations with statistically
signicant deviations were removed in this way (Section 1 ESI†).

The elemental and bond composition of the BDE-db2 dataset
is shown in Fig. 1B, which contains 806 433 bond-breaking reac-
tions. Aer sampling chemical compounds in PubChem and
ZINC15 randomly, the elements S, F, P, Cl, I, and Br are present in
around 1.4% (22 385) of all bond dissociations alongside C, H, N,
and O. The majority (54%) of bonds broken involve at least one
carbon atom, with bonds to H the next most populous (35%).
Fig. 1 (A) Composition of the BDE-db2 database. (B) Chord diagram
between different segments of the circle reflects the number of bonds b
black. (C) The distribution of newly added bond types (where n > 25) in

1902 | Digital Discovery, 2023, 2, 1900–1910
Bonds to carbon in all formal hybridization states and degree of
substitution are well sampled (Fig. 1B). The frequency density of
newly added bond types is shown in Fig. 1C, with the highest
number corresponding to C–S bonds (9165). Following this is C–F
bonds with 8249. C–Cl, C–Br, and C–P bonds are around an order
of magnitude less frequent than C–F bonds, while C–Br bonds are
the most scarce, with 29. The counts of all bond types in the BDE-
db2 are present in the ESI (Section 2†).

A message passing GNN was then trained to predict the M06-
2X/def2-TZVP values of homolytic BDE and BDFE directly from
SMILES line notation (Fig. 2A).32 In this approach, molecules
input as SMILES are embedded as 2D-molecular graphs using
rdkit.33 Nodes (atoms) and edges (bonds) are then assigned to
independent classes depending on several features easily ob-
tained from rdkit: for atoms, the element, atomic number,
formal charge, chiral tag, aromatic state, ring state, degree, and
the number of attached H atoms, while for bonds, the pair of
bonded elements, formal bond order, and ring state. We encode
no 3D information in atom and bond representations used by
themodel. The embedded vector representations (of length 128)
used for atoms and bonds are updated in every message-passing
layer of the GNN, utilizing the representations of neighboring
bonds and atoms. Benchmarking the number of message-
representing the bond types present in the database. Link thickness
etween those two atom types. Elemental composition (%) is shown in
the BDE-db2 database.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) The GNN architecture utilized for the prediction of BDE and BDFE. (B) Predictions for held-out test set (test set – 1). (C) BDE prediction
error for a held-out test set based on bond types.
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passing layers reveals no gain in accuracy beyond six.14 During
message passing, bond states are updated based on adjacent
atoms rst, aer which atom states are updated systematically
(grey box in Fig. 2A). Having performed this process six times,
atom and bond representations have been encoded with
structural information from up to 5/6 bonds away.14 Bond states
from the nal message passing layer are reduced to BDE and
BDFE predictions by passing them through a linear output
layer. Model learning performance was enhanced by utilizing
the AdamW optimizer with an inverse time decay schedule for
both learning rate (10−3) and weight decay (10−5), and model
performance was assessed by measuring the mean absolute
error during training for 500 epochs for a batch size of 128
molecules.

Our training and validation set was randomly sampled and
consisted of 514 942 and 8128 unique BDEs, and the perfor-
mance of the nal model was tested on a held-out test set of
1000 molecules comprising 8084 unique dissociations. The
inputs for BDE predictions correspond to the 2D molecular
graph, includingminimal RDKit features as outlined above. The
MAE on this test set (vs. DFT) is 0.61 and 0.60 kcal mol−1 for
BDE and BDFE, respectively (Fig. 2B). This signicantly
outperforms chemical descriptor-based approaches, such as
© 2023 The Author(s). Published by the Royal Society of Chemistry
that based on an associative neural network (ASNN), giving an
MAE of 3.35 kcal mol−1 for 887 BDE values involving C, H, O, N,
or S. The predictive accuracy is comparable with previous GNN
models, ALFABET and BonDNet, with MAE values of 0.58 and
0.50 kcal mol−1, respectively, while encompassing many more
bond types. Analysis of the 20 most populous bond types in the
held-out test set (Section 3 ESI†) shows that C–C and C–H
bonds, which are the most frequently encountered, are well
predicted (with MAEs of 0.77 kcal mol−1 and 0.74 kcal mol−1).
Encouragingly, newly added bond types that are less frequently
encountered are predicted with only slightly (0.5–
0.7 kcal mol−1) higher MAE values and all errors fall under
1.7 kcal mol−1. This includes bond types rarely sampled, such
as C–Br, P–H, and O–S, where there are tens to hundreds of
values in the dataset, in contrast to hundreds of thousands of
C–C and C–H bonds. Comparable predictive accuracy is ob-
tained for BDE and BDFE values, which is perhaps unsurprising
since these ground truth values are highly correlated.
Application to aryl halide building block compounds

