Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue

Towards a modular architecture for science

i '.) Check for updates ‘
factoriest

Cite this: Digital Discovery, 2023, 2,
1980
Rafael Vescovi,? Tobias Ginsburg,? Kyle Hippe,® Doga Ozgulbas,? Casey Stone,®

Abraham Stroka,? Rory Butler,? Ben Blaiszik, 2 Tom Brettin,? Kyle Chard,
Mark Hereld, ©2° Arvind Ramanathan,? Rick Stevens,®® Aikaterini Vriza, &2
Jie Xu, © 2 Qingteng Zhang ©? and lan Foster & *2®

Advances in robotic automation, high-performance computing (HPC), and artificial intelligence (Al)
encourage us to conceive of science factories: large, general-purpose computation- and Al-enabled
self-driving laboratories (SDLs) with the generality and scale needed both to tackle large discovery
problems and to support thousands of scientists. Science factories require modular hardware and
software that can be replicated for scale and (re)configured to support many applications. To this end,
we propose a prototype modular science factory architecture in which reconfigurable modules
encapsulating scientific instruments are linked with manipulators to form workcells, that can themselves
be combined to form larger assemblages, and linked with distributed computing for simulation, Al model
training and inference, and related tasks. Workflows that perform sets of actions on modules can be
specified, and various applications, comprising workflows plus associated computational and data
manipulation steps, can be run concurrently. We report on our experiences prototyping this architecture
and applying it in experiments involving 15 different robotic apparatus, five applications (one in
education, two in biology, two in materials), and a variety of workflows, across four laboratories. We
describe the reuse of modules, workcells, and workflows in different applications, the migration of
applications between workcells, and the use of digital twins, and suggest directions for future work
aimed at yet more generality and scalability. Code and data are available at https://ad-sdl.github.io/
wei2023 and in the ESI.

Received 31st July 2023
Accepted 26th October 2023

DOI: 10.1039/d3dd00142¢

rsc.li/digitaldiscovery

develop methods for the construction of science factories that

1 Introduction

(cc)

We coin the term science factory to denote a facility in which
pervasive automation and parallelism allow for the integrated
application of experiment, computational simulation, and AI
inference to challenging discovery problems (see Fig. 1) without
bottlenecks or human-induced delays. Such systems promise
greatly accelerated progress in many domains of societal
importance, from clean and plentiful energy to pandemic
response and climate change.'”

Science factories require scale, generality, and programma-
bility in order to support large scientific campaigns and achieve
economies of scale for routine tasks. These are familiar
concerns in conventional manufacturing, and also for HPC
centers and commercial clouds,® which may scale to millions of
processing cores and support thousands of users. We seek to

“Argonne National Laboratory, Lemont, IL 60439, USA. E-mail: foster@anl.gov
*University of Chicago, Chicago, IL 60637, USA
T Electronic supplementary information
https://doi.org/10.1039/d3dd00142¢c

(ESI) available. See DOI:

1980 | Digital Discovery, 2023, 2, 1980-1998

are similarly scalable, general-purpose, and programmable.
Large systems of any type are typically constructed from
modules, simpler subsystems that can be designed and con-
structed independently and then combined to provide desired
functionality.* A key concept in modular design is to hide
implementation complexities behind simple interfaces.®

Discovery

Si
mU/atI-On
Yel
xua\”‘)ad

Inference

(

Fig. 1 Accelerated discovery requires integrated simulation, infer-
ence, and experiment.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00142c&domain=pdf&date_stamp=2023-12-01
http://orcid.org/0000-0002-5326-4902
http://orcid.org/0000-0002-0268-2880
http://orcid.org/0000-0002-5663-8703
http://orcid.org/0000-0001-7842-5496
http://orcid.org/0000-0002-1600-2161
http://orcid.org/0000-0003-2129-5269
https://ad-sdl.github.io/wei2023
https://ad-sdl.github.io/wei2023
https://doi.org/10.1039/d3dd00142c
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002006

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

In the science factory context, modules can possess both
physical and digital characteristics, and thus their interfaces
need to encompass both form factor and programmatic
elements.

Our investigations of these issues have led us to develop
designs and prototype implementations for several elements of
a modular science factory architecture. These include a six-
function programmatic module interface; an associated
(optional) physical form factor, the cart; methods for incorpo-
rating experimental apparatus into modules and for combining
modules into workcells; methods for integrating with other
elements of research infrastructure, such as data repositories,
computers, and Al models; notations for specifying module and
workeell configurations; methods for defining workflows and
applications; and systems software for running applications on
different workcells.

In the sections that follow, we describe these various
elements of a science factory architecture and the results of
experiments in which we employ a prototype implementation to
run biology and materials science applications. We first provide
some background in Section 2. Then, we introduce the concepts
and mechanisms that we have developed to support modular
architecture (Section 3); describe our experiences applying these
methods in applications in biology and materials science
(Section 4); discuss experiences and lessons learned (Section 5);
and finally conclude and suggest future directions (Section 6).
Additional details and pointers to code are provided in the ESL.}

Much of the work reported here has been conducted in
Argonne's Rapid Prototyping Lab (RPL),” a facility established to
enable collaborative work on the design, development, and
application of methods and systems for autonomous discovery.

2 Background

Automation has long been applied in science®® to increase
throughput, enhance reliability, or reduce human effort. High-
throughput experimentation systems are widely used to screen
materials’®** and potential drugs*™* for desirable properties.

View Article Online

Digital Discovery

Autonomous discovery systems, in which experiments are
planned and executed by decision algorithms without human
intervention,>**** are potentially the next step in this trajec-
tory. In principle, such systems can enable faster, more reliable,
and less costly experimentation, and free human researchers for
more creative pursuits. However, the adoption of autonomous
platforms in science has thus far been limited, due in part at
least to the diversity of tasks, and thus the wide variety of
instruments, involved in exploratory research. Success going
forward, we believe, requires substantial increases in scale and
generality (for economies of scale), autonomy (for sustained
hands-off operations), programmability (for flexibility), exten-
sibility (to new instruments), and integration with computing
and data resources, as well as resilience, safety, and security.
These are all issues that we address in our work.

As illustrated in Fig. 2, we can identify a continuum of flex-
ibility in automation approaches. In integrated automation,
a specialized device is manufactured to perform a specific task,
such as for high-throughput characterization.* Such devices are
not intended to be repurposed to other tasks. In fixed automa-
tion, devices are connected in a fixed configuration; here,
retooling for a new application may involve substantial design
and engineering. In flexible automation,*>* devices in fixed
locations are connected by programmable manipulators that
can move materials to any device within their reach; thus,
retooling for a new application requires only substituting
devices and reprogramming manipulators. In reconfigurable
automation, reconfiguration is automated. (Reconfiguration,
a feature of early computers,® is also employed in
microfluidics.>*°) In mobile automation, mobile robots are
used to route materials to devices in arbitrary positions; thus,
only programming is required to retool for a new application or
environment.® Finally, in the oxymoronic but sometimes useful
human automation case, humans handle movement of mate-
rials between robotic stations, an approach used, for example,
in Emerald Cloud Lab.** In general, flexibility increases from
left to right, and speed and reliability from right to left (Fig. 2).
Such approaches can be combined, as in Amazon's automated

=
barrier
Y

Integrated Fixed Flexible

Manual

Mobile

Recohfigu rable

Fig. 2 Automation systems span a continuum of flexibility, speed, and reliability, from the integrated (e.g., as shown here, a microfluidic
laboratory) to the fixed (e.g., Adam?), flexible (e.g., a bio workcell at Argonne), reconfigurable (e.g., a “cart” in Argonne's RPL), mobile (e.g., Liv-

erpool's mobile robotic chemist®), and manual.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2,1980-1998 | 1981

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

warehouses, in which humans are engaged only when robots
fail.

Early autonomous discovery systems (e.g., the influential
Adam*) were typically specialized for a single class of problems.
Both economics and the inherent curiosity of scientists now
demand multi-purpose systems that can easily be retargeted to
different applications—and thus motivate solutions further to
the right along the continuum of Fig. 2. Given a research goal,
knowledge base, and set of appropriately configured devices,
these systems may work iteratively to: (1) formulate hypotheses
relevant to its goal; (2) design experiments to test these
hypotheses, ideally based on existing protocols encoded in
a reusable form;'**>* (3) manage the execution of experiments
on available devices; and (4) integrate new data obtained from
experiments into its knowledge base.

The third of these tasks involves automated execution of
multi-step experimental protocols on multiple devices, with
each step typically taking materials and/or data from previous
steps as input. To avoid an explosion in the number of inter-
device adapters, we want common physical and digital form
factors for materials and data, respectively. Also important are
uniform software interfaces, to simplify integration of new
devices and reuse of code.

Conventional physical form factors are commonly used for
handling samples (e.g., test tubes, multi-well plates, micro-
centrifuge tubes, Petri tubes, cuvettes) and for managing the
experimental environment (e.g., microfluidics, Schlenk lines,*
glove boxes, fume hoods). Apparatus that are to interoperate in
an SDL must either employ the same conventions or incorpo-
rate adapters, e.g., to move samples from one container to
another or to move samples in and out of controlled
environments.

Digitally, we need methods for specifying the actions to be
performed (e.g., transfer sample, open door, turn on heater,
take measurement) and for translating an action specification
into commands to physical device(s). Various representations
for actions have been proposed, with domain of applicability
ranging from a single device®® to classes of experiment: e.g., the
chemical description language XDL'® is an executable language
for programming various experimental processes in chemistry,
such as synthesis; ChemOS***” and the Robot Operating System
(ROS)-based®® ARChemist® have similar goals. (ROS is a poten-
tial common substrate for SDLs, but with limitations as we
discuss in Section 5.) Aquarium* defines Aquarium Workflow
Language and Krill for sequencing steps and granular control of
apparatus, respectively. BioStream®* and BioCoder*® support the
representation of biology protocols. Li et al.** describe a nota-
tion for materials synthesis.

