
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
Orchestrating nim
aDivision of Engineering and Applied Scie

Pasadena, CA 91125, USA. E-mail: guevarra
bLiquid Sunlight Alliance, California Institu
cTUM School of Natural Sciences, Departm

Institute, Technical University of Munich, M

† Present address: Good Terms LLC, CO,

‡ Present address: deepXscan GmbH, Dre

Cite this: Digital Discovery, 2023, 2,
1806

Received 24th August 2023
Accepted 30th September 2023

DOI: 10.1039/d3dd00166k

rsc.li/digitaldiscovery

1806 | Digital Discovery, 2023, 2, 180
ble experiments across
interconnected labs

Dan Guevarra, *ab Kevin Kan,ab Yungchieh Lai,ab Ryan J. R. Jones, ab Lan Zhou,ab

Phillip Donnelly,†a Matthias Richter, ‡ab Helge S. Steinc and John M. Gregoire *ab

Advancements in artificial intelligence (AI) for science are continually expanding the value proposition for

automation in materials and chemistry experiments. The advent of hierarchical decision-making also

motivates automation of not only the individual measurements but also the coordination among multiple

research workflows. In a typical lab or network of labs, workflows need to independently start and stop

operation while also sharing resources such as centralized or multi-functional equipment. A new

paradigm in instrument control is needed to realize the combination of independence with respect to

periods of operation and interdependence with respect to shared resources. We present Hierarchical

Experimental Laboratory Automation and Orchestration with asynchronous programming (HELAO-

async), which is implemented via the Python asyncio package by abstracting each resource manager and

experiment orchestrator as a FastAPI server. This framework enables coordinated workflows of adaptive

experiments, which will elevate Materials Acceleration Platforms (MAPs) from islands of accelerated

discovery to the AI emulation of team science.
Introduction

Materials Acceleration Platforms (MAPs)1 aim to leverage
modern articial intelligence (AI) algorithms to accelerate the
discovery of molecular and solid state materials. For solid state
materials, automation and integration with computation2 has
been historically achieved via combinatorial methods3,4 and
recently implemented using autonomous or self-driving labs.5,6

The pace of advancement in experiment automation is stag-
gering and motivates rethinking of how instruments are made
and controlled. Initial efforts in AI-guided automated workows
have naturally focused on achieving super-human efficiency of
data acquisition. Here, automated experiment selection allevi-
ates reliance on human researchers but does not supplant
human governance of the scientic line of inquiry and the
strategy for its exploration.7 Recent developments in physics
and chemistry-aware models8,9 as well as hypothesis learning
algorithms10 exemplify the ever-increasing sophistication of
automated experiment design. While such algorithms do not
yet rival the decision making of human experts, the trajectory of
AI algorithms clearly indicates that the frontier of experiment
nce, California Institute of Technology,

@caltech.edu; gregoire@caltech.edu

te of Technology, Pasadena, CA, USA

ent of Chemistry, Munich Data Science

unich, Germany

USA.

sden, Germany.

6–1812
automation is not the automation of individual experiments but
rather entire workows and their ensembles.

Expanding upon the vision of interconnected workows for
AI emulation of team science, Bai et al.11 have envisioned world-
wide coordination of self-driving labs driven by the rapidly
evolving elds of knowledge graphs, semantic web technolo-
gies, andmulti-agent systems. Ren et al.12 emphasize the critical
need for interconnected laboratories to leverage resources and
learn epistemic uncertainties. To realize this collective vision,
experiment automation soware that builds upon the state of
the art13–24 must be developed to interconnect laboratories and
their research workows. A hallmark of human scientic
research is on-the-y adaption of experimental workows based
on recent observations. Human scientists also interleave
workows spanning materials discovery to device prototyping.25

The interleaved execution of multiple workows typically
involves shared resources, which is oen a practical necessity
for minimizing the capital expense of establishing any experi-
mental workow. These considerations require “nimble”
experiment automation, and in the present work we describe
our approach to automating nimble, interconnected workows
via asynchronous programming.
Results and discussion

