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Integrating automation and autonomy into self-driving laboratories promises more efficient and
reproducible experimentation while freeing scientists to focus on intellectual challenges. In the rapid
advances being made towards self-driving laboratories, automation and autonomy techniques are often
convoluted due to similarities between them and ambiguous language, leaving the trade-offs between
them overlooked. In this perspective, we address differences between making a process occur without
human intervention (automation) and providing agency and flexibility in action (autonomy). We describe
the challenges of autonomy in terms of (1) orchestration, how tasks are organized and coordinated; (2)
facilitation, how devices are connected and brought under automated control; and (3) scripting
languages, how workflows are encoded into digital representations. Autonomous systems require
advanced control architectures to handle a reactive, evolving workflow, involving control abstractions

and scheduling beyond what current automation approaches provide. The specification of an
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Accepted 18th September 2023 autonomous system requires goal-oriented commands and context awareness, whereas automation
needs exact, unambiguous instructions for reproducibility and efficiency. We contend that this contrast
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Introduction

As machine learning and laboratory automation have advanced,
interest in the creation of self-driving laboratories has increased
and generated proof-of-concept platforms.”** These platforms
aim to improve experimental precision, accuracy, throughput,
and reproducibility, accelerating the acquisition of scientific
knowledge and freeing up the effort of scientists to focus on
deeper theoretical questions.”*?

Previous discussions concerning automation and autonomy
have included: (a) a theoretical basis for comparing the degree
of cognitive automation in chemical design™ and in holistic
experimental design and interpretation,'® (b) prior demonstra-
tions of automated research in the chemical, materials, and life
sciences,'?® (c) the interplay between the components of
automation and improved artificial intelligence,>**** (d) the
practical considerations of developing automated platforms,***
and (e) the associated data-management of automated
workflows.***¢ In this perspective, we address the requirements
and consequences of designing for autonomy in contrast to
automation and discuss the challenges with its implementation
and the community adoption of autonomy-enabling tools. In
the discussion of design, control, and encoding of autonomy,
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the development of autonomy-enabling technologies.

we include our approach® as an example of designing
autonomy-supporting tools for a self-driving experimental
platform, comprising multiple autonomous agents.

In prior publications on autonomy, the definition of
autonomy has been flexible: automation coupled with machine
learning for cognitive processes,"”>*** the extent to which the
automation's research is indistinguishable from that of
a human researcher,” a paradigm where automation is goal-
oriented,*” the extent to which a system can achieve a set of
goals in a given context,® or as a synonym of automation.** To
avoid ambiguity, we define automation herein as the act of
making a process occur without human intervention and
autonomy as a paradigm where feedback and adaptive decision-
making afford the system agency over the manner of its actions.
This self-determinism is often reflected in a change from
instruction-oriented to goal-oriented automation—two design
patterns that have different needs and have similar, but
distinct, effects on self-driving laboratories (Table 1).}

The design of an automatic and autonomous system starts
with the goals of the system and how these are codified. These
objectives cascade into requirements and consequences for
facilitation and orchestration then into scripting (Table 1). For

+ Similar to computer programming, it is possible to achieve any functionality
using any design paradigm; different designs exist to make achieving desirable
functionality easier and more extensible.
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Table 1 High-level comparison of the design needs and ramifications of automation and autonomy in the development of experimental

Autonomy

Robust process

Exact reproducibility

Process facilitation and
orchestration requires input/output

Orchestrator manages concrete
Scripts require specific imperatives
Designer needs to explicitly account

for every (reasonable) eventuality

Expedite platform setup

System actively learns robustness
Adaptive operation (agency)
Process facilitation and
orchestration must support
planning, analysis, and learning
tasks

Orchestration needs to handle both
abstract and concrete instructions
Designer needs to provide a means
for control architecture to evolve

Improve software and hardware maintainability

Manage material and information throughput

Maintain platform operation
Standardized interfaces for control

Unidirectional/Hierarchical control-
Records of performance (logs) may

be pass/fail (process is already fully

Full and exact specification of

platforms
Automation
Design. What is required and what Goal
is the objective?
Consequence
validation
tasks
Facilitation & orchestration. How Goal
are interfaces designed? What
controls scheduling and
coordination?
Consequence
flow
specified)
Scripting. How are processes Goal
codified and to what end? process
Consequence