In medicinal chemistry, the modular synthesis of novel drug
candidates can be carried out using building blocks, function-
alized chemical reagents typically selected for their drug-like
Digital Discovery, 2023, 2, 1900–1910 | 1903
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Fig. 3 (A) Workflow for model optimization for C(sp2)–halogen BDE prediction. (B) Outliers when using model 1 for BDE prediction of Enamine's
dataset. (C) GNN learning curve showing systematic improvements in the MAE upon the addition of halogenated molecules to BDE-db2 to
obtain BDE-db2a. The error bar corresponds to three different runs.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 2
:1

6:
05

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
properties.34–37 Aromatic and heteroaromatic fragments are
typically functionalized by one or multiple halogen atoms,
enabling an array of cross-coupling reactions to be performed.
Computed carbon–halogen BDE values have been used to
predict the relative rates of oxidative addition by a Pd-catalyst,
enabling site-selectivities in the Suzuki cross-couplings of pol-
yhalogenated aromatics to be predicted.3 The general ability to
accurately predict C–X BDE values for singly- and multiply-
halogenated (hetero)aromatics with ML is thus desirable from
the perspective of synthesis planning and reaction prediction.
We thus focused on commercially available building block
libraries for medicinal chemistry developed by Enamine.38 We
tested our newly developed model (herein model 1) on haloge-
nated compounds from the Enamine database:39,40 a randomly
sampled subset of 624 aryl and alkyl halogenated compounds,
each with at least one C–F, C–Cl, C–Br or C–I bond, were
selected 64 molecules were common to the original training set
and were removed, leaving 560 molecules. These halogenated
molecules were fragmented and optimized to generate DFT
values for all exocyclic bond dissociations. A total of 6295 BDEs
(with 4078 unique BDEs) were collected (test set 2) containing
792 C–X bonds (with 696 unique C–X bonds), with a breakdown
of 213 C–F, 265 C–Cl, 276 C–Br, and 38 C–I bonds (Fig. 3A).

BDE and BDFE predictions for these halogenated molecules
initially gave MAEs of 5.67 and 5.74 kcal mol−1 relative to the
1904 | Digital Discovery, 2023, 2, 1900–1910
DFT oracle. These errors signicantly exceed those obtained for
the original test set (Fig. 2C), primarily due to poor performance
for C–Cl and C–I bonds with MAEs of 12 and 8 kcal mol−1

(Section 4 ESI†). To understand the origin of prediction outliers,
we compared the composition of test set 2 with the training
database. Comparing test set 2 against molecules in the training
database reveals differences in the total number of atoms and
the number of halogen and nitrogen atoms. The most
pronounced outlier molecules (Fig. 3B) contain structural
motifs absent from the original training set, such as multiple
halogen atoms, and can have errors >20 kcal mol−1 (Section 5
ESI†). To improve model performance, molecules containing
multiple halogens were randomly sampled and added to the
training dataset (BDE-db2a). These additional molecules
correspond to a distinct subset from the total enamine data-
base: we used 193 molecules with 1634 unique BDEs, 413 of
which correspond to C–X bonds (139 C–F, 141 C–Cl, 119 C–Br
and 14 C–I). This corresponds to an increase in training set size
by a modest 0.3%. This expanded dataset was used to train
a new GNN (model 2) whose architecture is the same as Fig. 2A.
Upon testing on the Enamine dataset, model performance is
considerably improved, givingMAEs of 0.84 and 0.83 kcal mol−1

for BDE and BDFE values, respectively without degraded
performance on the original test set 1 (0.64 and 0.62 kcal mol−1,
Section 6 ESI†). To determine how adding new structures to the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) Workflow for model optimization for C(sp3)–halogen BDE prediction. (B) Outliers when using model 2 for BDE prediction of poly-
haloalkyl compounds. (C) GNN learning curve showing systematic improvements in the MAE upon the addition of halogenated molecules to
BDE-db2a to obtain BDE-db2b. The error bar corresponds to three different runs.