Fig. 1 illustrates the hierarchical components of a scientic
workow, with the highest hierarchy being a Science Manager
that designs research projects and strategies for their imple-
mentation. The Workow Orchestrator implements these
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00166k&domain=pdf&date_stamp=2023-11-30
http://orcid.org/0000-0002-9592-3195
http://orcid.org/0000-0002-4629-3115
http://orcid.org/0000-0003-0091-2045
http://orcid.org/0000-0002-2863-5265
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002006

Fig. 1 The hierarchies of research scope, which are intended to generally describe communication among entities for any researchmodality, are
illustrate as a Science Manager that establishes projects and strategy, WorkflowOrchestrators that manage the implementation of the strategy in
an experiment workflow, Research Managers that process experiment instructions and allocate the necessary resources, and the Hardware/
Software Resources with which the experiments are performed. With this ontology, three generations of experiment automation software are
outlined in which an individual workflow is automated, interconnected workflows are run in parallel, and interconnected workflows are operated
with flexible management that enables a distinct runtime for each Orchestrator and Research Manager.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
strategies as (dynamic) series of experiments. Execution of the
workows requires management of laboratory resources by
Resource Managers, which interface directly with the Hardware/
Soware Resources of the lab. During execution of an “auto-
mated workow,” a human scientist typically serves as Science
Manager, overseeing the execution of automation soware that
encompasses a tightly-integrated Workow Orchestrator and
Resource Manager, which collectively control the workow's
suite of lab resources.

Parallel execution of automated workows can be realized
via “interconnected workows” wherein a human or machine
Science Manager oversees multiple automated workows that
each run on their own central processing unit (CPU). This
scheme is appropriate when each workow can operate inde-
pendently. If two workows share an experiment resource, one
strategy for their automation is to integrate them into a hybrid
workow that is executed from a single CPU. The shared run-
time among all processes in a single CPU inherently limits
operational exibility, a runtime interdependence that is
impractical for interconnected labs. In addition to addressing
the needs of shared resources, asynchronous programming
provides the requisite exibility for experiment automation
tasks such as passing messages, writing data to les, and poll-
ing devices. These needs can be partially fullled with multi-
thread programming, although we nd asynchronous
programming to be a more natural solution. For a more tech-
nical discussion of the difference between asynchronous
programming and threading, we refer to the reader to ref. 26.

As an example of a shared resource, consider a lab in which
a central piece of equipment such as an X-ray diffractometer or
reactive annealing chamber is used in several distinct work-
ows. Traditional methods of experiment automation would
involve each workow taking ownership of that equipment
during the workow's runtime. Combining all workows in
a single instance of automation soware limits the ability of
© 2023 The Author(s). Published by the Royal Society of Chemistry
different workows to start and stop as dictated by science
management and/or equipment maintenance needs. Human
researchers address this challenge by creating a system to
schedule the requested usage of shared equipment, and the
automation analogue is to have the shared equipment operated
by a broker whose runtime is independent of all other workow
automation soware. This is the central tenet of “Nimble
interconnected workows” as depicted in Fig. 1, wherein each
resource family is controlled by an asynchronous Resource
Manager. The runtime independence of Resource Managers
and Workow Orchestrators enables each Orchestrator to
maintain focus on a single research workow while empower-
ing a Science Manager to coordinate efforts across many
workows in any number of physical laboratories.

The series of workow automation capabilities illustrated by
Fig. 1 has been largely mirrored by the evolution of reported
automation soware for materials chemistry. Seminal demon-
strations of soware for automating an experiment workow
include ARES,13 ChemOS,14 and Bluesky.15 Continual develop-
ment of these platforms have resulted in new capabilities such
as the generalized ARES-OS16 and remote operation with Blue-
sky.17 ChemOS14 and ESCALATE27 have increasingly incorpo-
rated ancillary aspects of automation such as encoding design
of experiments and interfacing with databases. These efforts
have built toward multi-workow integration in HELAO18,19 and
NIMS-OS20 as well as object-oriented, modular frameworks for
co-development of multiple MAPs21,23 and multi-agent automa-
tion frameworks.22 Enabling independent operation of work-
ow components ultimately requires asynchronous
programming, as envisioned by the present work and Che-
mOS2.0.24 The abstraction of lab equipment as asynchronous
web servers is implemented in HELAO-async using FastAPI,28

a performant, standards-based web framework for writing
Application Programming Interfaces (APIs) in Python. SiLA2
(ref. 29) is an alternative framework that may be used to realize
Digital Discovery, 2023, 2, 1806–1812 | 1807