Scripts concern tasks and workflows
(well-defined)

Porting scripts between systems is
pass/fail (the recipient system either
has the capability to run the script
or not)

Standardized interfaces for control
and feedback
Bidirectional/Collaborative control-
flow

Process control (feed-back/-forward)
Precise logs must be generated
during operation

High-level specification of process
Expressive power (generalizability)
Scripts concern goals and objectives
(vague)

Porting scripts between systems is
adaptive, but potentially lossy (the
recipient system may modify the
workflow)

automation, the goals of robustness and precision result in
a direct control architecture and rigorous instructions, which in
turn yield scalable, portable, and transparent workflows.
Conversely, for autonomy, the goals of adaptability and
expressive power result in a highly context-aware control
architecture and underspecified but powerful instructions,
which in turn yield robust workflows with few discarded
experiments. In this sense, the design pattern of autonomy
trades efficiency in in-domain automation for the flexibility to
make out-of-domain processes possible. Notably, autonomy is
not the pinnacle of automation: an autonomous platform can
have human agents, and a fully automatized, perfectly specified
process leaves no degrees of freedom for there to be
autonomy.*®

Self-driving laboratory example

Our foray into autonomous experimentation is a self-driving,
automated experimental platform to discover small, dye-like
molecules.”> The platform iteratively predicts molecules
given a set of desired properties (UV/Vis spectra, water—
octanol partitioning, and photodegradation rate), plans
syntheses, organizes reactions into 96-well plates, performs

1260 | Digital Discovery, 2023, 2, 1259-1268

syntheses and workup, isolates and characterizes products,
and uses this information to update its predictors. The
platform comprises a controller, four computer agents, and
databases for experimental design and experimental results.
Each of the four agents is provided access to a collection of
laboratory equipment: (a) a liquid handler, (b) a robotic arm,
(c) an HPLC-MS and fraction collector, and (d) a storage
carousel, plate-reader, a bespoke high-temperature reactor
for well plates, and a solar-simulating light source. The
platform was designed to be generalist, but with concessions
to air-sensitive reactions, photo- and electro-chemistries,
and temperatures outside 5-200 °C. The challenges of
machine-learning-driven, multi-step synthesis necessitated
the inclusion of autonomy to handle unknowns in the
workflow (e.g., new reactions or conditions proposed by the
machine learning software). The primary injections of
autonomy into the platform are: (a) the ability of the agents
to modify the workflow, which comprises the order, dura-
tion, and identity of all operations required for the experi-
ments (or batches thereof), and (b) high-level directives from
the controller that the agents translate into hardware-level
commands based on platform and experimental contexts
found in the databases.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Designing for autonomy

Unfortunately, there is no universal solution for adding
autonomy to an automated experimental platform. On the task
level, process control is a form of autonomy: disturbances from
the setpoint are corrected via adjustments to input parameters
such as temperature or flow rate.* Self-configuration'®** and
automated error recovery” are forms of autonomy on the plat-
form and workflow levels, respectively. Autonomous platforms
rectify incompatibilities with the experimental design rather
than discard experiments. Such rectification is necessary to deal
with unexplored or poorly understood chemical or material
spaces. Since predicting high-level process goals is easier than
predicting specific instructions, there has been a continued
interest in the abstraction of chemical processes.>***' This
abstraction trades the (exact) reproducibility and specificity of
instruction-oriented automation strategies for improved flexi-
bility and fidelity (i.e., the successful execution of an experi-
ment, regardless of the experiment's outcome).

Our platform accounts for the uncertainties that arise from
model-driven chemical synthesis, by utilizing workflow-level
adaptivity and task-level operational insights. To this end,
each agent is treated as a “robotic expert”*>—afforded the ability
to determine how best to accomplish its goals and, if it cannot,
the ability to modify the workflow itself by changing or adding
tasks to rectify obstacles. This provides a means for both
automatic error recovery and reactive processing.

