
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Artificial intellige
Department of Chemistry, Indian Institute of

Pradesh, 453552, India. E-mail: biswarup@

† Electronic supplementary informatio
recognition; hyperparameter tuning of M
the best-tted XGBR model; RDKit n
Pearson's correlation matrix; RDKit ng
plot ensuring stability of XGBR mo
hyperparameter tuning of classication
check of the best-tted LR classic
identication for rotation dynamics; tra
adsorption energy and translocation time
of in-plane rotation on tran
https://doi.org/10.1039/d3dd00118k

Cite this: Digital Discovery, 2023, 2,
1589

Received 23rd June 2023
Accepted 11th September 2023

DOI: 10.1039/d3dd00118k

rsc.li/digitaldiscovery

© 2023 The Author(s). Published by
nce aided recognition and
classification of DNA nucleotides using MoS2
nanochannels†

Sneha Mittal, Souvik Manna, Milan Kumar Jena and Biswarup Pathak *

Artificial intelligence (AI) has revolutionized the landscape of genomics, offering unprecedented

opportunities for rapid and cost-effective single-molecule identification. Herein, with a goal of achieving

ultra-rapid and high throughput DNA sequencing at the single nucleotide level, we propose AI-

empowered MoS2 nanochannels as a proof-of-concept. The proposed nanochannel provides unique

transmission and current–voltage (I–V) fingerprints for each nucleotide, enabling high-throughput DNA

sequencing. Leveraging the XGBoost regression (XGBR) algorithm, the technology allows the prediction

of DNA transmission fingerprints with a mean absolute error (MAE) as low as 0.03. Integration of SMILES

(simplified molecular input line entry system) string generated RDKit fingerprints leads to a noteworthy

reduction of 16% in the MAE values. In addition, the logistic regression (LR) algorithm achieves perfect

classification accuracy of 100% for each quaternary, ternary, and binary DNA nucleotide. The

interpretability of the LR algorithm is greatly enhanced through SHapley Additive exPlanations (SHAP)

analysis. The proposed AI-empowered nanotechnology holds immense potential for personalized

genomics, opening new avenues for precise and scalable DNA sequencing.
Introduction

High-throughput DNA sequencing is crucial for unravelling the
genetic code, understanding biological processes, and
advancing personalized medicine, making it a fundamental
necessity in medicinal research and healthcare.1–4 Nanopore/
nanochannel technology has now made it possible to
sequence a chromosome-size long DNA at the single-molecule
level with industrial scalability.5–8 Rajan et al. reported
a proof-of-concept based study utilizing Fano resonance driven
two dimensional molecular electronics spectroscopy for
molecular ngerprinting, DNA sequencing, and cancerous
methylated DNA nucleobase recognition through armchair
graphene nanoribbons.9 The method helps in resolving the
conductance signal overlapping issue in DNA sequencing.
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Transverse tunneling current-based DNA sequencing is
a promising approach for single molecule identication of DNA
nucleotides.10–12 The electrical conductance or transmission is
one of the primary detection signatures in the nanopore/
nanochannel-assisted single-molecule measurements.
However, because of certain factors such as electrode nucleo-
tide coupling, orientational variations, nucleotide electronic
states, and motion of DNA passing through the electrodes,
transmission proles oentimes exhibit a severe signal overlap,
making it difficult to interpret the data with a high degree of
accuracy.13,14 Besides, the state-of-the-art nanopore/
nanochannel technology is expensive and time-consuming,
and not directly suited for rapid identication and classica-
tion of DNA nucleotides. The search for a technology capable of
highly accurate identication and classication of DNA nucle-
otides is an urgent and critical need of the hour.

Because of size tunability, robustness, and compatibility
with semiconductor technology, solid-state 2D materials have
been extensively explored for DNA sequencing.10,15–17 Recently,
transition metal dichalcogenides (TMDCs) have emerged as
a highly promising candidate for de novo DNA sequencing
applications, with MoS2 being particularly intensively investi-
gated due to its high electron mobility and direct bandgap.18–20

According to a recent study by Farimani et al., MoS2 nanopores
exhibit a notably higher signal-to-noise ratio (SNR > 15) for
nucleobase detection when compared to graphene (SNR ∼ 3).20

In addition, MoS2 nanopores can operate without degradation
Digital Discovery, 2023, 2, 1589–1600 | 1589

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00118k&domain=pdf&date_stamp=2023-10-05
http://orcid.org/0000-0003-2567-4274
http://orcid.org/0000-0002-9828-9900
http://orcid.org/0000-0002-9972-9947
https://doi.org/10.1039/d3dd00118k
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00118k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002005


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
for an extended duration of time, making it an attractive
candidate for high throughput DNA sequencing.21

With recent advancements, articial intelligence (AI) has
emerged as a dominant platform for accurate identication of
biomolecules, including but not limited to nucleotides,22–24

amino acids,25 viruses,26,27 bacteria,28,29 sugars,30 and so on. AI
has the ability to distinguish between specimens of similar
characteristics with a high degree of accuracy and without prior
knowledge of readouts of the complete genome. To address the
major issues of complexity in DNA signal interpretation and
classication, in this study, we propose AI-empowered nano-
technology as a new tool for ultra-rapid and accurate identi-
cation and classication of DNA nucleotides. Given
experimental feasibility and scalability, we use MoS2 nano-
channels as a model eld-effect-transistor (FET)-based device.18