The execution of a specification requires generating suitable
commands for underlying devices: typically via digital
communication, but in some cases, via robotic manipulation of
physical controls,* for example, XDL procedures, which express
protocols in terms of reagents, reaction vessels, and steps to be
performed (e.g., add, stir, heat), are compiled to instructions for
a Chemputer architecture.'®*>*> Depending on the level of
specification, general-purpose robotic methods (e.g., path
planning) may be relevant at this stage.

1982 | Digital Discovery, 2023, 2, 1980-1998

View Article Online

Paper

An important concern in any robotic system, and certainly in
automated laboratories, is monitoring to detect unexpected
results: something that humans are often good at, but that can
be hard to automate. Reported error rates in materials science
experiments, of from 1 per 50 (ref. 43) to 1 per 500 (ref. 6)
samples, show that automated detection and recovery are
important. In other contexts, unexpected phenomena may be
indicators of new science.

Autonomous discovery systems must also engage with
computing and data resources. Vescovi et al** survey and
describe methods for implementing computational flows that
link scientific instruments with computing, data repositories,
and other resources, leveraging Globus cloud-hosted services
for reliable and secure execution. The materials acceleration
operating system in cloud (MAOSIC) platform* hosts analysis
procedures in the cloud.

3 Towards a modular architecture

Our overarching goal is to create scalable, multi-purpose SDLs. To
this end, we require methods that support: the integration of
a variety of scientific instruments and other devices, and the
reconfiguration of those devices to support different applications
(to be multi-purpose); the incorporation of AI and related compu-
tational components (to be autonomous); and expansion of capacity
and throughput by replicating components (to be scalable).

Modularity of both hardware and software is vital to
achieving these capabilities. A modular design defines a set of
components, each of which hides complexities behind an
abstraction and interface.*” In principle, modularity can facili-
tate the integration of new components (by implementing
appropriate interfaces), rapid creation of new applications (by
reusing existing components), system evolution (by improving
components behind their interfaces), reasoning about system
behavior (by focusing on abstractions rather than imple-
mentation details), and system scaling (by replicating
components).

Realizing modularity in SDLs is challenging due to the wide
variety of physical and logical resources (instruments, robots,
computers, data stores, digital twins, AI agents, etc.) that
scientists may wish to employ, and the many experimental
protocols that they may want to implement on those
resources—all limited only by budget and human, perhaps Al-
assisted,*® ingenuity.

In this section, we describe our approach to building
modular science factories. We first introduce key concepts and
mechanisms and five applications that we use in this article to
motivate and evaluate our work. Then, we describe in turn how
we represent modules, workcells, workflows, and applications,
after which we discuss experiments with a common hardware
form factor; thoughts on workcell validation, assembly, and
support; and preliminary work on digital twins and simulation.

3.1 Concepts

We introduce the central concepts that underpin our science
factory architecture: see Fig. 3.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Services: Access
to compute, data

Applications: Call workflows,

8 Repeat until done:
compute, data services

- Run workflow

/| - Alinference @ Compute | - -»| Compute I
{|-Storedata @ Data fos »

v

Workflows: Set of actions on @
modules in workcells l .

Ivl
=

Fig. 3 Architecture concepts introduced in Section 3.1. An application
can engage workflows and compute and data services. A workflow
invokes actions on modules, grouped in workcells. A science factory
would comprise many workcells, plus other components.

Workeells: Sets of modules
accessible by standard
interface, with stations for
deposit/retrieval of labware

=

m
l

3.1.1 Module. The module is the basic hardware + software
building block from which we construct larger SDLs. A module
comprises an internet-accessible service, or node, that imple-
ments the six-function interface of Table 1, plus a physical
device to which the node provides access.

We list in Table 2 the modules employed in the work re-
ported in this article. These modules encompass a considerable
diversity of device types and interfaces; some diversity in sample
exchange format, including 96-well plates®” and pipettes; and
a variety of methods for transferring samples between modules.

View Article Online

Digital Discovery

3.1.2 Workcell. While instruments in an SDL can in prin-
ciple be located anywhere that is reachable via a mobile robot,
we find it useful to define as an intermediate-level concept the
workcell, a set of modules, including a manipulator, placed in
fixed positions relative to each other. A workcell is defined by its
constituent modules plus a set of stations (see next), informa-
tion that allows for the use of the flexible automation model
introduced in Section 2, in which a manipulator moves labware
among devices.

3.1.3 Station. A station is a location within a workecell at
which labware can be placed or retrieved. It is defined by its
labware type (e.g., 96-well plate) and a position in 3D space
relative to its workcell origin. A camera above a workcell can be
used to determine positions and also whether stations are
occupied.

3.1.4 Science factory. Given a suitable set of modules,
a general-purpose, multi-user science factory can be con-
structed by assembling a variety of workcells, linking them with
computational and data services and other required capabilities
(e.g., supplies and waste disposal), and scheduling science
campaigns onto the resulting system: see Section 3.8.

3.1.5 Action. An action is an activity performed by an
instrument in response to an external request, such as (for the
a4s_sealer module), “seal” (heat seal the sample plate currently
located in its shuttle) or (for the platecrane module), “transfer”
(move a sample plate from one station to another). An action is

Table 1 Our science factory module interface defines six operations

Operation Description

about Return description of module and its actions
action Perform specified action

reset Reset the module

resources Return current resource levels, if applicable
state Return state: “IDLE,” “BUSY,” or “ERROR’
admin Module-specific actions: e.g., home

invoked by the action operation of the module interface of Table
1, which directs the specified request to the module, monitors
execution, and returns a message when the operation is done.

We list in Table 3 the operations supported by the modules
used in this work. The actions supported by a module can also
be determined via the about operation.

3.1.6 Workflow. A workflow is a set of actions to be per-
formed on one or more modules. We present examples of
workflows below.

3.1.7 Service. A service is an online service that provides
access to data or computational capabilities intended for use by
applications during experimental campaigns.

Table 2 Modules used in the applications described in this article. The columns are as follows: class categorizes modules by function. Module is
a unique string that we use in this article to refer to the module. Adapter gives the adapter (see Section 3.3) for the module

Class Module Description Adapter
Synthesis ot2 Opentrons OT-2 liquid handling robot ROS
solo Hudson SOLO liquid handler TCP
chemspeed ChemSpeed SWING liquid handling robot TCP
Plate prep ads_sealer Azenta microplate sealer REST
brooks_peeler Azenta microplate seal remover ROS
Heat biometra Biometra TRobot II thermal cycler ROS
liconic LiCONiC StoreX STX88 ROS
Measure camera (e.g.) Logitech C930s ROS
hidex Hidex Sense microplate reader TCP
tecan Tecan Infinite plate reader TCP
Manipulate platecrane Hudson PlateCrane EX microplate handler ROS
pf400 Precise Automation PreciseFlex 400 ROS
ur URS5e robotic arm ROS
sciclops Hudson SciClops microplate handler ROS
Mobility mir MiR AMR mobile robot base REST

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2,1980-1998 | 1983

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Table3 The actions supported by the modules of Table 2. Each action
can be invoked via the action operation of the module interface of
Table 1

Class Module Actions
Synthesis ot2 run_protocol
solo run_protocol
chemspeed open_lid, close_lid,
run_program
Plate prep a4s_sealer seal
brooks_peeler peel
Heat biometra open_lid, close_lid, run_program
liconic get_current_temp, set_target_temp,
get_current_humidity
get_target_humidity,
set_target_humidity,
begin_shake, end_shake
load_plate, unload_plate
Measure camera grab_image
hidex open_lid, close_lid
tecan measure_sample
Manipulate platecrane transfer, remove_lid, replace_lid
pf400 explore_workeell, transfer,
remove_lid, replace_lid
ur transfer, run_urp_program
sciclops home, transfer, get_plate
Mobility mir move, dock

3.1.8 Application. An application is a Python program that
runs one or more workflows and that may also perform other
tasks, such as data analysis and publication.

3.2 Motivating applications

We employ the five applications listed in Table 4 to motivate
and evaluate the work presented in this article. These applica-
tions cover several modalities of scientific experimentation and
collectively implement a variety of tasks that underpin many
SDLs, including data handling and processing.

Color picker is a simple closed-loop application in which
feedback from analysis of camera images is used to guide the
mixing of colored liquids. PCR employs several biology instru-
ments working in tandem to implement the polymerase chain
reaction. Growth assay studies how treatments affect cell growth
and can involve sample management over long periods without
human intervention. Electrochromic, a material science appli-
cation concerned with discovery of electrochromic polymers,
employs chemspeed, tecan, and ur apparatus not used in the
first three applications. Pendant drop similarly involves different

View Article Online

Paper

patterns and different apparatus, including a synchrotron
beamline, in this case for study of complex fluids.

We list in Table 5 the specifics of which application uses which
module. The applications also make use of Globus services, as
described in Section 3.6, to perform data analyses on remote
computers during experiments and to publish both experimental
results and provenance metadata describing how samples were
created and processed. Table 3 shows the expanded list of actions
implemented for each of the modules in Table 2.

3.3 Implementation of modules

We now describe how we implement the various concepts
introduced above, starting with the module. As noted, a module
provides an implementation of the module interface of Table 1.
Each module is represented by a node, a service to which
applications can make requests that should cause the device to
respond appropriately to Table 1 commands.

Thus, integrating a new device, such as an a4s_sealer,
involves the following steps (#1-3 in Fig. 4): (1) implement the
logic required to process commands for the device; (2) imple-
ment the logic required to route messages; (3) deploy the soft-
ware from #1 and #2 on a computer attached to the new device,
start the node service, and record the address of the new node.

3.3.1 Adapters. A module node service receives requests,
maps each request into one or more device-specific instruc-
tions, and returns results. Each device-specific instruction is
implemented by sending an (operation, arguments) request on
the appropriate interface and waiting for a response.