Rectifications make the platform more robust in executing
workflows. Similarly, the ability to expand the workflow (e.g.,
adding isolation steps for each successful reaction in a batch)
allows for actions to be planned which could not be known at
the inception of the workflow. While the mutability of the
workflow greatly increases the autonomy of the platform, it
comes at the cost of transparency as a completed workflow may
be substantially different from one proposed by the experi-
mental designer.

We suggest that robotic experts should be decoupled from
their tools. This would allow a robotic expert to inspect all
functionality available to it, including equipment shared
between agents. This expands capability and reduces the
chance of breaking workflows when modules are modified.
Such separation of the decision logic from the agent also
decouples the sharable aspect of the robotic expert (its decision
logic) from the hardware- and software-specific implementation
details, and allows the expert to be portable to other systems
with minimal overhead.

While the first generations of (semi)autonomous platforms
have used hard-coded logic, with standardized data capture
goal-oriented platforms may learn from past experiments and
self-optimize experimental protocols. For such fully autono-
mous agents to proliferate, their training data would need to be
accessible to others. This will require publishing experimental
logs or precise summaries of decision logic such that others do
not have to train their robotic experts from scratch.

To achieve active learning in these robotic experts, data
capture and formatting for autonomous systems need richer

© 2023 The Author(s). Published by the Royal Society of Chemistry
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and more structured information than existing paradigms like
FAIR® alone can manage.**** To ensure adequate logging for
scientific rigor, standardized loggers will need to capture
information on the sample, hardware, and platform levels.
Fortunately, there exist bases for (meta)data capture and
formatting in the ORD,** CRIPT,* HELAO," ESCALATE,* and
ESAMP*® approaches which can augment FAIR logging.

Challenges with such log mining include the question of
how to capture complex interactions (e.g., the previous workflow
left a residue on a pipette) and how to share these observations
with other platforms as these observations are highly contextual
and can become too large to be sensibly utilized. Existing
commercial automation hardware does not possess the level of
logging detail required, often requiring supplementation with
cameras or other sensors**'***—forestalling the development
of such a standard until auditing features are sufficient.

Ultimately, the degree of autonomy appropriate for a system
depends on its purpose. Autonomy comes at the cost of
increased management complexity, more difficult scalability,
and decreased raw throughput, but provides improved experi-
mental fidelity and the ability to explore unfamiliar chemical
spaces.

Orchestration and facilitation

Facilitator software and middleware, which ease the integration
of hardware and software systems into a coherent, program-
matically controllable platform, are crucial for the rapid devel-
opment of self-driving laboratories. Orchestration software,
which manages coordination, signaling, and the flow of infor-
mation between systems (often including the user and any data
repositories), is critical for the robust control of automated
platforms with multiple instruments. Facilitation and orches-
tration software can be purpose-built and are often packaged
together (as a controller) to align with specific applications.

The creation of a universal controller (applicable to any
workflow, in any domain, on any platform) is challenged by the
trade-off between structure (ease) and freedom (power) and how
the nature of the application limits adaptability. Even within
a single domain, the scalability of a controller to more intricate
workflows or larger experimental platforms can be a challenge.
Complexity and additional control layers may worsen latency,
risk leaks in modularity (making code harder to modify for new
applications), and hinder data capture and organization.***!
The structure that makes a flow-chemistry controller easy to use
may preclude adaptations to batch-chemistry applications, and
vice versa; and providing the power to handle both risks being
too convoluted to be generally useful. Second, reproducible
research requires rigorous data management (material prove-
nance, detailed records of measurables and observations,
transparent data processing, etc.); however, modifying how
controllers handle data can often break other controller func-
tionality. A final challenge to controller universality is human
interaction and its variability. Humans, as administrators or
agents, require user-interfaces and protocols to ensure experi-
ments are not corrupted.