In our pursuit of AI-aided DNA recognition and classica-
tion, we took our rst step by developing a highly efficient
machine-learning (ML) tool that can predict the transmission
ngerprints of all four DNA nucleotides. Aerward, using these
transmission proles, we aim to classify each quaternary,
ternary, and binary DNA nucleotide and explore new avenues
for interpretable ML-aided ultrafast, cost-effective, and high
throughput DNA sequencing. To better illustrate our approach,
Fig. 1 Schematic illustration of AI-aided electrical recognition and clas
a MoS2 nanochannel FET-based device. The device comprises left and rig
respectively. This schematic highlights the use of the back gate voltage (V
all four DNA nucleotides, and further implementation of these fingerprints
aided high throughput DNA sequencing.

1590 | Digital Discovery, 2023, 2, 1589–1600
a schematic is given that visually depicts the AI-aided DNA
recognition and classication process (Fig. 1). Finally, a DFT
(density functional theory) guide to experimental studies is
provided by determining the key DNA ngerprints (sensitivity,
current–voltage characteristics, adsorption energy, and trans-
location time) with a detailed understanding of molecular
interactions, offering valuable insights and direction for future
experimental research.
Results and discussion
ML aided DNA recognition

Toward ML-aided DNA recognition, our rst step was to select
the important input features. Herein, for the efficient training
of the ML regression models in the prediction of transmission,
we use RDKit ngerprints of DNA nucleotides as input features.
RDKit is a widely used open-source cheminformatics toolkit
that provides a comprehensive set of tools for handling and
analyzing chemical structures and related data.31 RDKit tools
encodemolecular structures into xed-length numerical vectors
to generate characteristic ngerprints, which can capture the
complex relationships between atoms and targeted properties
and enable more accurate analysis of chemical compounds.32,33
sification of DNA nucleotides (dAMP, dGMP, dCMP, and dTMP) with
ht electrodes, which act as the source (VS) and drain of electrons (VD),

G), and a ML regression tool for predicting transmission fingerprints of
to classify DNA nucleotides and gain new insights into interpretable AI-

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00118k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Herein, RDKit ngerprints are generated from molecular
SMILES (simplied molecular input line entry system) strings,
as shown in Fig. 2. SMILES features offer a distinct approach to
represent chemical compounds through a linear notation using
strings composed of a xed set of characters.34,35 This unique
representation allows for a standardized and consistent way of
describing compound structures, enabling efficient processing
and analysis of chemical information.

The extracted RDKit ngerprints enable the processing of
DNA nucleotides with a comparable chemical composition,
shape, and size while incorporating a comprehensive array
(vector representation) of structural information. All the struc-
tural information of each DNA nucleotide (SMILES) has been
encoded into a binary vector of length 2048 where each bit of
ngerprint represents the presence or absence of a specic
substructure or molecular feature within the molecule. On
account of particular importance in transmission prediction,
key features (described in Text S1†) derived from the elemental
and molecular properties of the nucleotides have also been
included in the input training dataset.36,37 In this respect, cor-
responding to a single DNA nucleotide, we have a total of 2048
RDKit ngerprints and 8 elemental and molecular features in
the input training dataset. The details of ML regression tools are
given in the ESI† (Text S1).
Fig. 2 SMILES strings of DNA nucleotides and principal component an
coupled molecular and elemental features leads to a reduction of 99.85
represents the accumulated contribution of each principal component t

© 2023 The Author(s). Published by the Royal Society of Chemistry
The next important step is to determine the output, i.e., the
transmission function. To obtain the transmission proles, we
initially examined the most stable conguration (Fig. S1 and
S2†) of each DNA nucleotide adsorbed on the MoS2 nano-
channel surface. A detailed description of this assessment can
be found in the ESI† (Text S2). Furthermore, we have employed
a non-equilibrium Green's function (NEGF) combined DFT
method, as applied in the TranSIESTA code, to calculate the
transmission function.38,39 The transmission function T(E,Vb) is
determined by using the equation,

T(E,Vb) = Tr[GL(E)GC(E)GR(E)G
†
C(E)]

where GC(E) and G†
C(E) are the retarded and advanced Green's

functions, and GL(E) and GR(E) is the coupling matrix of the le
and right leads, respectively.

To remove redundancy and reduce the dimensionality of the
input feature vectors, we employ principal component analysis
(PCA) from the ‘scikit-learn’ library (Text S1†).40 The cumulative
explained variance plot in Fig. 2 demonstrates that only 3
principal components (PCs) are sufficient, leading to
a substantial reduction in the input feature space dimension.
Therefore, in place of 2056 features, we utilize these 3 PCs as
inputs for learning of the ML algorithms. Since the
alysis (PCA). Herein, PCA for the SMILES generated RDKit fingerprint
% of the input dataset dimensionality. Cumulative explained variance
o the overall variability in the dataset.