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
the HELAO-style communication within and among multiple
workows. To best of our knowledge, HELAO-async is the rst
instrument control soware platform that realizes the “Nimble
interconnected workows” paradigm illustrated in Fig. 1, where
workows can be independently started and stopped while
sharing resources such as centralized or multi-functional
equipment. These capabilities are agnostic to whether work-
ow operation decisions are determined via human or articial
intelligence, while the independent execution of multiple
workows is critical for fully realizing the value of hierarchical
active learning and multi-modal AI algorithms.

The implementation of “Nimble interconnected workows”
in HELAO-async is outlined in Fig. 2. A Science Manager (see
Fig. 1) is implemented as an Operator for active science
management and Observer for passive science management.
The Orchestrator manages workow-level automation, which
generally involves launching a series of actions on the work-
ow's suite of Action Servers. In the parlance of Fig. 1, Action
Servers are the Resource Managers, which execute actions via
Device Drivers that comprise the Hardware/Soware Resources.
The design principle of this framework is to enable asynchro-
nous launching of workows via Operator–Orchestrator
communication, as well as asynchronous execution of work-
ows via Orchestrator–Action Server communication. When
multiple Orchestrators share a resource, queuing and prioriti-
zation are managed by the respective Action Server.

The HELAO-async implementation described herein is
intended to be agnostic with respect to the type of Operator and
Observer, which may involve any combination of a human
researcher, an autonomous operator selecting experiments via
an AI-based acquisition function, or a more general broker19 for
coordinating experiments across many workows. The scope of
an Orchestrator is that of a single workow, and by imple-
menting each Orchestrator as a FastAPI server, the parameter-
ized workow is exposed to the Operator via custom FastAPI
endpoints. For example, “global_status” is an endpoint of an
Orchestrator FastAPI server that is programmed as follows to
enable any program to request and receive the Orchestrator's
status:
Fig. 2 The HELAO-async framework is outlined as a specific implemen
Orchestrators manageworkflows by controlling Action Servers that mana
server for each Orchestrator and Action Server, workflows have indep
Operator manages the collection of Orchestrators, and an Observer can
and websockets for these interactions creates flexibility for the impleme

1808 | Digital Discovery, 2023, 2, 1806–1812
The Orchestrator executes a workow via Action Server Fas-
tAPI endpoints, for example this abridged version of the
“acquire_data” endpoint, which includes parameters for the
duration and rate of the acquisition:

Fig. 2 also depicts Observers, which can subscribe to the
FastAPI websockets established by an Orchestrator and/or
Action Server. Each Orchestrator and Action Server must be
programmed to publish data of interest to websockets, which
enables any number of Observers to listen-in as needed. Our
common implementation to-date is a web browser-based
Observer (a.k.a. Visualizer) that researchers can launch to
monitor quasi-real-time data streams, a critical capability for
experiment quality control. For example, the Orchestrator web
socket “ws_status” enables any program to subscribe to the
Orchestrator's status messages:

The asynchronous operation at the Orchestrator and Action
Server levels was particularly motivated by hierarchical active
learning schemes, for example human-in-the-loop30,31 or fully
autonomous hierarchical active learning.32 When workow-
level decisions are made by a human with autonomous
tation of the “Nimble interconnected workflow” concept from Fig. 1.
ge resources viaDevice Drivers. By establishing an independent FastAPI
endent runtimes while sharing resources as needed. A human or AI
consume data streams from any server. The use of FastAPI endpoints
ntation of Operators and Observers.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
workow execution, a community of asynchronous Orchestra-
tors enables humans to execute on any available workow. We
envision that this mode of operation will be critical for inte-
grating physically-separated laboratories and realizing cloud
laboratories.11,12,33