Digital Discovery, 2023, 2,1259-1268 | 1261
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There are a few facilitators which were designed to be
adopted by other laboratories, notably ChemOS*** (commer-
cially as Atinary), Hierarchical Experimental Laboratory Auto-
mation and  Orchestration”  (HELAO), Experiment
Specification, Capture and Laboratory Automation Tech-
nology** (ESCALATE), Materials Acceleration Operation
System®® (MAOS) (and its in-cloud version MAOSIC®'), LeyLab,®
BlueSky + Ophyd,* and Autonomous Research System Oper-
ating System® (ARES OS). These facilitators reduce coding
burdens, as they automate many of the integration steps, and
can tutor the development of automated platforms through the
analysis of their scaffolding; however, none are universal, and
the nature of an application may require creating a new
controller in-house.

Our application required the independent (and potentially
concurrent) execution of workflows comprising batch-synthesis,
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Fig. 1 Visualization of the offloading of information from the inter-
system messages to requests made to the database. (A) Physically
automated approach in which agents with preloaded methods are
triggered by a scheduler. (B) Recent approaches in which experiments
with preloaded methods are selected by an algorithm and orches-
trated in parallel with triggers or fully specified signals. (C) Collabora-
tive approach in which algorithmically selected experiments with
preloaded workflows are orchestrated by live scheduling and specified
by agents from database queries. Examples of the minimal signals and
responses used in this work are shown.
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isolation, and characterization experiments grouped into 96-
well plates. Moreover, networked control was required as
a single computer was insufficient to handle all the equipment.
After reviewing available controllers at the time, we decided to
design our controller in-house.

Traditional unidirectional control structures (Fig. 1A and B)
do not lend themselves to agents which may need to construct
or adapt their own methods on the fly. Our collaborative
architecture uses minimal signals, and the bulk of information
transfer is relegated to database queries (Fig. 1C). Commands
specify only enough information to look-up and validate infor-
mation from the design database (Fig. 1C, minimal signal).
Responses specify enough information to guide how the
orchestrator should proceed—if the operation succeeded, the
system was already busy, there was a recoverable error, or there
was an error requiring human intervention—along with some
logging details (Fig. 1C, response).

These minimal, standardized signals helped keep the
controller flexible and expandable despite the poor standardi-
zations of low-level labware commands and application
programming interfaces (APIs). The lack of commercial auto-
mation standards meant that instrument-specific details for
each operation on the platform had to be manually coded.
These could be organized and contained within each agent,
since the minimal signal structure meant that changes to
agents would not affect the controller.

This use of multiple independent agents is shared between
many controllers—owing to how modularity eases the modifi-
cation and implementation of new capabilities and protects
networks of systems from cascading crashes (e.g., one agent
going offline does not crash other agents or halt the controller).
Paradigms that improve containment will likely guide the
design of future controllers. Importantly, it makes substituting
systems easier; for example, simulated and user-mediated
operations are invaluable for development, maintenance, and
minimizing downtime. While it would seem antithetical to
implement a mode where a human can seamlessly perform
tasks on an autonomous platform, an autonomous platform
need not be completely automated—sometimes a task is more
efficiently performed by a human.

While the interfaces of goal-oriented agents and their
networks are crucial for both automated and autonomous
systems, the adaptability of autonomous systems imposes
a unique burden on orchestration, particularly on scheduling.
When a system can modify its own workflow in response to
feedback, which may be delayed by multiple steps (e.g, a reac-
tion's success or failure is not known until after analysis), it
risks scheduling conflicts and resource mismanagement.
Absent parallelized, autonomous agents, previous schedulers
could rely on (prioritized) first-come first-served algo-
rithms**+**** and ready-checks.?”*

To overcome the challenges of nondeterministic workflows,
our orchestrator supports the dynamic allocation of resources,
performs safety checks for agent operation and potential
congestion of resource traffic on the platform, and a scheduling
algorithm that has both a planning horizon extending beyond
one task and handles temporal constraints between tasks.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Overview of the scheduling and conflict management algorithm. (A) Preparation of workflow information from the database. (B) Grouping
of time-constrained operations into blocks. (C) Comparison of the candidate scheduling block and in-progress scheduling blocks to ensure
there is no agent-time conflict. (D) Simulation (initialized from the database) of resource positions on the platform to detect potential gridlocks.