Digital Discovery, 2023, 2, 1589–1600 | 1591
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Table 1 Mean absolute error (MAE) for 10-fold cross-validation using
the models XGBoost regression (XGBR), random forest regression
(RFR), extra tree regression (ETR), and light gradient boosted machine
regressor (LGBR). Test MAE values for each utilized regression model
are also given

Fold XGBR RFR ETR LGBR

1 0.19 0.28 0.38 0.53
2 0.12 0.20 0.36 0.45
3 0.16 0.25 0.42 0.43
4 0.18 0.16 0.26 0.37
5 0.15 0.27 0.49 0.54
6 0.21 0.19 0.28 0.44
7 0.22 0.27 0.38 0.53
8 0.18 0.27 0.41 0.52
9 0.15 0.15 0.34 0.42
10 0.22 0.19 0.34 0.38
Mean MAE �
standard
deviation

0.17 � 0.03 0.22 � 0.04 0.36 � 0.06 0.46 � 0.06

Test MAE 0.15 0.25 0.38 0.47
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transmission function (T) is a function of energy (E), it is
necessary to include energy values as an important input
feature vector. To this end, we have a total of 4 input features (3
PCs and 1 energy feature) in the input training dataset, having
a total of 2000 transmission data points (500 data points for
each nucleotide in the energy (E) range of ±2.5 eV).

Furthermore, we have employed four prevalent ML regres-
sion models, namely, XGBoost regression (XGBR), random
forest regression (RFR), extra tree regression (ETR), and light
gradient boosted machine regression (LGBM), which are avail-
able in the ‘scikit-learn’ library.40 To ensure the optimal
performance of the models, we perform hyperparameter tuning
using the RandomizedSearchCV method.40 The details of tuned
hyperparameters for each ML regression model can be found in
the ESI† (Table S2). The models are assessed based on their
ability to predict unseen data by using 75% of the input data for
training and 25% for testing. A performance metric, the mean
absolute error (MAE) has been utilized to analyze the model's
performance in the prediction of the test dataset. To ensure the
stability and generalization of the ML models, we have per-
formed 10-fold cross-validation (Text S1†) and calculated the
MAE and standard deviation for each fold, as shown in Table 1.
The close similarity between the mean MAE values from 10-fold
cross-validation and the test MAE values indicates that the
models are stable and can be reliably generalized to a new
dataset. Looking at the test MAE values, the XGBR model is
found to be the best-tted model with a minimum test MAE
score of 0.15, which may be due to its high scalability and
capability of handling large datasets with complex non-linear
relationships between input features and output variables.41

Furthermore, to ensure the stability of the best-tted model
XGBR, evaluation of the scatter plot between train-test predic-
tions and population stability index (PSI) analysis is carried out
(Fig. S3†). The details of PSI analysis can be found in the ESI†
(Text S1). The train-test scatter plot displays a tight cluster of
1592 | Digital Discovery, 2023, 2, 1589–1600
points that follows the ideal diagonal line. Additionally, the PSI
values for both xed-size and quantile bins were found to be
low. These ndings provide strong evidence that the model
XGBR is stable and can make consistent predictions on unseen
data.

To provide an insight into the importance of SMILE string
generated RDKit ngerprints, we tried to check the perfor-
mance of the best tted XGBR model in the absence of RDKit
features. In this prediction, we observed an increase of 16% in
the MAE value. This nding sincerely establishes the perti-
nency of RDKit ngerprints in more accurate DNA recognition
with de novo feasibility. The train-test scatter plot in the RDKit
ngerprint eliminated XGBR prediction can be found in the
ESI† (Fig. S4). To get a better understanding of how these
molecular and elemental features (without RDKit nger-
prints) are correlated and their relative importance toward
the model's prediction, Pearson's feature correlation
(Fig. S5†) and the feature importance plot (Fig. S6†) are also
studied. The feature correlation plot suggests that there is
a strong correlation between the feature’s average ionic
radius and average covalent radius. In addition, the features
HOMO and LUMO are also highly correlated. The feature
importance plot suggests that the feature energy is of utmost
importance. This is expected because the output trans-
mission is the function of energy itself. Among the elemental
and molecular features, the feature’s average valence elec-
trons, average electronegativity, and average atomic radius
are found to be of relatively higher importance.

In transverse-tunneling based next-generation DNA
sequencing, the primary step is to determine the transmission
ngerprints of DNA nucleotides. In order to check the potential
of the proposed AI-empowered nanotechnology toward DNA
sequencing, we shi our focus to ML-assisted identication of
DNA nucleotides. Our ML-aided prediction of transmission
ngerprints of DNA nucleotides is based on two key observa-
tions. First, calling of partially unknown DNA nucleotides, and
second, calling of completely unknown DNA nucleotides. These
two observations will help in rigorous inspection of the best-
tted model for accurate prediction of transmission nger-
prints of DNA nucleotides.
Calling of partially unknown DNA nucleotides