In order to simplify interactions with a variety of devices,
which often come configured with specific software, we find it
convenient to support a range of methods for handling requests
and responses. For example, a4s_sealer has a REST API, so that
to request a seal action we need to send it a REST message:

POST/action params = {“action_handle”: seal, “action_vars™: {} }

On the other hand, platecrane has a ROS interface; thus, to
request that it fetch a plate from tower 1, we need to send, via
a ROS service call to the platecrane ROS node's action service,
the message:

9,

{“action_handle”:

LIS

get_plate”,

9, <

action_vars”: {“pos”: “towerl”} }

Other devices support yet other communication protocols,
such as custom TCP protocols or EPICS. To minimize the

Table 4 Five applications that we use to motivate and evaluate the architecture and implementation presented in this article

Name Area Description Section
Color picker Education Mix liquid colors to match a target color 4.1
PCR Biology Polymerase chain reaction 4.2
Growth assay Biology Treatment effects on cellular growth 4.3
Electrochromic Materials Formulation, characterization of new polymer solutions 4.4
Pendant drop Materials Liquid sample acquisition from synchrotron beamline 4.5

1984 | Digital Discovery, 2023, 2, 1980-1998

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery

Table 5 Modules used to implement the applications in Table 4. A v in a cell indicates that a module is used by the application; (v) that
integration is pending. Annotations illustrate examples of reuse of modules in different applications (red), migration of an application across
workcells (green), and the same action implemented with different modules (blue) in different settings. The mir mobile base is to be used for
cross-workcell transfers, supply, and related tasks: see Section 3.8

Application/workcell
S
\“SV Qg\) ﬂ\éo o
Qz‘ o & &e"’ 8 &\Q’,@
\O‘Q\, Q‘\QS > c’,é’oc b&\
R O L L o &
Class Module ¢ R ¢ ¢ < R
ot2 v v (Vv)
Synthesis solo v
Same module, chemspeed i v
; ications | oo1ae ads_sealer | T (V v
different applications Plate prep orooks. peeler C Z Z /‘_’J
biometra v
Heat liconic v
Same application, camera v v
different workeells | Measure hidex | V) v
tecan v
Same action (transfer), platecrane v
different modules - 1_\4_21;1i—p;.ll_aj[6; -~ pfa00 VA V4
ur v v
sciclops v v
Mobility mir V)))
Compute, Globus Flows v v v I/)
data Globus Search v v 4)))
software changes required to integrate new devices, we allow e A REST adapter implements operations in terms of

the integrator to choose from among a number of adapters. In instrument-specific HTTP requests. Such adapters are written
our work to date, we have found four classes of such adapters naturally in Python, using libraries that can handle required
useful, as follows; others can easily be created:

Workflow workceell configuration workflow definition
orchestration = . . 5) Retrieve address for alias . .
- name: device_alias name: Meaningful string
interface: adapter«_| _ module: device_alias
model: device D command: action

config: identifier <-- o

a3 4) Record address of module node
.. in workcell config, & define alias

6) Invoke action
on module

Software 1) Implement or adapt
repositories interface & driver
B software for new device Module. nOd?
adapter : identifer
L N — : .
--"7 3) Deploy interface, adapter & Ad 3
- L ~ . apter
driver software on computer |. >'\ g
attached to new device to. Driver]
createanode .-~
Adapter l """""""
Device
2) Choose adapter for new device (instrument, sensor, robot)

Fig. 4 Depiction of steps involved in: deploying a module (#1-#3); creating a workcell configuration that contains the information needed to
access a module (#4); and invoking an action on a module from a workflow, by using a module address retrieved from the workcell configuration
(#5, #6).

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 1980-1998 | 1985

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

authentication and HTTP messaging with the specified REST
endpoint.

e A TCP adapter maps operations into protobuf messages
sent over a TCP socket to a server at a specified IP address and
port.

e A ROS adapter translates operations into commands to
a Robot Operating System (ROS) service®® associated with the
component (for action, about, resources) or that extract infor-
mation from a ROS topic associated with the component (for
state).

e An EPICS adapter maps operations into channel access
operations used by EPICS.” It accesses a specified process
variable and performs read and write operations as necessary to
accomplish each operation and action.

3.3.2 Organization of module software. For ease of instal-
lation and use, we organize module software implementations
into four components; the first three are shown in Fig. 4:

e Interface: device-specific code that implements the module
operations of Table 1 and that makes those operations available
to remote clients via the module's chosen adapter.

e Adapter: adapter-specific code used to handle communi-
cations: currently, one of ROS, REST, TCP, or EPICS.

e Driver: device-specific code used to handle low-level
interactions with the physical device, such as connection, raw
command lists, error lists, and error handling.

e Description: device-specific CAD files, Universal Robot
Definition File (URDF), and related configuration information,
for use by simulations and for motion planning.

Given such software and a compatible physical device, a user
can instantiate a module by installing the interface, adapter,
and driver software on a computer that can interact with the
device, and then starting the resulting node. The node is then
accessible over the internet at an address specific to the new
module.

3.4 Specifying workcells

We use a YAML-based notation to define workeells, as illus-
trated in Fig. 5b and in more detail in ESI A.1.7 The YAML

Application u

View Article Online

Paper

document lists a workeell's constituent modules and, for each,
provides configuration information, including the location of
modules and stations relative to the workcell origin.

3.5 Specifying workflows

We use a similar YAML notation to specify workflows. As shown
in Fig. 5¢ and ESI A.2 and A.3,T a workflow names a workeell,
a list of modules within that workcell, and a sequence of actions
to perform on those modules.

3.6 Running applications

3.6.1 Running workflows. Given a workflow specification
workflow and a running workflow executor associated with
a suitable workcell and accessible at a specified wf_address and
wf_port, the following Python code will run the workflow with
a supplied payload. The workflow executor then handles the
details of mapping from high-level workflow specifications to
specific operations on workcell modules.

From Wei import experiment

Experiment = experiment(wf_address, wf_port, exper-
iment_name) experiment.run_job(workflow, payload=payload)

3.6.2 Analyzing and publishing data. An SDL must engage
not only with experimental apparatus but also computers, data
repositories, and other elements of a distributed scientific
ecosystem—so that, for example, experimental results can be
stored in an online repository and then employed, perhaps in
combination with simulation results, to train a machine
learning model used to choose the next experiment.

To support such interactions, we leverage capabilities of the
Globus platform, a set of cloud-hosted services that provide for
the single sign-on and management of identities and creden-
tials and delegation, and for managed execution of data trans-
fers between storage systems, remote computations, data
cataloging and retrieval operations, data analysis pipelines, and
other activities.” In each case, the Globus cloud service handles

config:
globus_local_ep: <UUID>

Kcell workflow
workcel spec
spec
l payload
A

| Workflow executor |

globus_compute_ep: <UUID>

modules:
/action - name: sciclops
/about model: sciclops
run: resources interface: wei_ros_node
config:
y /Status ros_node_address:

globus_search_index: <UUID>

"/std_ns/SciclopsNode"

name: My workflow

modules:
- name: sciclops

flowdef:

- name: PCR plate
module: sciclops
command: get plate
args:

pos: "towerl"
comment: Stage plate

init

[Modue |

(2) (b)

()

Fig.5 Synopsis of our science factory architecture and operation. (a) An application requests the workflow executor to run a specified workflow
with supplied payload on its associated workcell; the executor then generates action and other commands to modules in the workcell. (b) The
workcell specification describes the modules that make up the workcell: here, just one is listed. (c) The workflow specification names the target

module, and specifies an action to perform on the module.

1986 | Digital Discovery, 2023, 2, 1980-1998

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

details such as monitoring of progress and retries on failure.
These services have been used extensively, for example, to
automate flows used to analyze data from, and provide on-line
feedback to, X-ray source facilities.** As an example of the use
of Globus services, the color picker application of Section 4.1
(and ESI A.41) employs Globus Compute® to run a data analysis
routine and Globus Search to publish experimental results to
a cloud-hosted search index.

Other methods could also be used for access to computing
and data services; we employ Globus because of its broad
adoption, security, and reliability.

3.6.3 Logging. An application also logs interesting events
that occur during its execution to a logging service. The events
include, for example, the start and end of the overall applica-
tion, the start and end of a workflow, and the execution of
a Globus flow.*” Events are logged both in a file and via publi-
cation to a Kafka server;** the latter enables tracking of appli-
cation progress by external entities.

3.7 The cart as optional uniform hardware form factor

We have so far placed no constraints on how workcells are
created, other than the practical need to have stations be
accessible by manipulator(s). We can thus define highly
compact assemblages of devices, such as the bio workcell
depicted in Fig. 6.

With the goal of simplifying workcell assembly and disas-
sembly, we have experimented with the use of a common
hardware form factor, the cart: see Fig. 7. A cart is built on
a rigid chassis with horizontal dimensions 750 mm x 750 mm
and height of 1020 mm, plus an additional frame for a camera,
to which are attached devices to connect the cart securely to
neighboring carts or other laboratory components; lockable
wheels, so that the cart can be moved and then fixed in place;
a built-in computer (e.g., Intel NUC or Raspberry Pi); a down-
ward-looking camera on the top of the chassis; a power
supply; identifying markers (currently, QR codes) that also serve
as fiducials, i.e., as physical reference objects in known

View Article Online

Digital Discovery

ads_sealer brooks_peeler

Human-readable

Computer-readable label

label (AprilTag)

Chassis Wheel

Fig.7 The Mk 1 cart, showing its chassis, wheels, and camera, plus two
mounted modules, a4s_sealer (left) and brooks_peeler (right). Other
elements (e.g., computer, power supply strip, networking) are attached
to the back supports, occluded by the instrument table.

positions; and zero or more modules, such as the a4s_sealer
and brooks_peeler seen in Fig. 7. Future designs might also
include supplies, such as water and gas.