Conflicts in (C) and (D) are marked in yellow.

When planning multiple, non-identical workflows in parallel,
the scheduler does not perform scheduling optimization as
workflows frequently change and the appropriate optimization
algorithms require significant computational effort. We
generate a satisfactory schedule with an algorithm that selects
the best option at each decision point which does not risk
a future scheduling conflict (Fig. 2).

Orchestration is constrained by the inherent ordering of the
workflow and the capabilities of each instrument requested. In
addition, we imposed that partially completed tasks cannot be
suspended to run another task and that tasks may contain
scheduling constraints. Supported temporal constraints
include (a) no relation, (b) a defined wait period between two
tasks, and (c) a minimum wait period between two tasks. For
constraints requiring a maximum allowable time between
tasks, the window of opportunity was assumed to be zero
seconds. Such windows are often contextual (e.g., before
significant evaporation or hydration of solvent) and would
require sensors not currently present on our platform. Each
task's specification requires a record of start and end times as
well as time estimates that can be adjusted by agents during
execution to provide the scheduler with up-to-date information.
This temporal information is then used to detect timeout errors
and conflicts when scheduling new tasks.

Scheduling is accomplished by building and filtering a pool
of candidate workflows. The design database is pulled for all
complete, underway, and idle workflows (Fig. 2A). Idle work-
flows are filtered based on the completion of prerequisites, and
the first incomplete task is identified. The last complete and
first incomplete operations are inspected for scheduling
constraints. This inspection cascades forward, and any group of
constrained tasks is considered as one block (Fig. 2B). Candi-
date blocks are then screened to ensure all agents are

© 2023 The Author(s). Published by the Royal Society of Chemistry

operational. Each candidate block is evaluated against
underway task blocks using a conflict matrix (Fig. 2C), and
intersections of both agent and expected operational time are
identified. The traffic of items on the platform is simulated with
the candidate block to check for gridlocks with the existing,
underway blocks (Fig. 2D). The remaining candidates are scored
on the age of their workflow and their time overdue for
a scheduled operation. There is a penalty for workflows that
report recoverable errors without initiating a recovery protocol
or have a status discrepancy, such as a human using a system
without proper check-out. The highest-ranked task is selected
for execution.

In reflecting on this scheduler, it became clear that the
inclusion of sample monitoring would be advantageous for an
autonomous platform. Given a means to oversee samples not
undergoing an operation (such as tracking evaporation or
exposure), an autonomous system could adjust scheduling
constraints or insert operations to better preserve/restore
samples®* (also known as “parking” samples'). Moreover, the
requisite sensors and models could provide a way to afford
meaningful estimates for maximum allowable times between
operations.

The design of autonomy-supporting facilitation and
orchestration software remains a challenge. Interfaces need to
transmit sufficient and properly formatted streams of infor-
mation for adaptive control at the task and workflow levels, and
orchestrators must be accommodating to flexibility in the
workflows. With the differences in workflows between fields
and applications, it becomes difficult to select a single archi-
tecture that can meet all potential application needs while also
minimizing overhead and remaining accessible to the scientists
using it.
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As developments in chemistry automation integrate the
chemical, material, robotic, and software sciences, laboratories
could collaborate with skilled software engineers to ensure the
necessary support is present for developing these projects. This
would address a critical gap in current self-driving laboratory
software: the depth of software development skill required to
make such automata functional and accessible is daunting to
those who would benefit most from its general use. Such in-
house expertise would balance the power of autonomous
chemistry software and establish its accessibility to future
researchers. Eventually, it is possible that commercial or
community projects can be shared to increase the accessibility
of software tools without the need for software experts for
deployment or further development. Laboratories could then
either use a software package wholesale or build their own
system piece-wise from standardized modules to accommodate
new research domains.