In the prediction of each partially unknown DNA nucleotide, the
model is trained with 75% of input data of all four DNA
nucleotides. The analysis aims to evaluate the performance of
the XGBR model toward interpretation of a complex dataset of
all four DNA nucleotides. Fig. 3a shows the DFT calculated and
ML predicted transmission spectra for partially unknown DNA
nucleotides at an energy interval of ±2.5 eV. A corresponding
scatter plot between the DFT calculated and ML predicted
transmission function for each partially unknown DNA nucle-
otide is also given. The model predicted each partially unknown
DNA nucleotide with MAE values in the range of 0.03–0.06 and
a nearly perfect coefficient of determination (R2) value of ∼0.99.
The ndings indicate that the XGBR model exhibits high
precision in discerning the transmission proles of individual
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) DFT calculated and ML predicted transmission functions for partially unknown DNA nucleotides and the corresponding scatter plots
illustrating validation with DFT calculated outputs, and (b) DFT calculated andML predicted transmission functions for completely unknown DNA
nucleotides and the corresponding scatter plots illustrating validation with DFT calculated outputs. The MAE and R2 values, as given in the scatter
plots, show the linear fit relationship between ML predicted vs. DFT calculated transmission. The Fermi energy (E–EF) level is shifted to zero.
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DNA nucleotides from complex (or noisy) transmission arrays of
the four DNA nucleotides.
Calling of completely unknown DNA nucleotides

In the prediction of each completely unknown DNA nucleotide,
the model is trained with 75% of input data of the remaining
three nucleotides, e.g., in the prediction of dAMP, the model is
trained with the dataset of the remaining three nucleotides
(dGMP, dCMP, and dTMP). This analysis would help in
analyzing the performance of XGBR toward prediction of
nucleotides of an unknown DNA sample. Corresponding to four
completely unknown DNA nucleotides, we have a total of four
input training datasets. We have named the models XGBR 1,
XGBR 2, XGBR 3, and XGBR 4 for the prediction of completely
unknown dAMP, dGMP, dCMP, and dTMP, respectively.

The DFT calculated and ML predicted transmission spectra
for completely unknown DNA nucleotides at an energy interval
of±2.5 eV are shown in Fig. 3b. The corresponding scatter plots
between DFT calculated and ML predicted transmission func-
tions are also given. The model predicted each completely
© 2023 The Author(s). Published by the Royal Society of Chemistry
unknown DNA nucleotide with MAE values in the range of 0.21–
0.26 and a nearly perfect R2 value of 0.99. The MAE values for
completely unknown DNA nucleotides are noticeably higher
than those for partially unknown ones. This disparity arises
because when predicting partially unknown nucleotides, the
machine is trained with 75% of the dataset, which includes
some known values. Conversely, in the case of completely
unknown nucleotides, themachine encounters distinct features
not present in the training data, resulting in higher prediction
errors.

To ensure the robustness and reliability of the utilized XGBR
models, we have performed 10-fold cross-validation. In all
XGBR models, the test MAE values are close to the mean MAE
values of each fold of 10-fold cross-validation, which indicates
that the models are stable (Table 2). In addition, for each XGBR
model, we have also studied the learning curve and PSI scores.
The learning curves exhibit a consistent decrease in MAE values
for both the training and test datasets (Fig. S7a†) while main-
taining consistently low PSI values for both xed and quantile
size bins (Fig. S7b†). These ndings suggest that the XGBR
Digital Discovery, 2023, 2, 1589–1600 | 1593
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Table 2 Mean absolute error (MAE) for 10-fold cross-validation using
the models XGBR 1, XGBR 2, XGBR 3, and XGBR 4. Test MAE values for
each utilized XGBR model are also given

Fold XGBR 1 XGBR 2 XGBR 3 XGBR 4

1 0.24 0.18 0.15 0.20
2 0.27 0.30 0.22 0.14
3 0.21 0.24 0.22 0.28
4 0.32 0.21 0.19 0.13
5 0.22 0.18 0.24 0.19
6 0.23 0.18 0.28 0.19
7 0.23 0.22 0.23 0.22
8 0.21 0.16 0.21 0.18
9 0.27 0.21 0.29 0.18
10 0.17 0.14 0.22 0.18
Mean MAE � standard
deviation

0.24 �
0.03

0.20 �
0.04

0.22 �
0.03

0.19 �
0.03

Test MAE 0.22 0.17 0.18 0.13

Table 3 Mean accuracy for each fold of 10-fold cross-validation using
the logistic regression (LR), random forest classification (RFC), decision
tree classification (DTC), and k-nearest neighbor classification (KNC)
algorithms

Fold LR (%) RFC (%) DTC (%) KNC (%)

1 100 83 83 75
2 100 79 83 75
3 100 96 79 83
4 100 83 87 78
5 100 74 65 56
6 100 78 74 74
7 100 91 91 78
8 100 91 87 56
9 100 87 83 87
10 100 87 87 83
Mean accuracy �
standard deviation