Given a set of carts and other equipment, we can construct
a workcell by moving the carts into place and connecting them
to each other. For example, we show in Fig. 8 the RPL workcell
organization that combines eight carts with a Precise Automa-
tion PreciseFlex 400 (PF400) on a 2 m linear rail. Our current
experiments in reconfiguration are carried out manually: we
add each cart to the workcell by rolling it into place, engage
registration pins to secure the cart in position, and connect its
onboard power distribution strip to power on the laboratory
floor. In future work, we intend to perform these assembly tasks
automatically by using mobile tractor robots. This level of
automation will require methods for providing power and
material supplies to the carts without human intervention.

Fig. 6 The bio workcell, shown in real (left) and virtual (right) representations, comprises (1) liconic, (2) solo, (3) platecrane, (4) brooks_peeler, (5)

a4s_sealer, and (6) hidex modules.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2,1980-1998 | 1987

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Digital Discovery

View Article Online

Paper

biometra

4‘2.)\
-

scicl camera

Fig. 8 A photo (left) and schematic (right) of the RPL workcell, comprising eight carts, #0—-#7, plus a central pf400 plate mover for transferring
sample trays among carts. Modules are labeled with the nicknames in Table 2. Cart #5 is empty, and carts #2 and #6 each contain two modules.

Drive up docking for automatic charging of mobile units has
been widely deployed for many applications including home
vacuuming robots; batteries and wireless power delivery are two
other possibilities. Available industrial solutions for utility
coupling could be used for automated secure connection of
power, liquids, and gases.

3.8 Workcell validation, assembly, and supply

Having described how we specify workcells and workflows, and
run workflows on a workceell, we now discuss how other oper-
ations may be implemented.

3.8.1 Validation. Given specifications for a workflow and
a workcell, we can verify that they are consistent with each other
as follows. First, we check that the modules listed in the
workflow are defined in the workcell. Then, for each action in

Fixed instrumeht = | !

-l

EXPT 1 Work Cell Set o

EXPT 2 Work Cell o

g4

o, S

‘ms

EXPT 3 Work Cell °

PCR Workeell 1

Tug-Bots °
0o
|

[= | fi]

="m T
Supplies,disposal

PCR Workcell 2

A 5Work Cells

u g E g v
| teaming with
- =¥

Work Cell with
14 modules,
some duplicates

Work Cell with 6
modules

Tug-Bots
with and without
cargo modules

the workflow, we check that it is defined in the workcell, and
that the associated variables are consistent (e.g., that names
provided for stations exist in the workcell). In a workcell with
a mobile camera, such as that shown in Fig. 8, we can also check
that the physical configuration matches its specification by
instructing the camera to take a picture of each module in turn,
extracting any QR code(s) in each picture, and then verifying
that a QR code is found for each module listed in the specifi-
cation. Finally, before execution, we can ping all modules to
make sure that they are online. During execution, each instru-
ment module validates each action that it receives and rejects
any that are invalid.

3.8.2 Assembling a workeell. Our workceells implement the
flexible automation concept introduced in Section 2, combining
one or more manipulators and a set of instruments, all in fixed
positions and organized so that the manipulator can move

I

n2"a8"[an"[a="Jillad walza ~"(== ~"== ="

u"{u"lun"[un"lu5"luz" E‘I_I:EIBEEI
ul"[ua"laE"|a"lu5"|a=" NN [=e" =2 EE

=

U g e

!

3
g
-
3
0
o

B

!
.
!
!
3
3
3
3

.
.
.
J
3
3
3
3
3
3

SR

i e T PR

Fig. 9 Left: An SDL with three workcells (two with modules required for PCR experiments and one with modules required for growth assay
experiments) plus a mobile robot that can refresh supplies and move samples between workcells, a fixed instrument, and a disposal station. Right:
Conceptual layout for a larger science factory in which tractor robots reconfigure modules.

1988 | Digital Discovery, 2023, 2, 1980-1998

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

labware among instruments. Thus it is natural to think of
distinct assembly and operations steps, with an assembly step
placing modules in desired locations to create a workeell, and
an operations step running applications on the assembled
workeell. In a scalable, multi-purpose SDL, we will likely want
also to automate assembly steps. If using the carts of Section
3.7, we can do this by employing tractor robots to relocate carts,
automated locking mechanisms to attach carts to each other,
and camera detection of fiducial markers®>* (or force feedback
on physical fiducials®) to refine module positions.

3.8.3 Linking workeells. For applications that require the
use of modules in multiple workcells, mobile robots can be
employed to move labware from a station in one workcell to
a station in a second workeell: see Fig. 9. To this end, we will
want mechanisms for determining both the locations and states
of different workeells, and for planning the necessary transfers.

3.8.4 Supplies. Mobile robots can also be used to replenish
supplies and to remove waste: special cases of workceell linking.

3.8.5 Linking with fixed instruments. An SDL may also
include devices that are too large or sensitive to relocate, such as X-
ray machines, MRI machines, and microscopes. The functionality
of these devices can be accessed by appropriate mobile robotics.

3.9 Digital twins and simulation

A digital twin of an SDL mimics the state and operations of the
lab in a simulated environment. This simulated implementa-
tion can then be used for purposes such as workflow testing and
debugging, scaling studies, algorithm development (e.g., via
reinforcement learning), and training.

View Article Online

Digital Discovery

Our workecell specification format includes model informa-
tion for modules that can then be mapped to 3D models of the
associated physical components: the description component
noted in Section 3.3. Our specifications also include location
information that can enable both placement of modules within
a workcell and the placement of workcells in space. As dis-
cussed in Section 3.8, this location information can be obtained
automatically when assembling workcells. Building on this
information, we have employed NVIDIA's Omniverse platform
to construct 3D models and visualizations of our workcells, as
shown in Fig. 6 and 10. Using our workcell specification, such
visualizations can be set up with ease, as many manufacturers
will provide 3D models for their instruments and workcell
location information can be used to automatically arrange
instruments in the scene.

We use NVIDIA's Isaac Sim*>* application for simulation and
digital twins, permitting exploration of both new equipment
and workflows without requiring a physical deployment or the
use of scarce resources. In Fig. 10 we show our simulation
acting as a digital twin, mimicking the actions and physics of
the real laboratory as the sciclops stacker lifts a 96-well plate.
The digital twin is useful as a visualization and comparison tool
to verify that the laboratory is operating as expected. In the
future, we plan to use digital twins to predict the results of
actions before they happen in the real laboratory and thus to
identify unexpected situations such as robot collisions.

These simulation tools can also be used to train vision
algorithms for flexible real-world error detection, a technique
known as sim-to-real transfer.>> Many general-purpose sensors,

Fig. 10 Other views of the RPL workcell of Fig. 8, shown in real (left) and virtual (right) representations. Modules, from front to back: (1) plate
stack; (2) sciclops stacker; (3) a4s_sealer; (4) brooks_peeler; (5) ot2; and (6) pf400. Also visible are (7) 96-well plates: one held by the sciclops in

each image, and a second on the table in the real case.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2,1980-1998 | 1989

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Python Workflow Action Module [: Transfer]
color_picker_loop
Run: cp_wf_new_plate
get_plate sciclops: sciclops—<staging>
transfer pf400: <staging>—camera
Repeat:
Run: cp_wf_mixcolor
transfer pf400: camera—ot2
publish
run_protocol ot2
compute .
combined_protocol
transfer pf400: ot2—camera
take_picture camera
Run: cp_wf_trashplate

transfer pf400: camera—<trash>

Fig. 11 The color-picker application. The Python code, color_-
picker_app.py, implements logic that runs three distinct workflows,
with the second (plus associated publish and compute steps) called
repeatedly until termination criteria are satisfied. The orange box
below the ot2 run_protocol action gives the name of the protocol file.
Module names are as in Table 2.

such as cameras, cannot detect important situations out-of-the-
box, and thus require training for specific situations that may
arise in practice. Some such situations may be rare or difficult to
replicate reliably, making the capture of real-world data
impractical. Omniverse Replicator allows for the placement of
(virtual) sensors in a digital twin, and thus the capture of data
from a wide variety of custom-designed and randomized situ-
ations. State-of-the-art ray tracing and physics simulation
packages built in to Omniverse ensure that these randomized
situations look and act like real-world environments, so that
training data are as realistic as possible.

ColorPicker_149_2_60_2023-04-27

View Article Online

Paper

4 Example applications

We provide implementation details, and in some cases also
report results, for each of the five applications of Table 4.

4.1 Color picker

This simple demonstration application, inspired by Roch et al.**
and described in more detail by Baird and Sparks®**” and
Ginsburg et al.,”® seeks to find a mix of provided input colors
that matches a specified target color. It proceeds by repeatedly
creating a batch of B samples by combining different propor-
tions of the input colors; taking a photo of the new samples; and
comparing the photos with the target. The samples in the first
batch are chosen at random, and then an optimization method
is used to choose the samples in subsequent batches. In the
study reported here, we fix the target color and the total number
of samples (N = 128), while varying the batch size B from 1 to
128, by powers of two.

Fig. 11 depicts an implementation of the application that
targets four of the modules listed in Table 2: sciclops, ot2,
pf400, and camera. We present a somewhat simplified version
of this application in ESI A.4.1 In brief, the Python program
color_picker_app.py operates as follows.

(1) It runs a first workflow, cp_wf new_plate.yaml, which
obtains a new plate from sciclops and places it at camera.

