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Advancements in artificial intelligence (Al) for science are continually expanding the value proposition for
automation in materials and chemistry experiments. The advent of hierarchical decision-making also
motivates automation of not only the individual measurements but also the coordination among multiple
research workflows. In a typical lab or network of labs, workflows need to independently start and stop
operation while also sharing resources such as centralized or multi-functional equipment. A new
paradigm in instrument control is needed to realize the combination of independence with respect to
periods of operation and interdependence with respect to shared resources. We present Hierarchical
Experimental Laboratory Automation and Orchestration with asynchronous programming (HELAO-
async), which is implemented via the Python asyncio package by abstracting each resource manager and
experiment orchestrator as a FastAPI server. This framework enables coordinated workflows of adaptive
experiments, which will elevate Materials Acceleration Platforms (MAPs) from islands of accelerated

rsc.li/digitaldiscovery

Introduction

Materials Acceleration Platforms (MAPs)' aim to leverage
modern artificial intelligence (AI) algorithms to accelerate the
discovery of molecular and solid state materials. For solid state
materials, automation and integration with computation® has
been historically achieved via combinatorial methods** and
recently implemented using autonomous or self-driving labs.>*
The pace of advancement in experiment automation is stag-
gering and motivates rethinking of how instruments are made
and controlled. Initial efforts in Al-guided automated workflows
have naturally focused on achieving super-human efficiency of
data acquisition. Here, automated experiment selection allevi-
ates reliance on human researchers but does not supplant
human governance of the scientific line of inquiry and the
strategy for its exploration.” Recent developments in physics
and chemistry-aware models®® as well as hypothesis learning
algorithms' exemplify the ever-increasing sophistication of
automated experiment design. While such algorithms do not
yet rival the decision making of human experts, the trajectory of
Al algorithms clearly indicates that the frontier of experiment
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discovery to the Al emulation of team science.

automation is not the automation of individual experiments but
rather entire workflows and their ensemb]es.

Expanding upon the vision of interconnected workflows for
Al emulation of team science, Bai et al.™* have envisioned world-
wide coordination of self-driving labs driven by the rapidly
evolving fields of knowledge graphs, semantic web technolo-
gies, and multi-agent systems. Ren et al.’> emphasize the critical
need for interconnected laboratories to leverage resources and
learn epistemic uncertainties. To realize this collective vision,
experiment automation software that builds upon the state of
the art"*>* must be developed to interconnect laboratories and
their research workflows. A hallmark of human scientific
research is on-the-fly adaption of experimental workflows based
on recent observations. Human scientists also interleave
workflows spanning materials discovery to device prototyping.>
The interleaved execution of multiple workflows typically
involves shared resources, which is often a practical necessity
for minimizing the capital expense of establishing any experi-
mental workflow. These considerations require “nimble”
experiment automation, and in the present work we describe
our approach to automating nimble, interconnected workflows
via asynchronous programming.

Results and discussion

Fig. 1 illustrates the hierarchical components of a scientific
workflow, with the highest hierarchy being a Science Manager
that designs research projects and strategies for their imple-
mentation. The Workflow Orchestrator implements these

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 The hierarchies of research scope, which are intended to generally describe communication among entities for any research modality, are
illustrate as a Science Manager that establishes projects and strategy, Workflow Orchestrators that manage the implementation of the strategy in
an experiment workflow, Research Managers that process experiment instructions and allocate the necessary resources, and the Hardware/
Software Resources with which the experiments are performed. With this ontology, three generations of experiment automation software are
outlined in which an individual workflow is automated, interconnected workflows are run in parallel, and interconnected workflows are operated
with flexible management that enables a distinct runtime for each Orchestrator and Research Manager.

strategies as (dynamic) series of experiments. Execution of the
workflows requires management of laboratory resources by
Resource Managers, which interface directly with the Hardware/
Software Resources of the lab. During execution of an “auto-
mated workflow,” a human scientist typically serves as Science
Manager, overseeing the execution of automation software that
encompasses a tightly-integrated Workflow Orchestrator and
Resource Manager, which collectively control the workflow's
suite of lab resources.