100 � 0.00 85 � 6.78 82 � 7.60 74.5 � 10.59

Test accuracy 100 90 86 80
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models exhibit robust performance and maintain stable
predictions across different input datasets. In light of all these
results, we conclude that proposed AI-empowered MoS2 nano-
channel has the potential to alleviate the experimental
complexity by providing ultra-rapid and distinct transmission
ngerprints of each DNA nucleotide. Aer successfully estab-
lishing the pertinency of AI-empowered-nanotechnology in
high-precision identication of DNA nucleotides, we turn our
attention to explore its potential in classication of DNA
nucleotides.
ML-aided DNA classication

In traditional DNA sequencing, the next cumbersome step is to
assign the computed transmission ngerprints to each indi-
vidual nucleotide. However, conventional methods for
analyzing ngerprints oen suffer from poor resolution, as
signal overlap can make it difficult to distinguish the nucleo-
tides from their DNA counterparts. As in real measurements,
each sensitivity histogram corresponds to the transmission
function prole of a single nucleotide, and it is likely that all
four DNA nucleotides contribute to the real transmission prole
with a certain degree of probability. Hence for more robust and
accurate identication, it is necessary to check the performance
of the proposed AI-empowered MoS2 nanochannel in each
quaternary, ternary, and binary classication of DNA nucleo-
tides. With this goal, we started to explore the potential of
supervised ML classication algorithms in the identication of
each class of DNA nucleotides. The details of ML classication
tools are given in the ESI† (Text S3).
Quaternary classication

In the preparation of a classication input dataset, we have
considered a total of four input features extracted from the
transmission proles of DNA nucleotides. A detailed descrip-
tion of these input features is provided in the ESI (Table S3†).
Herein, for robust classication, we have considered the energy
range of −2.5 to −1.7 eV having a total of 292 data points (73
1594 | Digital Discovery, 2023, 2, 1589–1600
data points for each nucleotide) in the input dataset for all four
DNA nucleotides. We have utilized four prevalent classication
algorithms, namely, logistic regression (LR), random forest
classication (RFC), decision tree classication (DTC), and k-
nearest neighbor classication (KNC) with tuned hyper-
parameters. The details of optimized hyperparameters are
provided in the ESI† (Table S4). 80% of the input data is used for
training of the models, while the rest 20% is used as a test
dataset.

To ensure the used model's generalizability and stability, we
have performed 10-fold cross-validation (Table 3). For each
classication model, the mean MAE values are close to the test
MAE values, which indicates that the models are stable and
generalized. The confusion matrices show the performance of
the used classication models in the prediction of each class of
DNA nucleotides from a quaternary dataset (Fig. 4a). Among the
utilized models, the LR model is found to be the best tted with
a perfect accuracy of 100%.

To ensure no overtting of the LR model, we have checked
the performance of LR models with different train-test split
ratios (Fig. S9†). In each case of different train-test split ratios,
the calculated accuracy of LR is 100%. However, when tested on
a larger dataset (in the energy range of ±2.5 eV having a total of
2000 input data points), the model's accuracy dropped to 23%.
This indicates that the LR model can accurately identify each
DNA nucleotide class with 100% accuracy only in the specic
energy range of −2.5 to −1.7 eV.

The classication reports consisting of parameter precision,
recall, and F1-score for each utilized classication model are
given in the ESI† (Fig. S8). The details of the accuracy score and
classication parameters can be found in the ESI† (Text S3). To
shed light on the interpretation of the used ML classication
models, the permutation feature importance plots are studied
(Fig. 4a).40 It is noticed that the features MIN, MAX, and T are of
relatively higher importance in the output prediction of LR,
DTC/RFC, and KNCmodels, respectively. To further understand
the contribution of input features toward prediction of each
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Single nucleotide identification from the complex datasets of four types of nucleotides using transmission function fingerprints of the
most-stable configuration of DNA nucleotides. (a) Confusion matrices and permutation feature importance plots, and (b) SHAP summary bar
plots for LR, RFC, DTC, and KNC classification algorithms. Here, max, min, T, and avg stand for maxima normalized transmission (T/Tmax), minima
normalized transmission (T/Tmin), transmission, and average normalized transmission (T/Tavg), respectively.
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class of DNA nucleotides, SHAP summary bar plots are analyzed
(Fig. 4b).42 Comparing the heights of different bars, one can
assess the relative importance of features toward prediction of
individual classes of DNA nucleotides. Features with taller bars
have a stronger inuence on the model's predictions compared
to those with shorter bars.
Quaternary classication with rotation dynamics

In the quaternary classication given above, we utilized the
transmission ngerprints of the most stable conguration of
DNA nucleotides. However, in a realistic picture, these nucleo-
tides may undergo several orientational and congurational
variations. Hence for robust classication, it is necessary to
© 2023 The Author(s). Published by the Royal Society of Chemistry
check the performance of the best-ttedmodel in the prediction
of DNA nucleotides with orientational variations. In order to
check this, we try to predict the DNA nucleotides for each
considered seven rotations of DNA nucleotides. Confusion
matrices for each rotation matrix show a perfect accuracy of
100% in LR-assisted prediction of the class of each nucleotide
in different rotated congurations, as given in the ESI†
(Fig. S10a).