(2) It then repeatedly:

(a) Calls a second workflow, cp_wf mixcolor.yaml (with
specification presented in ESI A.3t) which transfers the plate
from camera to ot2 and runs the ot2 protocol specified in the
file combined_protocol.yaml to combine specified amounts of
pigment from specified source wells to create B specified

Run 32

Best from Run: [151, 83, 74] Run Best Diff: 14.304

Target Color Best Color So Far
. . B
Total Time: 3:56:32 Time To Best: 0:28:36
Loss Graph
Expected Plate _
. best_on plate 1151, 83, 74)
\\
'\\ plate_best_diff 14.304
i
N) paall 2
tried values [[160.177, 103.934, 95.617], [159.62, 109.966, 89.765], [160.102, 103962, 95.627], [124.029, 133.52, 84.15]]
Target Color 193, 69, 18]
differences [19.508, 14.304, 16.942, 33.11]
Best Color So Far (177, 58,19)
Miimam Difference So Far 4755 runnumber 32
Total Plates 2 wells ['C9;, 'C10, 'C11,, 'C121]
Toial lerations 40
run label run-20230427_204439
Popuation Size 4
results (140, 68, 72], [151, 83, 74], (147, 72, 71], [82, 81, 47]]
Well Budget 10
best_so far [177,58,19]

Mixed Colors (205, 72,1051 C1
117,127, 1461 C2

1198, 162,171 C3

23]

exp.yolumes

pos_on plate

[(152.778, 63.374, 58.848], [134.296, 63.506, 77.198], [152.65, 63.484, 58.867], [42.675, 114.037, 118.287]]

1

Fig. 12 Two views of a Globus Search portal for data generated by the color-picker application of Section 4.1, at https://acdc.alcf.anl.gov. Left:
Summary view for an experiment performed on April 27, 2023, involving 20 runs each with 8 samples, for a total of 160 experiments. The images

are those taken by the camera. Right: Detailed data from run #32.

1990 | Digital Discovery, 2023, 2, 1980-1998

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://acdc.alcf.anl.gov
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
Y .
30 - Target color: @ Batch size
— 1
———————— 2
- 4
E 25 T 31 o 8
Y
L2 O
e :
S 201
0
)
0 i
o0
15 1 S G
| o p 9
D e S e e N o0 A1°
P °
10 7 T T T T T
0 100 200 300 400 500

Elapsed time in experiment (minutes)

Fig.13 Results of seven experiments, in each which the color picker application creates and evaluates 128 samples, in batches of an experiment-
specific size B=1, 2, 4, 8, 16, 32, and 64. In each experiment, the target color is RGB = (120, 120, 120), the first sample(s) are chosen at random,
and later samples are chosen by applying a solver algorithm to camera images. Each dot has as x-value the elapsed time in the experiment and as
y-value the Euclidean distance in three-dimensional color space between the target color and the best color seen so far in the experiment. The
numbers in the graph represent selected sample sequence numbers. Results depend significantly on the original random guesses, but overall, as
we might expect, the experiments with smaller batch sizes achieve lower scores but take longer to run.

pigment mixtures; transfers the plate back to camera, and
photographs the plate;

(b) Publishes the resulting data, by using Globus Search
functions (see Fig. 12); and

(c) Invokes an analysis program, by using Globus Compute,
to evaluate the latest data and (if the termination criteria are not
satisfied) chooses the next set of colors to evaluate.

(3) Finally, it calls a third workflow, cp_wf_trashplate.yaml,
to discard the plate.

We show in Fig. 13 results from running this application with
different values for the batch size, B, using in each case a simple
evolutionary solver. (The solver algorithm is interchangeable,
allowing us to test the relative performance of different
approaches; we are currently exploring the performance of
alternatives.) To illustrate the use of data publication capabil-
ities, we show in Fig. 12 two screenshots from the data portal
hosted at the Argonne Community Data Coop (ACDC) repository.

This application can easily be adapted to target different
apparatus (e.g., different color mixing equipment, or Baird and
Sparks' closed-loop spectroscopy lab.?”) It could also be modi-
fied to target multiple ot2s so as to speed up execution.

4.2 Polymerase chain reaction

Polymerase chain reaction (PCR),* a technique used to amplify
small segments of DNA, is important for many biological
applications. Our PCR application uses six of the modules of
Table 2: ot2, biometra, a4s_sealer, brooks_peeler, pf400, and
sciclops. As shown in Fig. 14, it is implemented by a Python
program that runs a workflow that retrieves a PCR plate from

© 2023 The Author(s). Published by the Royal Society of Chemistry

the sciclops plate stack; moves that plate to an ot2, where it runs
a protocol that mixes the enzymes and DNA samples in the
plate; moves the plate from ot2 to a4s_sealer, where it seals the
plate; moves the sealed plate to biometra, where it runs
a program that heats and cools the reagents in sequence to
facilitate the PCR reactions; moves the plate from biometra to
brooks_peeler, where it peels the plate; moves the plate to

Python
per_full

Workflow Action Module [: Transfer]

Run: demo

get_plate sciclops

transfer pf400: sciclops—ot2

run_protocol ot2
PCR_prep_full_plate_multi_noresource
transfer pf400: ot2—a4ds_sealer

seal ads_sealer

transfer pf400: a4s_sealer—biometra

close_lid biometra
run_program biometra
open_lid biometra

transfer pf400: biometra—brooks_peeler

peel brooks_peeler
transfer pf400: brooks_peeler—camera
take_picture camera

transfer pf400: camera—trash

Fig. 14 PCR application. Module names are as in Table 2.

Digital Discovery, 2023, 2,1980-1998 | 1991

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

camera, where it takes a picture; and finally transfers the plate
to an exchange location where it can be used in further work-
flows or, after re-sealing, transported to cold storage for later
use. We present this workflow's specification in ESI A.2.T

4.3 Growth assays for bacterial treatments

This application performs automated experiments to generate
dose-response curves. These dose-response curves are useful
for many microbiology research objectives, including cancer
therapeutic development and antibiotic discovery. Our work in
predicting antimicrobial response®”® and tumor response to
small molecules,** coupled with laboratory screening, provides
an ideal use case for automation that moves towards fully
autonomous discovery.

View Article Online

Paper

Our growth assay application employs six modules of Table 2:
solo, platecrane, a4s_sealer, brooks_peeler, liconic, and hidex. As
shown in Fig. 15, it is implemented by a Python program that
runs two workflows per assay plate created. The first workflow
contains all steps required to create the assay plate, including
liquid handling actions as well as steps to take the initial
absorbance readings on the assay plate, while the second runs
after a timed wait for incubation and contains all steps required
to take the final absorbance readings of the assay plate.

4.4 Autonomous synthesis of electrochromic polymers

Jie Xu and her team have developed an SDL® for the autono-
mous synthesis of electrochromic polymers (ECPs), a type of
polymer material employed in applications such as smart

Python Workflow Action Module [: Transfer]
@siar) growth_curve
TO_Reading_1_16_49_31
Run: create_plate_TO
Dates transfer platecrane: stack4—solo<3>
transfer platecrane: stack5—solo<4>
Apr 05 2023 (1]
Apr 06 2023 1) remove_lid platecrane: solo<4>—stack2
TO_Reading_2_15_11_52
Apr 07 2023 (1] refill_tips solo
May 15 2023 a run_protocol solo
May 30 2023 a hso_1
May 312023 a TO Reading 1 14 33 37 run_protocol solo
Jun 012023 (1] hso_2
Jun 022023 0 run_protocol solo
Jun 13 2023
o hso_3
Jun 14 2023 (1] T12_Reading_2_06_09_12 i
open hidex
Jun 19 2023 a
transfer latecrane: solo<4>—hidex
Jun 20 2023 0 P
un
Jul 13 2023 (5] run_assay hidex
Jul17 2023 (4] T12_Reading_1_05_58_50 Campaign2_wei_cs
Jul 18 2023 a open hidex
Jul 19 2023 B transfer platecrane: hidex—sealer
Jul20 2023 a close hidex
Jul 212023 a TO_Reading_2_18_01_28 seal sealer
1.50 transfer platecrane: sealer—liconic
load_plate liconic
d begin_shake liconic
_ 125
o wait 12 hrs @
[*)]
n
B 1.00 Run: read_plate_T12
) unload liconic
O -
: —|
Q 0.75 transfer platecrane: liconic—peeler
- 1
5 0.
> + T12 peel peeler
i)
© TO open hidex
& 0.50 -
c transfer latecrane: peeler—hidex
p! P
©
o run_protocol hidex
0.25
Campaign2_wei_cs
- R - open hidex
0.00 1 — : ; ; : : .
30 15 7.5 3.75 1.875 0 transfer platecrane: hidex—<trash>

Tetracycline Concentration (ug/mL)

close hidex

Fig.15 Growth assay application. Upper left: A list of datasets, one per experiment, on data portal. Lower left: Results from a single experiment in
which tetracycline solution at varying concentrations was added to E. coli. Y-axis gives blank-adjusted optical density at 590 nm at the start of the
experiment (T0) and 12 hours after start (T12). Results show mean plus error bars from four identical runs. Right: The application, without data

analysis and publication steps.

1992 | Digital Discovery, 2023, 2, 1980-1998

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

windows, displays, and energy-efficient devices.** The use of
polymer materials for such applications can offer diversity and
ease at synthesizability following simple synthetic steps.
However, the interplay between multiple parameters, including
the physicochemical properties of the monomers and their
formulations, make it difficult to predict intuitively the perfor-
mance of these systems. Thus, researchers must develop and
characterize a wide range of formulation candidates through
time-consuming experimentation. To overcome these limita-
tions, they built a self-driving laboratory to synthesize ECPs by
combining different monomers in certain ratios and lengths so
as to modulate the color.

This SDL employs chemspeed, ur, and tecan modules. The
polymer synthesis process is coordinated by a Python applica-
tion that executes a single workflow: see Fig. 16. The workflow
first retrieves the plate with the synthesized polymers from
chemspeed. It then transfers the plate to tecan, which imple-
ments a protocol to measure the absorption spectra with a UvV-
vis measurement device. After the completion of measure-
ments, the plate is transferred from tecan back to chemspeed.
The collected data from tecan are analyzed to determine the
color coordinates of the samples. This information is provided
to a neural network to obtain recommendations for the next
batch of materials.