HELAO-async is being actively developed in two public
repositories: https://github.com/High-Throughput-
Experimentation/helao-core encompasses the API data
structures and https://github.com/High-Throughput-
Experimentation/helao-async contains instrument drivers, API
server congurations, and experiment sequences. These
repositories contain drivers for our suite of experimental
resources spanning motion control, liquid handling,
electrochemistry, analytical chemistry, and optical
spectroscopy. Our Orchestrator-level implementations include
scanning droplet electrochemistry,34 scanning optical
spectroscopy,35 electrochemical cells with scheduled
electrolyte aliquots for monitoring corrosion,36 and several
methods of coupling electrochemical transformations with
analytical detection of the chemical products.37 These latter
two examples share the need for liquid and/or gas aliquoting
from operational electrochemical cells, for which we typically
use a Tri Plus robotic sample handling system (CTC
Analytics), which is a shared resource across multiple
workows.

Given our safety and security protocols, readers of this
manuscript may not execute HELAO-async code with our labo-
ratory equipment. While we encourage the duplication and
adaption of our hardware and/or soware for operation in other
labs, we have built a virtual demo for the present purposes of
introducing HELAO-async. To create a minimal implementa-
tion of Fig. 2, the demo contains two independent Orchestra-
tors, each with a dedicated Action Server that simulates the
acquisition of electrochemistry data to characterize the over-
potential for the oxygen evolution reaction (OER). We have
packaged previously-acquired electrochemistry data with the
demo.38 The two Orchestrators share a common resource, which
in practice may be the robotic sample handling system. In the
demo, the shared Action Server is an active learning agent that
manages requests for new acquisition instructions from the two
Orchestrators. This shared-resource Action Server runs inde-
pendently and is unaffected by the runtime of each Orches-
trator, which is demonstrated in the demo by independently
starting and stopping the Orchestrators, representing the
asynchronous operation of research workows within one or
across multiple laboratories. Running the demo batch script
will open ve user interface browsers, two Operators that
control the respective Orchestrators, two Visualizers (Observers)
that show the data streams from the respective electrochemistry
Action Server, and a Visualizer (Observer) for the shared active
learning Action Server. This Visualizer shows the progress of the
active learning campaign, including the contributions from
each of the independent Orchestrators. A snapshot of these ve
web browser interfaces is shown in Fig. 3. Due to the use of
static random seeding of the active learning, the demo runs
deterministically, where the contents of Fig. 3 show the status
© 2023 The Author(s). Published by the Royal Society of Chemistry
approximately 17 minutes aer launching the demo batch
script.

While the HELAO-async schematic of Fig. 2 indicates the
intended role and scope of each FastAPI server with respect to
the universal research roles summarized in Fig. 1, there
remains exibility in how to implement HELAO-async for
a given workow or ensemble of workows. Regarding the
scope of a single Action Server, a set of resources may be
bundled in a single FastAPI server based on (i) their intended
use as a grouping of shared resources, (ii) the need for
synchronization among the resources, or (iii) safety-related
interdependencies. As examples, consider (i) an autosampler
for a piece of equipment and the piece of equipment itself,
which may have distinct drivers but will always be used together
so it is best to code their joint actions in an Action Server and
abstract the joint action of sampling and measuring as a single
FastAPI endpoint; (ii) an isolation valve and a pump where the
isolation valve needs to be opened before the pump starts and
the pump needs to stop before the isolation valve is closed,
which are couplings of driver steps that are best hard coded
within a single Action Server; (iii) a set of motors where the
limits of the rst motor depend on the position of the second
motor, for which evaluating the safety of a given motor move-
ment is best done within a single Action Server. While these
examples illustrate why multiple resources should be bundled
in a single Action Server, the primary counter examples involve
resource sharing and hardware/soware modularity. Program-
ming the action queuing and prioritization for an Action Server
that is shared among multiple Orchestrators is best done by
minimizing the set of resources in the Action Server. To best
leverage Action Server code for multiple physical instantiations
of resources, the scope of an Action Server should be limited to
the set of resources that are always implemented collectively
into a workow. This practice also facilitates error handling,
where code or instrument failure within a given Action Server
will result in the Orchestrator losing access to these capabilities.
However, this type of single-point failure does not inherently
crash the Orchestrator, so other aspects of the workow may
continue operating. Once the failure is resolved, restarting the
Action Server will make its endpoints available to the Orches-
trator to restore full workow operation. We note that
programming Orchestrators for automated error recovery is
nontrivial, and the present work focuses on providing the
capabilities to implement such strategies via automaton of
workows as networks of FastAPI servers.