Parallel execution of automated workflows can be realized
via “interconnected workflows” wherein a human or machine
Science Manager oversees multiple automated workflows that
each run on their own central processing unit (CPU). This
scheme is appropriate when each workflow can operate inde-
pendently. If two workflows share an experiment resource, one
strategy for their automation is to integrate them into a hybrid
workflow that is executed from a single CPU. The shared run-
time among all processes in a single CPU inherently limits
operational flexibility, a runtime interdependence that is
impractical for interconnected labs. In addition to addressing
the needs of shared resources, asynchronous programming
provides the requisite flexibility for experiment automation
tasks such as passing messages, writing data to files, and poll-
ing devices. These needs can be partially fulfilled with multi-
thread programming, although we find asynchronous
programming to be a more natural solution. For a more tech-
nical discussion of the difference between asynchronous
programming and threading, we refer to the reader to ref. 26.

As an example of a shared resource, consider a lab in which
a central piece of equipment such as an X-ray diffractometer or
reactive annealing chamber is used in several distinct work-
flows. Traditional methods of experiment automation would
involve each workflow taking ownership of that equipment
during the workflow's runtime. Combining all workflows in
a single instance of automation software limits the ability of

© 2023 The Author(s). Published by the Royal Society of Chemistry

different workflows to start and stop as dictated by science
management and/or equipment maintenance needs. Human
researchers address this challenge by creating a system to
schedule the requested usage of shared equipment, and the
automation analogue is to have the shared equipment operated
by a broker whose runtime is independent of all other workflow
automation software. This is the central tenet of “Nimble
interconnected workflows” as depicted in Fig. 1, wherein each
resource family is controlled by an asynchronous Resource
Manager. The runtime independence of Resource Managers
and Workflow Orchestrators enables each Orchestrator to
maintain focus on a single research workflow while empower-
ing a Science Manager to coordinate efforts across many
workflows in any number of physical laboratories.

The series of workflow automation capabilities illustrated by
Fig. 1 has been largely mirrored by the evolution of reported
automation software for materials chemistry. Seminal demon-
strations of software for automating an experiment workflow
include ARES,"” ChemOS,* and Bluesky." Continual develop-
ment of these platforms have resulted in new capabilities such
as the generalized ARES-OS" and remote operation with Blue-
sky.”” ChemOS™ and ESCALATE* have increasingly incorpo-
rated ancillary aspects of automation such as encoding design
of experiments and interfacing with databases. These efforts
have built toward multi-workflow integration in HELAO'®" and
NIMS-OS*® as well as object-oriented, modular frameworks for
co-development of multiple MAPs*?** and multi-agent automa-
tion frameworks.”> Enabling independent operation of work-
flow components ultimately requires asynchronous
programming, as envisioned by the present work and Che-
mOS2.0.>* The abstraction of lab equipment as asynchronous
web servers is implemented in HELAO-async using FastAPI,*®
a performant, standards-based web framework for writing
Application Programming Interfaces (APIs) in Python. SiLA2
(ref. 29) is an alternative framework that may be used to realize
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the HELAO-style communication within and among multiple
workflows. To best of our knowledge, HELAO-async is the first
instrument control software platform that realizes the “Nimble
interconnected workflows” paradigm illustrated in Fig. 1, where
workflows can be independently started and stopped while
sharing resources such as centralized or multi-functional
equipment. These capabilities are agnostic to whether work-
flow operation decisions are determined via human or artificial
intelligence, while the independent execution of multiple
workflows is critical for fully realizing the value of hierarchical
active learning and multi-modal AI algorithms.

The implementation of “Nimble interconnected workflows”
in HELAO-async is outlined in Fig. 2. A Science Manager (see
Fig. 1) is implemented as an Operator for active science
management and Observer for passive science management.
The Orchestrator manages workflow-level automation, which
generally involves launching a series of actions on the work-
flow's suite of Action Servers. In the parlance of Fig. 1, Action
Servers are the Resource Managers, which execute actions via
Device Drivers that comprise the Hardware/Software Resources.
The design principle of this framework is to enable asynchro-
nous launching of workflows via Operator-Orchestrator
communication, as well as asynchronous execution of work-
flows via Orchestrator-Action Server communication. When
multiple Orchestrators share a resource, queuing and prioriti-
zation are managed by the respective Action Server.