The feature importance plots show the signicant contri-
bution of each utilized feature toward the prediction of the
output (Fig. S10b†). The results suggest that each utilized input
feature is of particular importance in the prediction of nucleo-
tide classes of different rotated congurations. Furthermore, to
introduce transparency in the prediction of rotation dynamics,
Digital Discovery, 2023, 2, 1589–1600 | 1595
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SHAP summary bar plots are analyzed (Fig. S10c†). A notable
contribution of T and MIN input features is observed toward LR
prediction of nucleotide classes with different rotated congu-
rations. In light of these results, we conclude that our proposed
interpretable LR-assisted AI-empowered MoS2 nanochannel can
predict the class of each DNA nucleotide in different rotated
congurations with a perfect accuracy of 100%.

Ternary classication. We further checked the potential of
our best-tted classication model in the identication of DNA
nucleotides from a dataset of three types of nucleotides. There
are four possible combinations for a ternary set of DNA nucle-
otides (T1: dAMP, dGMP, and dCMP), (T2: dAMP, dGMP, and
dTMP), (T3: dAMP, dCMP, and dTMP), and (T4: dGMP, dCMP,
and dTMP). For the classication of each of the four datasets of
three types of nucleotides, the model performed well with
Fig. 5 Single nucleotide identification from the complex datasets of three
the logistic regression (LR) algorithm. (a) Confusion matrices are shown
dAMP, dGMP, and dTMP), (T3: dAMP, dCMP, and dTMP), and (T4: dGMP, d
importance plots for LR based prediction of DNA nucleotides from binary
for LR in prediction of DNA nucleotides from the ternary datasets of thr
normalized transmission (T/Tmax), minima normalized transmission (T
respectively.

1596 | Digital Discovery, 2023, 2, 1589–1600
a perfect accuracy of 100% (Fig. 5a). For a detailed under-
standing of the model's prediction at both global and local
levels, we have studied the permutation feature importance and
SHAP summary plots (Fig. 5a and b). The results indicate that
the feature MIN is of relatively higher importance in the
prediction of each class of ternary nucleotides. The SHAP plots
suggest that individual prediction of ternary DNA nucleotides is
mainly driven by the features T and MIN.

Binary classication

In the realm of high throughput DNA sequencing, an intriguing
quest is the identication of two classes of DNA nucleotides:
purine (dAMP and dGMP) and pyrimidine (dCMP and dTMP).
With this in mind, we further check the potential of the LR
algorithm in the classication of binary DNA nucleotides. There
types of nucleotides using transmission function fingerprints based on
for each of the four possible sets (T1: dAMP, dGMP, and dCMP), (T2:
CMP, and dTMP) of three types of nucleotides and permutation feature
datasets of two types of nucleotides, and (b) SHAP summary bar plots
ee types of nucleotides. Here, Max, Min, T, and Avg stand for maxima
/Tmin), transmission, and average normalized transmission (T/Tavg),

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00118k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
are six possible combinations of two types of nucleotides: (B1:
dAMP and dGMP), (B2: dAMP and dCMP), (B3: dAMP and
dTMP), (B4: dGMP and dCMP), (B5: dGMP and dTMP), and (B6:
dCMP and dTMP).

In each case of binary DNA nucleotides, we observed a perfect
accuracy of 100%, which suggests that the proposed AI-
empowered nanotechnology can individually identify the class
Fig. 6 Single nucleotide identification from the complex datasets of two
logistic regression (LR). (a) Confusion matrices are shown for each of the
(B3: dAMP and dTMP), (B4: dGMP and dCMP), (B5: dGMP and dCMP), and
feature importance plots for LR based prediction of DNA nucleotides from
stand formaxima normalized transmission (T/Tmax), minima normalized tr
(T/Tavg), respectively.

© 2023 The Author(s). Published by the Royal Society of Chemistry
of single nucleotides from complex datasets of two types of
nucleotides (Fig. 6a). A better understanding of how each feature
is affecting the model's performance can be found in the given
permutation feature importance plot (Fig. 6b). As compared to
other features, the feature MIN is found to be of higher impor-
tance toward binary classication of DNA nucleotides which is
also in good agreement with feature importance results of ternary
types of nucleotides using transmission function fingerprints based on
six possible binary sets (B1: dAMP and dGMP), (B2: dAMP and dCMP),
(B6: dCMP and dTMP) of two types of nucleotides and (b) permutation
binary datasets of two types of nucleotides. Here, Max, Min, T, and Avg

ansmission (T/Tmin), transmission, and average normalized transmission
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http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00118k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
classication. The promising capability of the proposed AI-
empowered MoS2 nanochannel in accurately predicting quater-
nary (with and without rotation dynamics), ternary, and binary
DNA nucleotides, signicantly enhances its potential for practical
implementation in real DNA sequencing.