Table 1 BDE and BDFE prediction accuracy (MAE in kcal mol−1) ob-
tained from GNN following test–train cycles

Model 1 Model 2 Model 3

BDE BDFE BDE BDFE BDE BDFE

General test set (n = 1000) 0.61 0.60 0.64 0.62 0.64 0.61
Haloheterocycle set (n = 560) 5.67 5.74 0.84 0.83 0.74 0.70
Polyhaloalkyl set (n = 39) 2.78 2.74 2.69 2.86 1.19 1.20
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training data enhances model performance, we experimented
by adding different numbers of randomly sampled halogenated
structures (Fig. 3C). These runs were performed in triplicate.
Surprisingly, the addition of fewer than ten additional struc-
tures reduces MAE values to around ∼ 1 kcal mol−1, while
continuous improvement is observed as more structures are
added to reach a limiting accuracy at around 100 additional
structures. This behavior suggests that model performance for
fairly broad areas of chemical space, such as poly-halogenated
heterocycles, can be improved by adding a relatively small but
targeted number of compounds to the training process.
Application to environmentally relevant compounds

We next assessed the model's predictive accuracy for poly-
haloalkyl compounds, such as environmentally relevant
© 2023 The Author(s). Published by the Royal Society of Chemistry
chlorouorocarbons containing several C(sp3)–X bonds. A
dataset of 40 molecules (test set 3) containing 274 bond disso-
ciations (155 unique bond dissociations) was curated from
PubChem, following which systematic fragmentation and DFT
optimizations were performed. One molecule was common to
the original training set and was removed. The total number of
C–X bonds is 212 (104 unique C–X bonds), with a breakdown of
123 C–F, 85 C–Cl, and 4 C–Br bonds (Section 7 ESI†). Applying
the improved model 2 on this dataset led to MAEs of 2.69 and
2.86 kcal mol−1 for BDE and BDFE values (parity plots are
shown in Section 8 ESI†).

For this dataset, we found relatively large errors for the
weakest bonds (BDE values under 80 kcal mol−1). These outliers
correspond to dissociation at multiply halogenated carbons,
which yield resonance-stabilized radicals and hence smaller
BDE values (Fig. 4B). Looking to see if similar molecules existed
in our training database from BDE-db2a, we found that only
3.4% of molecules (2102 of 61 630 molecules) have multiple
halogens on the same atom. In comparison, 0.2% (1407 of 516
570 unique bonds) of the bond-breaking reactions had at least
one fragment with >1 halogen atom on the radical atom. Based
on our earlier observations, we hypothesized that adding
a relatively small number of compounds bearing multiply-
halogenated carbon atoms to training data could considerably
improve predictive accuracy for this dataset. Eight molecules
Digital Discovery, 2023, 2, 1900–1910 | 1905
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Fig. 5 (A) t-SNE plot showing a reduced dimensionality projection of embeddings representing the final bond states used for BDE prediction for
C–F, C–Cl, C–Br, and C–I bonds. (B) Analysis of neighbors of one outlier in Enamine's dataset and polyhaloalkyl datasets.

Fig. 6 Model learning behavior, comparing the original GNN model
(orange), a GNN model with features augmented by DFT-optimized
bond lengths (green), and a random forest regression using Morgan
fingerprints (blue).
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were constructed and added to the training dataset to build
BDE-db2b (Section 9 ESI†) and develop a new GNN model 3.
This new model showed a notable reduction in MAE values to
1.19 and 1.20 kcal mol−1 (Table 1). Additionally, the learning
curve depicts how the mean MAE values over three different
types of additions vary when each molecule is added (Fig. 4C).
Prediction accuracies with this model are maintained for prior
test sets (Section 10 ESI†). The results of the successive
improvements made to the BDE prediction model are summa-
rized in Table 1. Based on the improvements from adding more
data to cover a broader range of chemical space, the newly
1906 | Digital Discovery, 2023, 2, 1900–1910
developed model (model 3) can be applied to neutral molecules
containing C, H, N, O, S, Cl, F, P, Br and I, including multiply-
halogenated aromatic and aliphatic compounds. To extend
into further regions of chemical space, we suggest sampling
around∼100 s of representative molecules and to systematically
incorporate around 10 additional training molecules per
training iteration. A learning curve can then be produced to
establish model performance as the training set size increases
and to determine the number of additional molecules required
to obtain 1 kcal mol−1 accuracy for a new region of chemical
space. Overall, we have shown that small, representative data-
sets can be used to improve existing machine learning models.
Chemical space and neighbor analysis