The HELAO-async implementation described herein is
intended to be agnostic with respect to the type of Operator and
Observer, which may involve any combination of a human
researcher, an autonomous operator selecting experiments via
an Al-based acquisition function, or a more general broker*® for
coordinating experiments across many workflows. The scope of
an Orchestrator is that of a single workflow, and by imple-
menting each Orchestrator as a FastAPI server, the parameter-
ized workflow is exposed to the Operator via custom FastAPI
endpoints. For example, “global_status” is an endpoint of an
Orchestrator FastAPI server that is programmed as follows to
enable any program to request and receive the Orchestrator's
status:

View Article Online
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@self.post("/global_status", tags=["private"])
def global_status():
return self.orch.globalstatusmodel.as_json()

The Orchestrator executes a workflow via Action Server Fas-
tAPI endpoints, for example this abridged version of the
“acquire_data” endpoint, which includes parameters for the
duration and rate of the acquisition:

Qapp.post (£"/{server_key}/acquire_data", tags=["action"])
async def acquire_data(

duration: float = -1,

acquisition_rate: float = 0.2,

return active_action_dict

Fig. 2 also depicts Observers, which can subscribe to the
FastAPI websockets established by an Orchestrator and/or
Action Server. Each Orchestrator and Action Server must be
programmed to publish data of interest to websockets, which
enables any number of Observers to listen-in as needed. Our
common implementation to-date is a web browser-based
Observer (a.k.a. Visualizer) that researchers can launch to
monitor quasi-real-time data streams, a critical capability for
experiment quality control. For example, the Orchestrator web
socket “ws_status” enables any program to subscribe to the
Orchestrator’s status messages:

@self.websocket ("/ws_status")
async def websocket_status(websocket: WebSocket):

await self.orch.ws_status(websocket)

The asynchronous operation at the Orchestrator and Action
Server levels was particularly motivated by hierarchical active
learning schemes, for example human-in-the-loop®**** or fully
autonomous hierarchical active learning.*> When workflow-
level decisions are made by a human with autonomous
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Fig. 2 The HELAO-async framework is outlined as a specific implementation of the “Nimble interconnected workflow” concept from Fig. 1.
Orchestrators manage workflows by controlling Action Servers that manage resources via Device Drivers. By establishing an independent FastAPI
server for each Orchestrator and Action Server, workflows have independent runtimes while sharing resources as needed. A human or Al
Operator manages the collection of Orchestrators, and an Observer can consume data streams from any server. The use of FastAP| endpoints
and websockets for these interactions creates flexibility for the implementation of Operators and Observers.
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workflow execution, a community of asynchronous Orchestra-
tors enables humans to execute on any available workflow. We
envision that this mode of operation will be critical for inte-
grating physically-separated laboratories and realizing cloud
laboratories.'***

HELAO-async is being actively developed in two public

repositories: https://github.com/High-Throughput-
Experimentation/helao-core encompasses the API data
structures and https://github.com/High-Throughput-

Experimentation/helao-async contains instrument drivers, API
server configurations, and experiment sequences. These
repositories contain drivers for our suite of experimental
resources spanning motion control, liquid handling,
electrochemistry,  analytical chemistry, and  optical
spectroscopy. Our Orchestrator-level implementations include
scanning droplet electrochemistry,® scanning optical
spectroscopy,®  electrochemical cells with scheduled
electrolyte aliquots for monitoring corrosion,* and several
methods of coupling electrochemical transformations with
analytical detection of the chemical products.’” These latter
two examples share the need for liquid and/or gas aliquoting
from operational electrochemical cells, for which we typically
use a Tri Plus robotic sample handling system (CTC
Analytics), which is a shared resource across multiple
workflows.