The multi-Orchestrator demo described above additionally
illustrates optionality with respect to the implementation of AI-
guided design of experiments. If the AI agent is intended to be
a Science Manager across multiple workows, it should be
implemented as an Operator in HELAO-async. However, in the
demo, the active learning engine is implemented as an Action
Server that is a shared resource for the two Orchestrators. In this
case the Science Manager is a human who congured each
Orchestrator to receive guidance from the active learning Action
Server, which is a prudent mode of operation when the human
will routinely switch an Orchestrator from executing experi-
ments according to AI vs. human guidance. As such, this demo
Digital Discovery, 2023, 2, 1806–1812 | 1809

https://github.com/High-Throughput-Experimentation/helao-core
https://github.com/High-Throughput-Experimentation/helao-core
https://github.com/High-Throughput-Experimentation/helao-async
https://github.com/High-Throughput-Experimentation/helao-async
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

Fig. 3 A screenshot from the HELAO-async demo. The command line windows are (a) the Miniconda Python environment fromwhich the demo
was launched, (b) the instance of the first Orchestrator “demo0” and its Visualizer, (c) the instance of the second Orchestrator “demo1” and its
Visualizer, and (d) the instance of the Visualizer for the shared Action Server “GP SIM”. (e) and (f) The web user interfaces for the Operators for the
Orchestrators. While various experiment controls may reside in these web interfaces, the demo involves automated execution of active learning
campaigns as programmed in the sequence “OERSIM_activelearn.” The three Visualizers are (g) for the GP SIM Action Server, as well as (h) and (i)
for the electrochemistry Action Servers orchestrated by demo0 and demo1, respectively. The GP SIM visualizer (g) shows (top) the most recent
communication with an Orchestrator, (bottom) a list of recent acquisitions, and (middle) histograms showing the distribution of catalyst
overpotentials. The four histograms correspond to the two combinatorial libraries associated with their respective Orchestrator and the two
types of overpotentials, those previously measured and those predicted by the Gaussian Process for unmeasured compositions.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
may be prescient in the context of instrument control using
large language models that integrate human and AI design of
experiments.39 While self-driving labs have traditionally been
constructed with the AI acquisition function as the Operator,
the future of MAPs will likely relegate active learning to be
a resource that facilitates but not governs operation of auto-
mated experimental workows. The asynchronous program-
ming and implementation of workows as networked servers in
HELAO-async are designed to enable development of individual
automated workows followed by their seamless interconnec-
tion with additional workows that can be managed by any
combination of human and articial intelligence.
Conclusions

The advent of self driving labs as a fully autonomous imple-
mentation of a materials acceleration platform has broadened
the purview of experimentation automation beyond traditional
high throughput experimentation. Concomitantly, the mate-
rials automation community has envisioned international
networks of laboratories that may be controlled by multi-agent
AI systems and/or human-in-the-loop active learning. As new
automated workows are developed in isolation and then fed
into broader networks of capabilities, instrument control so-
ware must be prepared to make the transition from single-
workow orchestration to participation in many-workow
automation schemes. Traditional lab automation soware
cannot effectively manage sharing of resources among
1810 | Digital Discovery, 2023, 2, 1806–1812
workows while maintaining an independent runtime envi-
ronment for each workow. We introduce HELAO-async as
a framework for facilitating the automation of individual
resources, their incorporation into workows, and the inter-
connection of workows. Combining object-oriented and
asynchronous programming, HELAO-async abstracts Resource
Managers and Workow Orchestrators as FastAPI servers.
Communication, both between servers and with additional
programming instances such as web user interfaces and AI-
driven experiment brokers, is implemented using FastAPI
websockets and endpoints. In addition to a demo virtual
instrument to facilitate learning about HELAO-async, the
present work introduces the open source code repositories that
house the automation soware for a suite of materials accel-
eration platforms in the high throughput experimentation
group at the California Institute of Technology.
Data availability