Encoding workflows

Workflows that support branching or procedural generation
and comprise diverse, concurrent operations, can improve
robustness and the overall capabilities of a platform. Increased
dynamism and inter-workflow heterogeneity, however, add the
burden of allocating resources, coordinating materials and
data, scheduling/parallelization complexity, and unambigu-
ously representing the workflow in a digital format. The nature
and capabilities of this digital encoding determine the
complexity of platform-executable workflows. Three notable
chemistry process scripting languages that aim to be both
generalizable and maintained for community use are DL,*"**%7
CRIPT,* and Autoprotocol.>®>®

xDL and Autoprotocol are human- and machine-readable
prescriptive languages that aim to be hardware agnostic and
computationally unambiguous for reproduction between labo-
ratories. Languages may make assumptions about the basic
conceptual unit of the platform (e.g., an experiment, a reaction
template, a batch, a laboratory vessel, etc.). The scripting
language employed may affect the adaptability of workflows.
Autoprotocol only supports fixed workflows (lacking runtime
evaluations and branching logic). xDL does allow monitoring
steps and loops with dynamic feedback control, but not
branching workflows. Another challenge of prescriptive script-
ing languages is the disconnect between instructed and realized
actions and quantities. More descriptive languages, such as
CRIPT, can capture the full history of reagents, materials, and
processes—though often at the cost of facile human
interpretability.

Any scripting language will require some level of compilation
to be translated into instructions for a physical platform. More
concise languages, such as xDL, require more interpolation to
fill in gaps whereas highly descriptive languages, such as CRIPT,
require more interpretation to discern which details are rele-
vant. While individual versions of each language may be
modified to meet the goals of a single project, a consistent
community standard improves the transferability of scripts
between laboratories and can accelerate collaborative projects.
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Scripting languages highlight the difference between auto-
matic and autonomous design. An automatic workflow requires
fully specified actions that can be reproduced without interpo-
lation or interpretations, whereas an autonomous workflow is
conducted entirely through interpolation and interpretation of
goals and contexts. Languages that attempt to handle both risk
being too vague for automation and too restrictive for
autonomy.

Two fundamental challenges with scripting languages for
autonomy are (a) accounting for new operations and adapta-
tions required by an ever advancing scientific field and by
evolving autonomous agents and (b) balancing abstraction with
reproducibility. The inclusion of a means for incorporating new
base directives] in a scripting language inhibits the shareability
and reproducibility of a workflow as implementation details
become required to translate or compile the script. Similarly,
the adaptability required by autonomous workflows contradicts
a community goal for automation whereby scripting languages
act as a standard to help laboratories develop, share, and
reproduce experiments as any adaptations are context-
dependent and may be governed by stochastic or unpredict-
able events (e.g., network connectivity, nucleation events, etc.).

We required a language for batch chemistry in well plates that
was dynamic and could be interpreted by a human in both its
planned and ultimate form. We encoded workflows and their
metadata in dictionaries and hosted them in a local database.
These digitized workflows were constructed by extending and
filling templates based on the required steps and reaction condi-
tions for batches of multistep syntheses, organized by well plate.
The data representation of the workflow serves to support adapt-
ability, and human readability, through three primary choices:

Firstly, steps in the workflow document are high-level, well-
plate-oriented commands, such as “prepare_wellplate” or
“hplc_semiprep”. While the abstraction of multiple subtasks
into a single task is utilized by most orchestrators, these are
either fixed abstractions®*** or are defined at compile-time.>* By
separating the directive (workflow specifications) from the
details (databases), the agent, acting as the robotic expert, can
fill in and implement these high-level commands using live
data.

Secondly, the well plates are referenced by a semantic alias in
the workflow (e.g., “reaction_plate” or “filtrate_plate”). This
improves human readability and allows any compatible, avail-
able well plate to be used and linked to the given alias at run-
time—a useful feature when managing resources between
multiple workflows in parallel.