Given our safety and security protocols, readers of this
manuscript may not execute HELAO-async code with our labo-
ratory equipment. While we encourage the duplication and
adaption of our hardware and/or software for operation in other
labs, we have built a virtual demo for the present purposes of
introducing HELAO-async. To create a minimal implementa-
tion of Fig. 2, the demo contains two independent Orchestra-
tors, each with a dedicated Action Server that simulates the
acquisition of electrochemistry data to characterize the over-
potential for the oxygen evolution reaction (OER). We have
packaged previously-acquired electrochemistry data with the
demo.?® The two Orchestrators share a common resource, which
in practice may be the robotic sample handling system. In the
demo, the shared Action Server is an active learning agent that
manages requests for new acquisition instructions from the two
Orchestrators. This shared-resource Action Server runs inde-
pendently and is unaffected by the runtime of each Orches-
trator, which is demonstrated in the demo by independently
starting and stopping the Orchestrators, representing the
asynchronous operation of research workflows within one or
across multiple laboratories. Running the demo batch script
will open five user interface browsers, two Operators that
control the respective Orchestrators, two Visualizers (Observers)
that show the data streams from the respective electrochemistry
Action Server, and a Visualizer (Observer) for the shared active
learning Action Server. This Visualizer shows the progress of the
active learning campaign, including the contributions from
each of the independent Orchestrators. A snapshot of these five
web browser interfaces is shown in Fig. 3. Due to the use of
static random seeding of the active learning, the demo runs
deterministically, where the contents of Fig. 3 show the status

© 2023 The Author(s). Published by the Royal Society of Chemistry
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approximately 17 minutes after launching the demo batch
script.

While the HELAO-async schematic of Fig. 2 indicates the
intended role and scope of each FastAPI server with respect to
the universal research roles summarized in Fig. 1, there
remains flexibility in how to implement HELAO-async for
a given workflow or ensemble of workflows. Regarding the
scope of a single Action Server, a set of resources may be
bundled in a single FastAPI server based on (i) their intended
use as a grouping of shared resources, (ii) the need for
synchronization among the resources, or (iii) safety-related
interdependencies. As examples, consider (i) an autosampler
for a piece of equipment and the piece of equipment itself,
which may have distinct drivers but will always be used together
so it is best to code their joint actions in an Action Server and
abstract the joint action of sampling and measuring as a single
FastAPI endpoint; (ii) an isolation valve and a pump where the
isolation valve needs to be opened before the pump starts and
the pump needs to stop before the isolation valve is closed,
which are couplings of driver steps that are best hard coded
within a single Action Server; (iii) a set of motors where the
limits of the first motor depend on the position of the second
motor, for which evaluating the safety of a given motor move-
ment is best done within a single Action Server. While these
examples illustrate why multiple resources should be bundled
in a single Action Server, the primary counter examples involve
resource sharing and hardware/software modularity. Program-
ming the action queuing and prioritization for an Action Server
that is shared among multiple Orchestrators is best done by
minimizing the set of resources in the Action Server. To best
leverage Action Server code for multiple physical instantiations
of resources, the scope of an Action Server should be limited to
the set of resources that are always implemented collectively
into a workflow. This practice also facilitates error handling,
where code or instrument failure within a given Action Server
will result in the Orchestrator losing access to these capabilities.
However, this type of single-point failure does not inherently
crash the Orchestrator, so other aspects of the workflow may
continue operating. Once the failure is resolved, restarting the
Action Server will make its endpoints available to the Orches-
trator to restore full workflow operation. We note that
programming Orchestrators for automated error recovery is
nontrivial, and the present work focuses on providing the
capabilities to implement such strategies via automaton of
workflows as networks of FastAPI servers.