It is interesting to note that the ‘MIN’ and ‘T’ features have
a higher impact, and the ‘AVG’ feature has the least inuence in
each quaternary, ternary, and binary classication of DNA
nucleotides. This observation could be attributed to the differ-
ence in the coupling strength of the MoS2 electrode-to-nucleotide
molecular orbitals (MOs). The features ‘MIN’, and ‘AVG’ are
extracted from the transmission proles of each unlabelled
nucleotide by dividing the minimum (Tmin) and average values
(Tavg) of the transmission function with each datapoint of the
corresponding nucleotide dataset. Tmin is the minimum trans-
mission value with minimum coupling strength, which is noted
to be distinct for each nucleotide. Hence, when the transmission
values are divided by theminimum value, it signicantly changes
the scale of the feature values corresponding to overlapped
signals of each DNA nucleotide and enhances the distinguish-
ability. On the other hand, the Tavg is the average of the trans-
mission values, so when the transmission values are divided by
the average value, it gives a similar value and therefore leads to
less distinguishability among the DNA nucleotides.
A DFT guide to experimental studies

With a solid foundation established for ultra-rapid and accurate
DNA identication and classication using the AI-empowered
MoS2 nanochannel, our focus now shis towards offering
Fig. 7 DNA fingerprints of the AI-integrated MoS2 nanochannel device. (
value of 0.635 eV, (b) current sensitivity fingerprints of DNA nucleotides
nucleotides, and (d) translocation time fingerprints of DNA nucleotides.

1598 | Digital Discovery, 2023, 2, 1589–1600
comprehensive qualitative and quantitative guidance for real
measurements by evaluating the key ngerprints of DNA
nucleotides. One of the important experimental parameters is
sensitivity, which determines the capability of the sensing
device toward single-nucleotide resolution. In order to thor-
oughly analyze the electric detection capabilities of the
proposed MoS2 nanochannel FET-based device, we have calcu-
lated both transmission and current-sensitivity values, as
shown in Fig. 7a and b. The details of transmission and current-
sensitivity calculations can be found in the ESI† (Text S4). Our
results demonstrate that the proposed device exhibits potential
for sensitive and selective identication of DNA nucleotides,
with transmission sensitivity values standing out as particularly
noteworthy. For a better understanding, the related trans-
mission and current–voltage (I–V) signature plots of DNA
nucleotides adsorbed on the proposed MoS2 nanochannel
device are provided in the ESI† (Fig. S11a and b). These DFT
results of transmission and current–voltage (I–V) ngerprints
further validate the efficacy of AI-empowered MoS2 nano-
channels in high throughput DNA sequencing. A visual under-
standing of the underlying physics, accompanied by a detailed
explanation, is given in the ESI† (Fig. S12).

Because of key importance in real DNA sequencing, the
adsorption energy (Ea) and translocation time (s) have also been
calculated (Fig. 7c, d and Table S5†). A visual understanding of
interactions between the MoS2 nanochannel surface and DNA
nucleotides can be found in the studied charge density difference
plot (Fig. S13†). The plot indicates strong overlapping between
the electron clouds of dGMP/dCMP and S atoms of the MoS2
nanochannel surface, leading to relatively high adsorption
a) Transmission sensitivity fingerprints of DNA nucleotides at an energy
at an applied bias of 0.3 V, (c) adsorption energy fingerprints of DNA

© 2023 The Author(s). Published by the Royal Society of Chemistry
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energy. Fig. 7 provides a quick review of all the key DNA signature
ngerprints in a single glance. Notably, the transmission and
current sensitivity ngerprints stand out as particularly signi-
cant. For the experimental viability of the proposed device, the
effect of congurational variations on the transmission nger-
prints has also been studied (Fig. S14†). The gure shows
a negligible change in transmission due to orientational varia-
tions, showing the feasibility of the proposed MoS2 nanochannel
device in DNA sequencing with less signal overlap or unwanted
noise.

Conclusions

To achieve the formidable goal of ultra-rapid, accurate, and cheap
DNA sequencing, in the present study, we propose an AI-
empowered MoS2 nanochannel that enables ultra-rapid and
high-precision recognition and classication of DNA nucleotides.
By leveraging easily accessible features, the XGBR algorithm can
accurately determine the transmission ngerprints of each indi-
vidual DNA nucleotide with a MAE value as low as 0.03 and nearly
perfect R2 value of ∼0.99. The best tted LR algorithm exhibits
a perfect accuracy of 100% for the prediction of individual classes
of quaternary, ternary, and binary DNA nucleotides. The permu-
tation feature importance analysis and SHAP beeswarm plot are
utilized to enhance the LR model's interpretability at both global
and local levels. With DFT validation, we found that the XGBR
model can recognize completely unknown DNA nucleotides with
good accuracy. Next, to provide a comprehensive and qualitative
guide to experimental studies, we evaluate the key ngerprints of
DNA nucleotides, such as adsorption energy, translocation time, I–
V characteristics, and sensitivity, with a deep understanding of the
underlying physics. The transmission and current sensitivity
ngerprints are observed to be particularly noteworthy for high-
precision nucleotide identication. In this regard, the proposed
AI-empowered nanotechnology offers exciting new opportunities
for rapid andmore accurate DNA sequencing and can signicantly
alleviate the complexity of theoretical and experimental studies.
Undoubtedly, further exploration and experimental application of
AI-empowered MoS2 nanochannels holds immense potential in
whole genome sequencing, potentially leading to personalized
genomics and beyond.
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Nano, 2013, 7, 4629–4636.