Finally, the workflow itself is mutable, allowing agents to
modify the workflow, typically by inserting new steps, and
convey information to other agents, typically by adding new
wellplates or updating step or well detail fields. The actual
actions performed on each well or well plate (as applicable) are
logged or can be recovered from either the workflow document
or the scripts generated for hardware execution.

i This is distinct from the composition of existing base directives into
a higher-order directive, often called a macro or method, which exists as
a means of organizing and simplifying code.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Desiderata of APIs for chemical automation and autonomy, in decreasing order of priority

Control

Reporting

(1
(2
(3
(4
(
(

Publicly accessible and thorough documentation

Safe changes of state

Method generation & validation, as applicable

Validate current system state

Perform any operation accessible via the user interface, as applicable
Unrestricted changes of state

5
6

RN 2NN AN

Standardization

Autonomy benefits from standards in automation; however,
autonomy is itself challenging to standardize as it is charac-
terized by its deviation from established protocols.

Concerning automation, the improvement of APIs, both
vendor- and user-made, would facilitate the development of
automated and autonomous platforms—a list of needs for
control and reporting is provided in Table 2. When published,
APIs should have minimal technical debt.®*** Exposing low-level
functionality allows platforms the power to accomplish tasks
beyond the well-structured methods often exposed to users for
ease. Moreover, rich reporting allows more robust, responsive
operation and provides the details required for a platform to
learn. The construction of a public repository of these APIs,
where all submissions are cleaned of stylistic and programmatic
errors, and versioned (both for their own features and for what
they control), would greatly facilitate laboratory automation.
However, this may represent an opportunity cost and a potential
threat to the intellectual property of industry. It is also difficult
to justify the development cost of an industry standard when it
would limit market opportunities to license proprietary auto-
mation software packages/expansions. A government program
or consortium of academic and industrial laboratories collab-
oratively pushing for the realization of chemical and material
automation software and hardware standards may be best
equipped to realize this goal.

Any singular automation research laboratory is ill-suited to
drive standards in automation as its role is to push boundaries
and develop new technologies. Existing frameworks, without
considerable modification, may not meet the needs of novel
automated chemistry platforms. Individual laboratories are
likely to create their own code and autonomy frameworks (intra-
laboratory standards), applicable to the focus areas of the
laboratory, to facilitate expansion and cross-generational use.
However, collective action for the standardization of automa-
tion between laboratories would make it easier to expand self-
driving laboratories into new research areas in chemical and
materials sciences, enabling new discoveries. In the meantime,
sharing intra-laboratory standards can help accelerate stan-
dardization. By providing publicly accessible and thorough
documentation, other groups can better learn from, deploy, and
adapt existing technologies.

While there are many automated chemistry systems, span-
ning discovery to optimization, platforms capable of autono-
mous experimentation are much less common. Few of the latter

© 2023 The Author(s). Published by the Royal Society of Chemistry

(2) Confirmation of receipt responses

(3) Report current system state

(4) Non-proprietary data export

(5) Rich, meaningful operational responses
(6) Logging and data-capture integration

exhibit much beyond process-level autonomy. Despite their
scarcity, each demonstrates different architectures for autono-
mous research. This journey toward autonomy in chemistry is
still in its infancy. It may be best, for the time being, to embrace
the diversity of ideas and architectures presented in existing
and future automated systems before attempting to establish
standards for autonomy. Considering the field of computation,
a field to which chemical automation has been routinely
compared,* despite its age and maturity, there exists a thriving
ecosystem of coding paradigms, languages (e.g., Python, C++,
Rust, MATLAB), operating systems (e.g., Windows, macOS,
Unix), and architectures. If chemistry automation is similar,
then it is likely that multiple application standards will arise,
each suited for a general use-case or experimental architecture,
as will a more general set of guidelines or principles for auto-
mation and autonomy which are multidisciplinary.

Conclusions

Great strides are being made to automate chemistry to the point
that entire experimental workflows can be executed under
programmatic, machine-learning-driven control with little to no
human intervention. The development of automation- and
autonomy-supporting tools, however, have historically been
convoluted due to the ambiguity between them. The self-
determinism required by autonomy lends itself to flexible,
goal-oriented chemical programming which in turn is poised to
accelerate research in novel domains; however, further work is
needed to develop this paradigm as its flexibility presents
a design challenge with a broad solution space.
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