4.5 Pendant drop for study of complex fluids

Robotic pendant drop provides an end-to-end automated, ps-
resolved XPCS workflow for studying the dynamics and struc-
tures of complex fluids. Ozgulbas et al.® recently demonstrated
that Brownian dynamics of nanoparticle colloid in a pendant
drop is consistent with the reference setup such as thin-walled
quartz capillaries. Furthermore, the pendant drop setup can be
integrated with a robotic arm (UR3e) to fully automate sample

Python
demo_app

View Article Online

Digital Discovery

preparation, characterization, and disposal. This approach
addresses limitations associated with manual sample changes at
the 4th-generation coherent synchrotron X-ray sources that are
being constructed and commissioned around the world.

In a robotic pendant drop setup, the use of an electronic
pipette enables the dispense and withdrawal of the pendant drop
into a pipette tip. The electronic pipette is mounted on a robotic
arm that can readily access vials of the stock liquid samples and
a 96-well PCR plate for precise and repeatable generation of
complex fluid samples with tailored composition profiles. The
end-to-end automation of the complex fluid X-ray scattering
workflow also enables nescience that requires sample handling at
non-ambient environments (e.g., high/low temperature, anoxic).
Finally, the robotic pendant drop is programmed with workflows,
which provides a modular approach that not only improves the
reusability of the robotic code but also facilitates Al-driven,
physics-aware self-programming robots at the Advanced Photon
Source of Argonne National Laboratory in the near future.

The experiments just described used the physical apparatus
and application depicted in Fig. 17. The application uses
a single module, an UR3e arm, to perform the following steps.
The arm, initially positioned at the home base, picks up the
pipette from the docking location by activating the locking
mechanism of the tool changer, and attaches a tip to the pipette
from the tip bin. Then, it prepares the sample on the 96-well
plate by driving the pipette. Next, to obtain the measurements
with the prepared sample, the pipette is placed on the docking
location and a droplet is formed by dispensing the sample; with
an optical microscope used to monitor the optical appearance
of the drop during alignment and the SA-XPCS measurement.
Lastly, the pipette is picked up from the docking location, the
tip is ejected to the trash bin, and the pipette is placed back at
the docking location.

Workflow Action Module [: Transfer]

Run: demo

open chemspeed

run_protocol chemspeed

closed_loop1
close chemspeed
open_gate tecan
transfer ur5: chemspeed—tecan

run_tecan tecan

tecan_protocol

open_gate tecan
transfer ur5: tecan—chemspeed
close_gate tecan

Fig. 16 Left: Elements of the electrochromic polymer discovery experiment. (1) The chemspeed system for polymer synthesis; (2) the ur arm for
polymer sample transfer and loading; (3) the tecan for UV-vis spectrum characterization. Right: The electrochromic polymer discovery appli-

cation runs a single workflow.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2,1980-1998 | 1993

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Python Workflow Action Module

droplet_app

Run: demo

pick_pipette u

s

create_sample u

s

s

place_pipette u
run_droplet ur

pick_pipette u

s

dispose_tip u

s

place_pipette u

s

Fig.17 Elements of the pendant drop experiment, shown in virtual (left) and real (middle) representations. (1) The UR3e arm (2) picks up a pipette
from (3) the docking location by activating (4) the locking mechanism of the tool changer. Also shown: (5) the 45° reflective mirror with a 1 mm-
diameter through-hole located upstream of the sample and (6) the optical microscope used to view the reflection of the pendant drop. (Center
inset shows a pendant drop.) Right: The pendant drop application runs a single workflow, demo, which performs a series of ur actions.

The robotic pendant drop provides an end-to-end automated
solution for studies of dynamics and structures of complex fluid
using light-scattering techniques such as dynamic light scat-
tering, X-ray/neutron scattering, and XPCS. This automated
experimental protocol can be combined with the data managing
workflow,® high-throughput analysis,®” open-source graphical
user interface (GUI)*® and Al-assisted data interpretation® to
provide a self-driving experimental station at future user facil-
ities, paving the way to autonomous material discovery driven
by domain-science-specific questions from facility users.

5 Discussion
5.1 Ability to integrate different instruments

As noted in Section 3.3, the integration of a new device into our
architecture requires implementations of four software
components to implement the operations on Table 1. To date,
we have performed this integration for 15 instruments of quite
different types. We found that the ease or difficulty of this
integration varies a great deal across device. The easiest are
those, like ot2, that provide Python libraries for interacting
directly with the device. Somewhat more difficult are those, like
sciclops, that expose a serial port and document a pre-defined
list of commands that we can send with Python serial
libraries. The most difficult are those that use custom
communication protocols. For example, hidex uses a custom.
NET-specific connection that we can access only through C#-
based connection objects from a specific. NET version. In
future work, we are also interested in automating the process by
which instruments are integrated into the system. This problem
is arguably akin to automated interface discovery, for which
fuzzing” could be employed. Large language models may also
have promise.**”*

5.2 Suitability of ROS

We initially planned to use ROS to control and monitor all
experimental apparatus. However, we found that while ROS was
useful in some contexts (e.g., for controlling mobile robots like

1994 | Digital Discovery, 2023, 2, 1980-1998

mir, for which ROS path planing libraries were helpful), it
introduced unhelpful complexity in others, such as for instru-
ments that run Windows or that produce large quantities of
data. Furthermore, the generality of ROS is not needed in most
cases: many of our instruments are not general-purpose robots
but rather devices that each perform just a few relatively simple
operations. Thus, we arrived at our architecture based on the
interface of Table 1.

5.3 Ability to retarget applications

An important goal of our work is to enable porting of applica-
tions between workcells with different configurations, with few
or no changes to application logic. As an example of successful
transfer, the growth assay application was initially developed, as
described in Section 4.3, on the RPL workcell of Fig. 10. Once
working there, we transferred it to the bio workceell of Fig. 6 in
another lab at Argonne, with different equipment (platecrane
rather than pf400 for transfer actions, solo rather than ot2 for
liquid handling). Only the module names in the workflow needed
to be changed to retarget the workflow to different hardware in
a different configuration.

5.4 Ability to reuse workflows

Another important goal is to enable reuse of workflows across
applications. As an example of reuse, the workflow used in the
growth assay application shares many steps with the workflow
used in the PCR application.

5.5 Notation

We have chosen in this work to represent workcells and work-
flows as YAML documents and applications as Python
programs, with the goal of simplifying the configuration (and
analysis: see Section 3.8) of the first two entity types without
sacrificing the generality offered by a programming language.
We have found this approach to work well for our target
applications, but other approaches (e.g., a programming
language for workflows, or static configurations for complete
applications) may prove advantageous in other contexts.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

5.6 Education and training

Hands-on laboratory work has long been an important element
of experimental science education. Yet the role of researchers
working with SDLs is not to perform experiments themselves,
but to plan, monitor, and guide SDL activities—tasks that
require new skills, and thus new approaches to education and
training.”” We may also wonder whether hands-on experimental
skills become less important—and, if not, how those skills are
to be taught if science factories or other remote SDLs reduce
opportunities for hands-on access.

5.7 Concurrency

Our current infrastructure does not support concurrent execution
of workflow steps, as would be required, for example, to drive
multiple OT2s in the color-picker experiment. Providing such
support will not be difficult. One approach would be to allow
users to launch multiple workflows at once, and then schedule
execution of individual steps within each workflow subject to
appropriate constraints. For example, we might want to ensure
that (a) each workflow step is scheduled only after the preceding
step in the workflow has completed, and (b) a transfer step that is
to retrieve a sample holder from station a and deposit it at station
b is scheduled only when a is occupied and b is empty.

5.8 Failures

The abilities first to detect errors and then to respond to them
without human intervention are crucial requirements for any
autonomous discovery system. We find it useful to distinguish
among three types of error based on how the error evidences
itself during an experiment: (1) a software error is detected and
reported by an instrument or its control software in a way that
allows high-level software to respond programmatically. For
example, a response to an action command indicating that an
instrument is offline can allow the workflow executor to reset
the instrument or request human assistance to restart it. (2) An
operational error is one that prevents a workflow from
proceeding but that is not detected and reported as a software
error. For example, a misaligned manipulator might drop rather
than deposit a sample during a transfer command, but report
correct completion. One approach to detecting such errors is
monitoring, out of band from the instrument, with cameras or
other sensors. Monitoring results can then be used to diagnose
errors and perhaps even to drive remedial actions. (3) An
experiment error occurs when a workflow performs its actions
completely and correctly, but produces an unexpected result:
e.g., cells do not grow or PCR does not take place. Such occur-
rences may require changes to the experimental workflow or
may represent new knowledge.

Ideally, all erroneous conditions would be detected and re-
ported as software errors or operational errors, so that only true
experiment errors are reported as such. To this end, we
continue to review operational errors and, wherever possible
either eliminate them (e.g., by fixing race conditions in device
interfaces) or transform them into software errors (e.g., by
adding checks for exhausted reagents).

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

5.9 Continuous operation

Large-scale, long-term SDL operation requires the automation
of support functions (e.g., replenishing consumables, disposing
of waste, correcting operational errors) that in simpler settings
might be handled by humans. We propose time-without-
human-intervention as a useful metric for quantifying the
level of automation achieved for both individual applications
and a complete science factory running a mixed workload.

6 Summary and conclusions

We have reported on concepts and mechanisms for the
construction and operation of science factories: large-scale,
general-purpose, simulation- and Al-enabled self-driving labo-
ratories. We presented methods for defining individual
modules, grouping modules to form workeells, and running
applications on workcells. We described how a variety of
instruments and other devices can work with these methods,
and how modules can be linked with AI models, data reposi-
tories, and other computational capabilities. We also demon-
strated the ability to reuse modules and workeells for different
applications, to migrate applications between workeells, and to
reuse workflows within applications for different purposes.