The multi-Orchestrator demo described above additionally
illustrates optionality with respect to the implementation of Al-
guided design of experiments. If the AI agent is intended to be
a Science Manager across multiple workflows, it should be
implemented as an Operator in HELAO-async. However, in the
demo, the active learning engine is implemented as an Action
Server that is a shared resource for the two Orchestrators. In this
case the Science Manager is a human who configured each
Orchestrator to receive guidance from the active learning Action
Server, which is a prudent mode of operation when the human
will routinely switch an Orchestrator from executing experi-
ments according to AI vs. human guidance. As such, this demo

Digital Discovery, 2023, 2,1806-1812 | 1809
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Fig.3 Ascreenshot from the HELAO-async demo. The command line windows are (a) the Miniconda Python environment from which the demo
was launched, (b) the instance of the first Orchestrator "demo0” and its Visualizer, (c) the instance of the second Orchestrator “"demol” and its
Visualizer, and (d) the instance of the Visualizer for the shared Action Server "GP SIM". (e) and (f) The web user interfaces for the Operators for the
Orchestrators. While various experiment controls may reside in these web interfaces, the demo involves automated execution of active learning
campaigns as programmed in the sequence "OERSIM_activelearn.” The three Visualizers are (g) for the GP SIM Action Server, as well as (h) and (i)
for the electrochemistry Action Servers orchestrated by demoO and demol, respectively. The GP SIM visualizer (g) shows (top) the most recent
communication with an Orchestrator, (bottom) a list of recent acquisitions, and (middle) histograms showing the distribution of catalyst
overpotentials. The four histograms correspond to the two combinatorial libraries associated with their respective Orchestrator and the two
types of overpotentials, those previously measured and those predicted by the Gaussian Process for unmeasured compositions.

may be prescient in the context of instrument control using
large language models that integrate human and AI design of
experiments.* While self-driving labs have traditionally been
constructed with the Al acquisition function as the Operator,
the future of MAPs will likely relegate active learning to be
a resource that facilitates but not governs operation of auto-
mated experimental workflows. The asynchronous program-
ming and implementation of workflows as networked servers in
HELAO-async are designed to enable development of individual
automated workflows followed by their seamless interconnec-
tion with additional workflows that can be managed by any
combination of human and artificial intelligence.

Conclusions

The advent of self driving labs as a fully autonomous imple-
mentation of a materials acceleration platform has broadened
the purview of experimentation automation beyond traditional
high throughput experimentation. Concomitantly, the mate-
rials automation community has envisioned international
networks of laboratories that may be controlled by multi-agent
Al systems and/or human-in-the-loop active learning. As new
automated workflows are developed in isolation and then fed
into broader networks of capabilities, instrument control soft-
ware must be prepared to make the transition from single-
workflow orchestration to participation in many-workflow
automation schemes. Traditional lab automation software
cannot effectively manage sharing of resources among

1810 | Digital Discovery, 2023, 2, 1806-1812

workflows while maintaining an independent runtime envi-
ronment for each workflow. We introduce HELAO-async as
a framework for facilitating the automation of individual
resources, their incorporation into workflows, and the inter-
connection of workflows. Combining object-oriented and
asynchronous programming, HELAO-async abstracts Resource
Managers and Workflow Orchestrators as FastAPI servers.
Communication, both between servers and with additional
programming instances such as web user interfaces and Al-
driven experiment brokers, is implemented using FastAPI
websockets and endpoints. In addition to a demo virtual
instrument to facilitate learning about HELAO-async, the
present work introduces the open source code repositories that
house the automation software for a suite of materials accel-
eration platforms in the high throughput experimentation
group at the California Institute of Technology.

Data availability

The data for the virtual workflow automation demo is available
in the code repository and was previously released along with
publication of ref. 38.

Code availability

The source code for HELAO-async is available at https://
github.com/High-Throughput-Experimentation/helao-core and
https://github.com/High-Throughput-Experimentation/helao-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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async. The instructions for establishing the HELAO Python
are provided in https://github.com/High-
Throughput-Experimentation/helao-async/blob/main/
readme.md. The demo is embedded in the repository, and the
instructions for launching the demo are available at https://
github.com/High-Throughput-Experimentation/helao-async/
blob/main/helao/demos/multi_orch_demo.md.

e Project name: HELAO-async.

e Project home page: https://github.com/High-Throughput-
Experimentation/helao-async.

e Operating system(s): Windows 7, Windows 10, Linux
(limited driver functionality).

e Programming language: Python 3.8+.

e License: MIT.

o DOL: https://doi.org/10.22002/q2984-04886.
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