The data for the virtual workow automation demo is available
in the code repository and was previously released along with
publication of ref. 38.
Code availability

The source code for HELAO-async is available at https://
github.com/High-Throughput-Experimentation/helao-core and
https://github.com/High-Throughput-Experimentation/helao-
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/High-Throughput-Experimentation/helao-core
https://github.com/High-Throughput-Experimentation/helao-core
https://github.com/High-Throughput-Experimentation/helao-async
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
async. The instructions for establishing the HELAO Python
environment are provided in https://github.com/High-
Throughput-Experimentation/helao-async/blob/main/
readme.md. The demo is embedded in the repository, and the
instructions for launching the demo are available at https://
github.com/High-Throughput-Experimentation/helao-async/
blob/main/helao/demos/multi_orch_demo.md.

� Project name: HELAO-async.
� Project home page: https://github.com/High-Throughput-

Experimentation/helao-async.
� Operating system(s): Windows 7, Windows 10, Linux

(limited driver functionality).
� Programming language: Python 3.8+.
� License: MIT.
� DOI: https://doi.org/10.22002/q2984-04886.

Author contributions

D. G. is the primary architect and programmer for HELAO-
async, implementing the vision established by J. M. G., H. S.
S., and D. G.; P. D. prototyped asyncio routines; M. R., Y. L., R. J.
J., and K. K. helped implement HELAO-async for specic
workows under guidance from D. G. and J. M. G.; L. Z.
contributed to Observer visualization code.

Conflicts of interest

J. M. G. consults for companies that aim to automate
experiments.

Acknowledgements

This material is primarily based on work performed by the
Liquid Sunlight Alliance, which is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Fuels from Sunlight Hub under Award DE-SC0021266.
Soware development was also supported by Toyota Research
Institute and by the Air Force Office of Scientic Research under
award FA9550-18-1-0136.

References

1 M. M. Flores-Leonar, L. M. Mej́ıa-Mendoza, A. Aguilar-
Granda, B. Sanchez-Lengeling, H. Tribukait, C. Amador-
Bedolla and A. Aspuru-Guzik, Curr. Opin. Green Sustainable
Chem., 2020, 25, 100370.

2 R. Vescovi, R. Chard, N. D. Saint, B. Blaiszik, J. Pruyne,
T. Bicer, A. Lavens, Z. Liu, M. E. Papka, S. Narayanan,
N. Schwarz, K. Chard and I. T. Foster, Patterns, 2022, 3,
100606.

3 M. L. Green, C. L. Choi, J. R. Hattrick-Simpers, A. M. Joshi,
I. Takeuchi, S. C. Barron, E. Campo, T. Chiang,
S. Empedocles, J. M. Gregoire, A. G. Kusne, J. Martin,
A. Mehta, K. Persson, Z. Trautt, J. V. Duren and
A. Zakutayev, Applied Physics Reviews, 2017, 4, 011105.

4 J. M. Gregoire, L. Zhou and J. A. Haber, Nat. Synth., 2023, 2,
493–504.
© 2023 The Author(s). Published by the Royal Society of Chemistry
5 E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers,
K. A. Brown, K. G. Reyes, J. Schrier, S. Billinge,
T. Buonassisi, I. Foster, C. P. Gomes, J. M. Gregoire,
A. Mehta, J. Montoya, E. Olivetti, C. Park, E. Rotenberg,
S. K. Saikin, S. Smullin, V. Stanev and B. Maruyama,
Matter, 2022, 4, 2702–2726.

6 M. Seifrid, R. Pollice, A. Aguilar-Granda, Z. Morgan Chan,
K. Hotta, C. T. Ser, J. Vestfrid, T. C. Wu and A. Aspuru-
Guzik, Acc. Chem. Res., 2022, 55, 2454–2466.