We are working to expand the range of devices, workflows,
environments, and applications supported by our science
factory architecture; link multiple workcells with mobile robots;
incorporate support functions such as supply and waste
disposal; run increasingly ambitious science studies; and eval-
uate performance and resilience. We are also working to expand
our simulation capabilities to enable investigation of scaling
issues and ultimately the design and validation of science
factories in which hundreds or thousands of workcells support
many concurrent experiments.

The science factory architecture that we present here is
a work in progress. Its modularity makes it easy to extend with
new instruments, Al and other computational methods, and
new workflows and applications, and its simplicity enables
rapid deployment in new settings. We welcome collaboration
on any aspect of its implementation and application.

Data availability

Data and code associated with this article are at https://ad-
sdl.github.io/wei2023, as described in the ESL{

Author contributions

IF, RV, BB, TB, MH, AR, and RS contributed to the conception of
the modular autonomous discovery architecture. RV, CS, TG,
KH, DO, AS, RB, BB, TB, KC, MH, AR, and IF contributed to the
design of the system described. RV, MH, IF, and DO designed
the modular carts and table. RV, IF, DO, KH, CS, TB, and AS
selected and designed the exemplar workflows. DO and QZ led
the development and data collection for the pendant drop
application. DO and RB designed and produced the pendant
drop simulation and video. DO, AV, and JX led the development

Digital Discovery, 2023, 2,1980-1998 | 1995

https://ad-sdl.github.io/wei2023
https://ad-sdl.github.io/wei2023
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

and data collection for the autonomous synthesis of electro-
chromic polymers application. RV and TG developed the data
portals associated with the experiments. RV and CS managed
the design and development team. The developers of each
software module, maintained in GitHub, are: RV, TG, KH for the
main module; RV, DO, and TG (camera); DO and RV (pf400,
ads_sealer, brooks_peeler, ur); DO, AS, and RV (platecrane,
sciclops); KH, AS, and DO, RV (ot2); AS and DO (biometra); DO
and AV (chemspeed, tecan); RB (rpl_omniverse, the virtual
reality simulation of the modular workcell). DO designed and
implemented the ROS RViz real time visualization. IF led the
writing effort with RV, TG, KH, DO, CS, AS, RB, BB, TB, KC, MH,
AR, and AV contributing to the writing, editing, and reviewing.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We are grateful to Argonne colleagues with whom we have
worked on SDLs, including Gyorgy Babnigg, Pete Beckman, Max
Delferro, Magali Ferrandon, Millie Firestone, Kawtar Hafidi,
David Kaphan, Suresh Narayanan, Mike Papka, Young Soo Park,
Rick Stevens, and Logan Ward. We thank also Eric Codrea,
Yuanjian Liu, Priyanka Setty, and other students for their
contributions, and Ryan Chard, Nickolaus Saint, and others in
the Globus team for their ongoing support. We have benefited
from conversations with many working in this area, including
Sterling Baird, Andy Cooper, Lee Cronin, Jason Hattrick-
Simpers, Ross King, Phil Maffettone, and Joshua Schrier. This
work would not have been possible without much appreciated
support from the leadership and staff of Argonne's Leadership
Computing Facility and Advanced Photon Source. This work
was supported in part by Laboratory Directed Research and
Development funds at Argonne National Laboratory from the
U.S. Department of Energy under Contract DE-ACO02-
06CH11357.

Notes and references

1 R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey,
E. Byrne, et al., The automation of science, Science, 2009,
324(5923), 85-89.

2 A. Aspuru-Guzik and K. Persson, Materials Acceleration
Platform: Accelerating Advanced Energy Materials Discovery
by Integrating High-Throughput Methods and Artificial
Intelligence, Mission Innovation, 2018, https://
nrs.harvard.edu/urn-3:HUL.InstRepos:35164974.

3 L. A. Barroso, U. Holzle and P. Ranganathan, The Datacenter
as a Computer: An Introduction to the Design of Warehouse-
Scale Machines, Springer Nature, 2019.

4 C.Y.Baldwin and K. B. Clark, Chapter 3: What is modularity,
in Design Rules: The Power of Modularity, MIT Press, 2000.

5 D. L. Parnas, On the Criteria To Be Used in Decomposing
Systems into Modules, Commun. ACM, 1972, 15, 1053-1058.

1996 | Digital Discovery, 2023, 2, 1980-1998

View Article Online

Paper

6 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison,
Y. Bai, X. Wang, et al., A mobile robotic chemist, Nature,
2020, 583(7815), 237-241.

7 Argonne National Laboratory's Rapid Prototyping Lab,
https://rpl.cels.anl.gov, accessed December 2022.

8 K. Olsen, The first 110 years of laboratory automation:
technologies, applications, and the creative scientist, J.
Lab. Autom., 2012, 17(6), 469-480.

9 J. S. Lindsey, A retrospective on the automation of laboratory
synthetic chemistry, Chemom. Intell. Lab. Syst., 1992, 17(1),
15-45.

10 M. L. Green, I. Takeuchi and J. R. Hattrick-Simpers,
Applications of high throughput (combinatorial)
methodologies to electronic, magnetic, optical, and energy-
related materials, J. Appl. Phys., 2013, 113(23), 231101.

11 L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput,
et al., Accelerating electrolyte discovery for energy storage
with high-throughput screening, J. Phys. Chem. Lett., 2015,
6(2), 283-291.

12 M. J. Wildey, A. Haunso, M. Tudor, M. Webb and
J. H. Connick, High-throughput screening, Annu. Rep. Med.
Chem., 2017, 50, 149-195,

13 G. Schneider, Automating drug discovery, Nat. Rev. Drug
Discovery, 2018, 17(2), 97-113.

14 W. Zeng, L. Guo, S. Xu, J. Chen and J. Zhou, High-throughput
screening technology in industrial biotechnology, Trends
Biotechnol., 2020, 38(8), 888-906.

15 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker,
M. Krein, et al., Autonomy in materials research: A case
study in carbon nanotube growth, npj Comput. Mater.,
2016, 2(1), 1-6.

16 A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. Khan,
M. Liakata, et al, Towards Robot Scientists for
autonomous scientific discovery, Autom. Exp., 2010, 2(1), 1-
11.

17 E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers,
K. A. Brown, K. G. Reyes, et al, Autonomous
experimentation systems for materials development: A
community perspective, Matter, 2021, 4(9), 2702-2726.

18 S. Steiner, J. Wolf, S. Glatzel, A. Andreou,]J. Granda,
G. Keenan, et al., Organic synthesis in a modular robotic
system driven by a chemical programming language,
Science, 2019, 363(6423), eaav2211.

19 M. Abolhasani and E. Kumacheva, The rise of self-driving
labs in chemical and materials sciences, Nature Synthesis,
2023, 1-10.

20 H. G. Martin, T. Radivojevic, J. Zucker, K. Bouchard,
J. Sustarich, S. Peisert, et al., Perspectives for self-driving
labs in synthetic biology, Curr. Opin. Biotechnol., 2023, 79,
102881.

21 P. M. Maffettone, P. Friederich, S. G. Baird, B. Blaiszik,
K. A. Brown, S. I. Campbell, et al.,, What is missing in
autonomous discovery: Open challenges for the
community, Digital Discovery, 2023.

22 D.W. McClymont and P. S. Freemont, With all due respect to
Maholo, lab automation isn't anthropomorphic, Nat.
Biotechnol., 2017, 35(4), 312-314.

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974
https://nrs.harvard.edu/urn-3:HUL.InstRepos:35164974
https://rpl.cels.anl.gov
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

23 N. Yachie and T. Natsume, Robotic crowd biology with
Maholo LabDroids, Nat. Biotechnol., 2017, 35(4), 310-312.

24 P. Shiri, V. Lai, T. Zepel, D. Griffin, J. Reifman, S. Clark, et al.,
Automated solubility screening platform using computer
vision, Iscience, 2021, 24(3), 102176.

25 B. P. MacLeod, F. G. Parlane, A. K. Brown, J. E. Hein and
C. P. Berlinguette, Flexible automation accelerates
materials discovery, Nat. Mater., 2022, 21(7), 722-726.

26 J. W. Mauchly, The ENIAC, in A History of Computing in the
Twentieth Century, Elsevier, 1980, pp. 541-550.

27 F. Paratore, V. Bacheva, M. Bercovici and G. V. Kaigala,
Reconfigurable microfluidics, Nat. Rev. Chem, 2022, 6(1),
70-80, DOI: 10.1038/541570-021-00343-9.

28 E. A. Galan, H. Zhao, X. Wang, Q. Dai, W. T. Huck and S. Ma,
Intelligent microfluidics: The convergence of machine
learning and microfluidics in materials science and
biomedicine, Matter, 2020, 3(6), 1893-1922.

29 V. B. Kothamachu, S. Zaini and F. Muffatto, Role of digital
microfluidics in enabling access to laboratory automation
and making biology programmable, SLAS Technol., 2020,
25(5), 411-426.

30 A. A. Volk, R. W. Epps, D. T. Yonemoto, B. S. Masters,
F. N. Castellano, K. G. Reyes, et al, AlphaFlow:
Autonomous discovery and optimization of multi-step
chemistry using a self-driven fluidic lab guided by
reinforcement learning, Nat. Commun., 2023, 14(1), 1403.

31 M. Segal, An operating system for the biology lab, Nature,
2019, 573(7775), S112-5113.

32 W. Thies, J. P. Urbanski, T. Thorsen and S. Amarasinghe,
Abstraction layers for scalable microfluidic biocomputing,
Nat. Comput., 2008, 7, 255-275.

33 V. Ananthanarayanan and W. Thies, BioCoder: A
programming language for standardizing and automating
biology protocols, J. Biol. Eng., 2010, 4(1), 1-13.

34 L. M. Roch, F. Hise, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. Yunker, J. E. Hein, et al., ChemOS: An orchestration
software to democratize autonomous discovery, PLoS One,
2020, 15(4), €0229862

35 L. Cronin, N. Bell, F. Boser, A. Bubliauskas, D. Willcox and
V. Luna, Autonomous Execution of Highly Reactive
Chemical Transformations in the Schlenkputer, ChemRxiv,
2023, preprint, DOI: 10.26434/chemrxiv-2023-g3pke.