To understand the relationship between prediction accuracy
and training set composition, we visualized the representations
of bonds learned by the nal model (Fig. 5A). Since the bond
states have a dimension of 128, we performed dimensionality
reduction with the t-SNE method to project 8924 different C–X
bonds in two dimensions. The newly added C–X bonds used to
build BDE-db2a and BDE-db2b are spread in chemical space
and cover regions not present in the original dataset. Further,
we studied specic examples of outlier predictions that were
improved by successive generations of our model (Fig. 5B). For
these bonds, we found the ten nearest neighbors (in the model's
128-dimensional latent space) from the training dataset and
computed the mean distance of these nearest neighbors. In
each case, we found that poor predictions result where the
closest training bonds are highly chemically dissimilar to the
query bond. Previous work has also shown that determining the
distance in latent space enables the identication of high and
low condence points.41 Overall, the systematic improvement in
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (A) BDE prediction of halogenated natural products: R2 andMAE relative to DFT ground truth for eachmolecule shown. (B) Comparison of
predicted and experimental BDE values for chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HFCs). (C) Predicted BDE and BDFE
values for PFAS relative to DFT ground truth. Homolysis of the weakest bond as a potential mechanism of PFAS thermal decomposition. All values
in kcal mol−1.
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performance can be attributed to the incorporation of new
regions of chemical space in the training set containing more
diverse structural features.

Comparison of current GNN models with traditional
cheminformatics features and QM features

We compared the performance of end-to-end learned repre-
sentations, as in our GNN model, against cheminformatics-
based features such as circular atomic ngerprints. We also
evaluated whether our GNN could be improved by including
additional features, such as DFT-optimized bond lengths
(Fig. 6).42 We studied these models' learning by systematically
increasing the number of training samples: while the number of
samples was randomly selected for three different runs, they
were kept consistent across the different models. For GNN
model 3, the MAE decreases with training dataset size,
achieving kcal mol−1 accuracy at around ∼5000 samples. In
contrast, a random forest (RF) based model using Morgan
ngerprints generated for the bonded pair of atoms (radius of 3
encoded as 512 bits) demonstrates slower learning, with a BDE
error of 2.2 kcal mol−1 for the same training set size. Ultimately,
achieving chemical accuracy with this model would require
training on a dataset more than an order of magnitude larger
© 2023 The Author(s). Published by the Royal Society of Chemistry
than that used to train the GNN. Including optimized bond
lengths as part of the initial embedding before GNN model
training led to an improvement in performance only for very
small dataset sizes (<100), while in the limit of larger datasets,
there was a negligible reduction in MAE values. This result
suggests that representation learning occurs efficiently for this
problem, with datasets on the scale of BDE-db2 containing tens
of thousands of training examples.

Validation against computed and experimental BDE values for
diverse halogenated compounds

The newly developed model was validated using three external
datasets: halogenated natural products and environmentally
relevant polyuoroalkyl substances (PFAS), for which we
computed reference BDE values at the M06-2X/def2-TZVP level
of theory,43 and an experimental dataset of BDE values for
aliphatic chlorouorocarbons.

Four natural products containing F, Cl, Br, and I were
identied (Fig. 7A): nucleocidin,44 salinosporamide A,45 tyrian
purple,46 and levothyroxine.47 All of these natural products were
fragmented and optimized with a similar method as the
training database. The average number of heavy atoms is 23,
more than twice the size of those in the training database.
Digital Discovery, 2023, 2, 1900–1910 | 1907
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Across all four molecules, an MAE of 1.76 and 1.75 kcal mol−1 is
obtained for BDE and BDFE for 65 unique bonds. Usingmodel 3
for predictions is orders of magnitude faster (∼seconds) than
the quantum chemical reference values (∼2 days per molecule
of CPU time). The predicted BDE values for each molecule have
an R2 equal to or high er than 0.9 and a mean absolute error
under 2 kcal mol−1 (Fig. 7A).