7 H. S. Stein and J. M. Gregoire, Chem. Sci., 2019, 10, 9640–
9649.

8 G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang and L. Yang, Nat. Rev. Phys., 2021, 3, 422–440.

9 D. Chen, Y. Bai, S. Ament, W. Zhao, D. Guevarra, L. Zhou,
B. Selman, R. B. van Dover, J. M. Gregoire and
C. P. Gomes, Nature Machine Intelligence, 2021, 3, 1–11.

10 M. A. Ziatdinov, Y. Liu, A. N. Morozovska, E. A. Eliseev,
X. Zhang, I. Takeuchi and S. V. Kalinin, Adv. Mater., 2022,
34, 2201345.

11 J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin and
M. Kra, JACS Au, 2022, 2, 292–309.

12 Z. Ren, Z. Ren, Z. Zhang, T. Buonassisi and J. Li, Nat. Rev.
Mater., 2023, 1–2.

13 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker,
M. Krein, J. Poleski, R. Barto and B. Maruyama, npj
Comput. Mater., 2016, 2, 1–6.

14 L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. E. Yunker, J. E. Hein and A. Aspuru-Guzik, Sci. Robot.,
2018, 3, eaat5559.

15 D. Allan, T. Caswell, S. Campbell andM. Rakitin, Synchrotron
Radiation News, 2019, 32, 19–22.

16 J. R. Deneault, J. Chang, J. Myung, D. Hooper, A. Armstrong,
M. Pitt and B. Maruyama, MRS Bull., 2021, 46, 566–575.

17 T. Konstantinova, P. M. Maffettone, B. Ravel, S. I. Campbell,
A. M. Barbour and D. Olds, Digital Discovery, 2022, 1, 413–
426.

18 F. Rahmanian, J. Flowers, D. Guevarra, M. Richter,
M. Fichtner, P. Donnely, J. M. Gregoire and H. S. Stein,
Adv. Mater. Interfaces, 2022, 9, 2101987.

19 M. Vogler, J. Busk, H. Hajiyani, P. B. Jørgensen, N. Safaei,
I. E. Castelli, F. F. Ramirez, J. Carlsson, G. Pizzi, S. Clark,
F. Hanke, A. Bhowmik and H. S. Stein, Matter, 2023, 6(7),
2095–2245.

20 R. Tamura, K. Tsuda and S. Matsuda, Sci. Technol. Adv.
Mater.: Methods, 2023, 3, 2232297.

21 C. J. Leong, K. Y. A. Low, J. Recatala-Gomez, P. Q. Velasco,
E. Vissol-Gaudin, J. D. Tan, B. Ramalingam, R. I. Made,
S. D. Pethe, S. Sebastian, Y.-F. Lim, Z. H. J. Khoo, Y. Bai,
J. J. W. Cheng and K. Hippalgaonkar, Matter, 2022, 5,
3124–3134.

22 A. G. Kusne and A. McDannald, Matter, 2023, 6, 1880–1893.
23 R. Vescovi, T. Ginsburg, K. Hippe, D. Ozgulbas, C. Stone,

A. Stroka, R. Butler, B. Blaiszik, T. Brettin, K. Chard,
M. Hereld, A. Ramanathan, R. Stevens, A. Vriza, J. Xu,
Q. Zhang and I. Foster, arXiv, 2023, DOI: 10.48550/
arXiv.2308.09793.
Digital Discovery, 2023, 2, 1806–1812 | 1811

https://github.com/High-Throughput-Experimentation/helao-async
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/readme.md
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/readme.md
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/readme.md
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/helao/demos/multi_orch_demo.md
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/helao/demos/multi_orch_demo.md
https://github.com/High-Throughput-Experimentation/helao-async/blob/main/helao/demos/multi_orch_demo.md
https://github.com/High-Throughput-Experimentation/helao-async
https://github.com/High-Throughput-Experimentation/helao-async
https://doi.org/10.22002/q2984-04886
https://doi.org/10.48550/arXiv.2308.09793
https://doi.org/10.48550/arXiv.2308.09793
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d

on
 7

/1
9/

20
25

 1
0:

57
:3

9
A

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
24 M. Sim, M. Ghazi Vakili, F. Strieth-Kalthoff, H. Hao,
R. Hickman, S. Miret, S. Pablo-Garćıa and A. Aspuru-Guzik,
ChemRxiv, 2023, DOI: 10.26434/chemrxiv-2023-v2khf.