36 E. J. Chory, D. W. Gretton, E. A. DeBenedictis and
K. M. Esvelt, Enabling high-throughput biology with
flexible open-source automation, Mol Syst. Biol., 2021,
17(3), €9942.

37 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao, R. Hickman
and S. Miret, et al, ChemOS 2.0: An orchestration
architecture for chemical self-driving laboratories,
ChemRxiv, 2023, preprint, DOIL: 10.26434/chemrxiv-2023-
v2khf.

38 M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote and
J. Leibs, et al, ROS: An open-source Robot Operating
System, in ICRA Workshop on Open Source Software, Kobe,
Japan, 2009, vol. 3.2, p. 5.

39 H. Fakhruldeen, G. Pizzuto,]J. Glowacki and A. I. Cooper,

ARChemist: Autonomous robotic chemistry system

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

architecture, in International Conference on Robotics and
Automation, IEEE, 2022, pp. 6013-6019.

40 J. Vrana, O. de Lange, Y. Yang, G. Newman, A. Saleem,
A. Miller, et al, Aquarium: Open-source laboratory
software for design, execution and data management,
Synth. Biol., 2021, 6(1), ysab006.

41 J. Li, Y. Tu, R. Liu, Y. Lu and X. Zhu, Toward “on-demand”
materials synthesis and scientific discovery through
intelligent robots, Advanced Science, 2020, 7(7), 1901957.

42 D. Angelone, A. Hammer, S. Rohrbach, S. Krambeck,
J. Granda, J. Wolf, et al., Convergence of multiple synthetic
paradigms in a universally programmable
synthesis machine, Nat. Chem., 2021, 13(1), 63-69.

43 B. P. MacLeod, F. G. Parlane, T. D. Morrissey, F. Hése,
L. M. Roch, K. E. Dettelbach, et al., Self-driving laboratory
for accelerated discovery of thin-film materials, Sci. Adv.,
2020, 6(20), eaaz8867.

44 R. Vescovi, R. Chard, N. D. Saint, B. Blaiszik, J. Pruyne,
T. Bicer, et al, Linking scientific
computation: Patterns, technologies,
Patterns, 2022, 3(10), 100606.

45 J. Li, J. Li, R. Liu, Y. Tu, Y. Li, J. Cheng, et al., Autonomous
discovery of optically active chiral inorganic perovskite
nanocrystals through an intelligent cloud lab, Nat.
Commun., 2020, 11(1), 2046.

46 F. Stella, C. Della Santina and J. Hughes, How can LLMs
transform the robotic design process?, Nat. Mach. Intell.,
2023, 1-4.

47 ANSI/SLAS 4-2004 (R2012): Microplates — Well Positions,
Society for Laboratory Automation and Screening, 2011,
https://www.slas.org/SLAS/assets/File/public/standards/
ANSI_SLAS_4-2004_WellPositions.pdf.

48 Experimental Physics and Industrial Control System (EPICS),
https://epics.anl.gov, accessed August 2022.

49 R. Chard, J. Pruyne, K. McKee, J. Bryan, B. Raumann,
R. Ananthakrishnan, et al, Globus automation services:
Research process automation across the space-time
continuum, Future Generat. Comput. Syst., 2023, 142, 393~
409.

50 R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard,
B. Blaiszik and et al., FuncX: A Federated Function Serving
Fabric for Science, in 29th International Symposium on
High-Performance Parallel and Distributed Computing. HPDC
20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 65-76, DOI: 10.1145/3369583.3392683.

51 J. Kreps, N. Narkhede and J. Rao, Kafka: A distributed
messaging system for log processing, in Proceedings of the
NetDB, Athens, Greece, 2011, vol. 11, pp. 1-7.

52 A. Wolf, D. Wolton, J. Trapl, J. Janda, S. Romeder-Finger,
T. Gatternig, et al., Towards robotic laboratory automation
Plug & Play: The “LAPP” framework, SLAS Technol., 2022,
27(1), 18-25.

53 A. Wolf, S. Romeder-Finger, K. Széll and P. Galambos,
Towards robotic laboratory automation Plug & Play: Survey
and concept proposal on teaching-free robot integration
with the LAPP digital twin, SLAS Technol., 2023, 28(2), 82-88.

chemical

instruments and
and experiences,

Digital Discovery, 2023, 2,1980-1998 | 1997

https://doi.org/10.1038/s41570-021-00343-9
https://doi.org/10.26434/chemrxiv-2023-g3pkc
https://doi.org/10.26434/chemrxiv-2023-v2khf
https://doi.org/10.26434/chemrxiv-2023-v2khf
https://www.slas.org/SLAS/assets/File/public/standards/ANSI_SLAS_4-2004_WellPositions.pdf
https://www.slas.org/SLAS/assets/File/public/standards/ANSI_SLAS_4-2004_WellPositions.pdf
https://epics.anl.gov
https://doi.org/10.1145/3369583.3392683
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

Open Access Article. Published on 07 November 2023. Downloaded on 2/4/2026 10:17:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

54 NVIDIA Isaac Sim, https://developer.nvidia.com/isaac-sim,
accessed July 2023.

55 W. Zhao, J. P. Queralta and T. Westerlund, Sim-to-real
transfer in deep reinforcement learning for robotics: A
survey, in IEEE Symposium Series on Computational
Intelligence, IEEE, 2020, pp. 737-744.

56 S. G. Baird and T. D. Sparks, What is a minimal working
example for a self-driving laboratory?, Matter, 2022, 5(12),
4170-4178.

57 S. G. Baird and T. D. Sparks, Building a “Hello World” for
self-driving labs: The Closed-loop Spectroscopy Lab Light-
mixing demo, STAR Protoc., 2023, 4(2), 102329.

58 T. Ginsburg, K. Hippe, R. Lewis, D. Ozgulbas, A. Cleary and
R. Butler, et al., Exploring Benchmarks for Self-Driving Labs
using Color Matching, arXiv, 2023, preprint,
arXiv:2310.00510, https://arxiv.org/abs/2310.00510.

59 J. Bartlett and D. Stirling, A short history of the polymerase
chain reaction, in PCR Protocols, Humana Press, 2003, pp.
3-6.

60 P. F. McDermott and J. J. Davis, Predicting antimicrobial
susceptibility from the bacterial genome: A new paradigm
for one health resistance monitoring, J. Vet. Pharmacol.
Ther., 2021, 44(2), 223-237.

61 M. Nguyen, R. Olson, M. Shukla, M. VanOeffelen and
J. J. Davis, Predicting antimicrobial resistance using
conserved genes, PLoS Comput. Biol., 2020, 16(10), €1008319.

62 F. Xia, M. Shukla, T. Brettin, C. Garcia-Cardona, J. Cohn,
J. E. Allen, et al., Predicting tumor cell line response to
drug pairs with deep learning, BMC Bioinf., 2018, 19, 71-79.

63 A. Vriza, H. Chan and J. Xu, Self-driving laboratory for
polymer electronics, Chem. Mater., 2023, 35(8), 3046-3056.

64 T. Abidin, Q. Zhang, K. L. Wang and D. J. Liaw, Recent
advances in electrochromic polymers, Polymer, 2014,
55(21), 5293-5304.

1998 | Digital Discovery, 2023, 2, 1980-1998

View Article Online

Paper

65 D.Y. Ozgulbas, D. Jensen Jr, R. Butler, R. Vescovi, I. T. Foster,
M. Irvin, et al., Robotic pendant drop: containerless liquid
for ps-resolved, Al-executable XPCS, Light: Sci. Appl., 2023,
12(1), 196.

66 Q. Zhang, E. M. Dufresne, Y. Nakaye, P. R. Jemian,
T. Sakumura, Y. Sakuma, et al, 20 ps-resolved high-
throughput X-ray photon correlation spectroscopy on
a 500k pixel detector enabled by data-management
workflow, J. Synchrotron Radiat., 2021, 28(Pt 1), 259-265.

67 F. Khan, S. Narayanan, R. Sersted, N. Schwarz and A. Sandy,
Distributed X-ray photon correlation spectroscopy data
reduction using Hadoop MapReduce, J. Synchrotron
Radiat., 2018, 25(Pt 4), 1135-1143.

68 M. Chu, J. Li, Q. Zhang, Z. Jiang, E. M. Dufresne, A. Sandy,
et al., pyXPCSviewer: an open-source interactive tool for X-
ray photon correlation spectroscopy visualization and
analysis, J. Synchrotron Radiat., 2022, 29(Pt 4), 1122-1129.

69 J. P. Horwath, X. M. Lin, H. He, Q. Zhang, E. M. Dufresne and
M. Chu, et al., Elucidation of Relaxation Dynamics Beyond
Equilibrium Through Al-informed X-ray Photon
Correlation Spectroscopy, arxiv, 2022, preprint,
arXiv:2212.03984, DOI: 10.48550/arXiv.2212.03984.

70 J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao and
C. Kruegel, et al., DIFUZE: Interface aware fuzzing for kernel
drivers, in ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2123-2138.

71 M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji,
L. B. Kristensen and K. Darvish, et al, Errors are Useful
Prompts: Instruction Guided Task Programming with
Verifier-Assisted Iterative Prompting, arXiv, 2023, preprint,
arXiv:230314100, DOI: 10.48550/arXiv.2303.14100.

72 K. L. Snapp and K. A. Brown, Driving School for Self-Driving
Labs, Digital Discovery, 2023, 2, 1620-1629.

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://developer.nvidia.com/isaac-sim
https://arxiv.org/abs/2310.00510
https://doi.org/10.48550/arXiv.2212.03984
https://doi.org/10.48550/arXiv.2303.14100
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00142c

	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c

	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c

	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c

	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c
	Towards a modular architecture for science factoriesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00142c