17 S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao, Y. Chen, Y. Zhang, Z. Liu,
Z. Fan, F. Yang, L. You and D. Yu, Adv. Mater., 2013, 25,
4549–4554.
Digital Discovery, 2023, 2, 1589–1600 | 1599

https://doi.org/10.5281/zenodo.8063774
https://doi.org/10.5281/zenodo.8063774
https://gitlab.com/siesta-project/siesta
https://gitlab.com/siesta-project/siesta/-/releases/v4.1.5
https://gitlab.com/siesta-project/siesta/-/releases/v4.1.5
https://www.python.org/
https://colab.google/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00118k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
5/

20
25

 1
:5

8:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
18 J. Feng, K. Liu, R. D. Bulushev, S. Khlybov, D. Dumcenco,
A. Kis and A. Radenovic, Nat. Nanotechnol., 2015, 10, 1070–
1076.

19 M. Graf, M. Lihter, D. Altus, S. Marion and A. Radenovic,
Nano Lett., 2019, 19, 9075–9083.

20 A. B. Farimani, K. Min and N. R. Aluru, ACS Nano, 2014, 8,
7914–7922.

21 J. Feng, K. Liu, M. Graf, M. Lihter, R. D. Bulushev,
D. Dumcenco, D. T. L. Alexander, D. Krasnozhon,
T. Vuletic, A. Kis and A. Radenovic, Nano Lett., 2015, 15,
3431–3438.

22 M. Taniguchi, T. Ohshiro, Y. Komoto, T. Takaai, T. Yoshida
and T. Washio, J. Phys. Chem. C, 2019, 123, 15867–15873.

23 J. Im, S. Sen, S. Lindsay and P. Zhang, ACS Nano, 2018, 12,
7067–7075.

24 S. Biswas, S. Sen, J. Im, S. Biswas, P. Krstic, B. Ashcro,
C. Borges, Y. Zhao, S. Lindsay and P. Zhang, ACS Nano,
2016, 10, 11304–11316.

25 Y. Zhao, B. Ashcro, P. Zhang, H. Liu, S. Sen, W. Song, J. Im,
B. Gyarfas, S. Manna, S. Biswas, C. Borges and S. Lindsay,
Nat. Nanotechnol., 2014, 9, 466–473.

26 A. Arima, I. H. Harlisa, T. Yoshida, M. Tsutsui, M. Tanaka,
K. Yokota, W. Tonomura, J. Yasuda, M. Taniguchi,
T. Washio, M. Okochi and T. Kawai, J. Am. Chem. Soc.,
2018, 140, 16834–16841.

27 M. Taniguchi, S. Minami, C. Ono, R. Hamajima,
A. Morimura, S. Hamaguchi, Y. Akeda, Y. Kanai,
T. Kobayashi, W. Kamitani, Y. Terada, K. Suzuki,
N. Hatori, Y. Yamagishi, N. Washizu, H. Takei,
O. Sakamoto, N. Naono, K. Tatematsu, T. Washio,
Y. Matsuura and K. Tomono, Nat. Commun., 2021, 12, 3726.

28 M. Tsutsui, T. Yoshida, K. Yokota, H. Yasaki, T. Yasui,
A. Arima, W. Tonomura, K. Nagashima, T. Yanagida,
N. Kaji, M. Taniguchi, T. Washio, Y. Baba and T. Kawai,
Sci. Rep., 2017, 7, 17371.
1600 | Digital Discovery, 2023, 2, 1589–1600
29 M. Tsutsui, M. Tanaka, T. Marui, K. Yokota, T. Yoshida,
A. Arima, W. Tonomura, M. Taniguchi, T. Washio,
M. Okochi and T. Kawai, Anal. Chem., 2018, 90, 1511–1515.

30 J. Im, S. Biswas, H. Liu, Y. Zhao, S. Sen, S. Biswas,
B. Ashcro, C. Borges, X. Wang, S. Lindsay and P. Zhang,
Nat. Commun., 2016, 7, 13868.

31 G. Landrum, RDKit: Open-Source Cheminformatics Soware,
http://www.rdkit.org/.

32 N. Schneider, R. A. Sayle and G. A. Landrum, J. Chem. Inf.
Model., 2015, 55, 2111–2120.

33 A. Capecchi, D. Probst and J.-L. Reymond, J. Cheminf., 2020,
12, 43.

34 D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28, 31–36.
35 D. Weininger, A. Weininger and J. L. Weininger, J. Chem. Inf.

Comput. Sci., 1989, 29, 97–101.
36 T. Furuhata, T. Ohshiro, G. Akimoto, R. Ueki, M. Taniguchi

and S. Sando, ACS Nano, 2019, 13, 5028–5035.
37 J. Prasongkit, A. Grigoriev, B. Pathak, R. Ahuja and

R. H. Scheicher, Nano Lett., 2011, 11, 1941–1945.
38 S. Datta, Superlattices Microstruct., 2000, 28, 253–278.
39 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor and

K. Stokbro, Phys. Rev. B: Condens. Matter Mater. Phys.,
2002, 65, 165401.

40 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
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