25 H. S. Stein, A. Sanin, F. Rahmanian, B. Zhang, M. Vogler,
J. K. Flowers, L. Fischer, S. Fuchs, N. Choudhary and
L. Schroeder, Curr. Opin. Electrochem., 2022, 35, 101053.

26 Asyncio vs. Threading in Python, 2023, https://
superfastpython.com/asyncio-vs-threading/.

27 I. M. Pendleton, G. Cattabriga, Z. Li, M. A. Najeeb,
S. A. Friedler, A. J. Norquist, E. M. Chan and J. Schrier,
MRS Commun., 2019, 9, 846–859.

28 M. Lathkar, High-Performance Web Apps with FastAPI: The
Asynchronous Web Framework Based on Modern Python,
Apress, 2023.

29 L. Bromig, D. Leiter, A.-V. Mardale, N. v. d. Eichen,
E. Bieringer and D. Weuster-Botz, SowareX, 2022, 17,
100991, DOI: 10.1016/j.sox.2022.100991.

30 A. Biswas, Y. Liu, N. Creange, Y.-C. Liu, S. Jesse, J.-C. Yang,
S. V. Kalinin, M. A. Ziatdinov and R. K. Vasudevan, A
dynamic Bayesian optimized active recommender system for
curiosity-driven human-in-the-loop automated experiments,
2023, http://arxiv.org/abs/2304.02484.

31 J. H. Montoya, M. Aykol, A. Anapolsky, C. B. Gopal,
P. K. Herring, J. S. Hummelshøj, L. Hung, H.-K. Kwon,
D. Schweigert, S. Sun, S. K. Suram, S. B. Torrisi,
1812 | Digital Discovery, 2023, 2, 1806–1812
A. Trewartha and B. D. Storey, Applied Physics Reviews,
2022, 9, 011405.

32 S. Ament, M. Amsler, D. R. Sutherland, M.-C. Chang,
D. Guevarra, A. B. Connolly, J. M. Gregoire,
M. O. Thompson, C. P. Gomes and R. B. v. Dover, Sci. Adv.,
2021, 7, eabg4930.

33 J. Li, J. Li, R. Liu, Y. Tu, Y. Li, J. Cheng, T. He and X. Zhu, Nat.
Commun., 2020, 11, 2046.

34 J. M. Gregoire, C. Xiang, X. Liu, M. Marcin and J. Jin, Rev. Sci.
Instrum., 2013, 84, 024102.

35 S. Mitrovic, E. W. Cornell, M. R. Marcin, R. J. Jones,
P. F. Newhouse, S. K. Suram, J. Jin and J. M. Gregoire, Rev.
Sci. Instrum., 2015, 86, 013904.

36 L. Zhou, A. Shinde, J. H. Montoya, A. Singh, S. Gul, J. Yano,
Y. Ye, E. J. Crumlin, M. H. Richter, J. K. Cooper, H. S. Stein,
J. A. Haber, K. A. Persson and J. M. Gregoire, ACS Catal.,
2018, 8, 10938–10948.

37 R. J. R. Jones, Y. Wang, Y. Lai, A. Shinde and J. M. Gregoire,
Rev. Sci. Instrum., 2018, 89, 124102.

38 H. S. Stein, D. Guevarra, A. Shinde, R. J. R. Jones,
J. M. Gregoire and J. A. Haber, Mater. Horiz., 2019, 1251–
1258.

39 Z. Ren, Z. Zhang, Y. Tian and J. Li, ChemRxiv, 2023, DOI:
10.26434/chemrxiv-2023-tnz1x.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.26434/chemrxiv-2023-v2khf
https://superfastpython.com/asyncio-vs-threading/
https://superfastpython.com/asyncio-vs-threading/
https://doi.org/10.1016/j.softx.2022.100991
http://arxiv.org/abs/2304.02484
https://doi.org/10.26434/chemrxiv-2023-tnz1x
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00166k

	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs
	Orchestrating nimble experiments across interconnected labs