The second validation set comprises experimentally reported
bond dissociation enthalpies of 40 uorinated and chlorinated
alkanes, including chlorouorocarbons (CFCs) and hydro-
chlorouorocarbons (HFCs), atmospheric trace gases that
inuence stratospheric ozone, climate, and air quality.43,48

Primary mechanisms of atmospheric degradation, such as
photolysis, are inuenced by the C–halogen bond strength,
while the reactions of HFCs with hydroxyl radicals are inu-
enced by C–H bond strengths, and so their prediction is of
practical importance. We removed 7 molecules from this data-
set present in our original training database to avoid data
leakage. ML-predicted bond dissociation enthalpies for the
remaining compounds compare well with experimental values,
with a correlation coefficient of 0.96 and an MAE of 2.12 kcal-
mol−1 for 69 unique bonds (23 C–C, 20 C–H, 10 C–F, and 16 C–
Cl bonds) (Fig. 7B). This is encouraging since no experimental
data was used to train the model, and the largest error obtained
for this test set is ∼3 kcal mol−1.

Finally, we test the model's predictive power in determining
the weakest homolytic bond dissociation in per- and poly-
uoroalkyl substances (PFAS) containing ether, alcohol, amide,
and sulfonamide functional groups. Thermodynamic BDE
values have been related to breakdown pathways during
combustion,14 while the mechanisms of PFAS degradation have
been linked to BDE values.49,50 We studied 57 molecules, with
557 C–F bonds and a total of 697 unique bonds overall. On
comparing different bond types, C–S and C–C bonds have lower
BDE values: we would expect these bonds to undergo homolysis
rst during pyrolytic decomposition (Fig. 7C). The accuracy of
prediction against DFT is 1.15 and 1.51 kcal mol−1 for BDE and
BDFE respectively. Previous data-driven models have focused
on the prediction of C–F BDE values in PFAS molecules;49

however, with the ability to predict across the breadth of bond
types present in these compounds, we observe that C–S and C–C
bonds (rather than C–F) are thermodynamically much more
likely candidates for the primary site of homolysis. For 60% of
the PFAS considered, the ML-predicted weakest bond matches
DFT, while for the remaining 40% of cases, the weakest bond
(from DFT) lies within 4 kcal mol−1 from the ML-minimum
energy. This suggests one possible use of ML could be to
quickly survey and rank possible homolytic cleavages, returning
a focused set of candidate bonds to be investigated in greater
depth with QM calculations.

Conclusion

Bond dissociation enthalpies and free energies are fundamental
quantities used to assess reaction thermodynamics. BDE values
also inuence reaction kinetics and are oen used as essential
ingredients to understand mechanism and selectivity. We have
1908 | Digital Discovery, 2023, 2, 1900–1910
developed a broadly applicable BDE prediction tool based on
a graph neural network that yields quantitative predictions
close to DFT values across a range of organic molecules con-
taining heteroatoms. This tool enables a broader range of
chemical space to be studied by this approach than was previ-
ously possible, which now includes aromatic and aliphatic
compounds with multiple halogen atoms relevant to medicinal
and atmospheric applications. For multiply halogenated chlo-
rouorocarbons, this approach yields results within
2 kcal mol−1 of experimental BDE values. For training dataset
sizes on the order of thousands or tens of thousands of
compounds, we observe that the learned embeddings of the
GNN are not improved by the addition of additional QM
descriptors and that the model learning performance (in terms
of the number of training samples required to obtain a predic-
tive accuracy of 1 kcal mol−1) surpasses a more traditional
cheminformatics approach using xed circular ngerprints by
more than an order of magnitude. While the requirement for
training datasets containing thousands of compounds qualies
as a data-hungry approach, we observed that successive
expansion of the model's domain of applicability to encompass
new bond types was possible through the addition of relatively
small (i.e., fewer than hundreds) targeted compound libraries to
the training data. We suggest that this may indicate some level
of model generalization according to molecular substitution
patterns around the site of dissociation, such that only a few
examples of new bond types are required. This suggests that
relatively small, focused datasets can be used to continually
expand the scope of this, and other GNN-based models for
property predictions.

Data availability

The BDE-db2, dataset is hosted on FigShare at https://doi.org/
10.6084/m9.gshare.19367051.v1. Other training and test data
can be found in the GitHub repository (https://github.com/
patonlab/bde-db2).
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