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The expected shift from fossil fuels to H, as the main renewable
energy carrier inspires the search for inexpensive, reliable, and green
H, production methods such as seawater electrolysis. However, the
noble metal-based catalysts used for electrolytic H, production are
costly and should be replaced by cheaper non-noble metal-based
ones. Currently, progress in this field remains slow because of the
multidimensionality and vastness of the related search space. Herein,
a high-throughput automatic robot was used to prepare Co-Mn—Fe—
Ni—based composite-oxide anodic electrocatalysts and characterize
their ability to promote the selective and stable production of O,/
HCIO at the anode during the electrolysis of model seawater (aqueous
NaCl). Moreover, machine learning—aided composition optimization
was performed using a Bayesian optimization framework. The adopted
approach is not limited to electrocatalysts and thus accelerates
research and development in the field of materials chemistry and
paves the way for technological advances.

In view of the pressing need to mitigate climate change, which
is largely caused by the anthropogenic release of greenhouse
gases (e.g., CO,), many countries have pledged to achieve net-
zero CO, emissions by the 2050s." The implementation of this
goal will end the era of fossil fuels and induce a shift to
renewable electricity as the main power source, thus increasing
our reliance on electrochemical processes such as the produc-
tion of H, through solar or wind energy-powered water elec-
trolysis.>* However, the commercialization of electrolytic H,
production is currently hindered by the lack of highly active yet
inexpensive (i.e., non-precious-metal) electrocatalysts.**

The electrolysis of saline (NaCl-containing) water and
seawater is a promising means of cost-effective green H,
production (cathodic reaction),”® which generates O,, Cl,, and/
or HCIO as byproducts (anodic reaction). Although HCIO is
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usually regarded as an undesirable byproduct of mass H,
production, this value-added (compared to O,) oxidant
contributes to the system's cost-effectiveness, especially for
small distributed systems, and exerts antiviral and antibacterial
effects.”'® Therefore, the selective generation of O, or HCIO,
depending on the scale of H, production, is of high practical
significance.

Given that artificial intelligence and high-throughput robotic
systems for material screening can help to achieve the net-zero
goal by accelerating related research and development,*™
many studies have investigated the use of machine learning
and/or robots in material science.'*" For example, machine-
learning-based catalyst characterization, chemical synthesis
and process optimization, and reaction condition optimization
have been successfully achieved. In addition, an approach that
combines machine learning and robotics has been imple-
mented for high-throughput experiments, where a robotic arm
executes experiments and characterization as a materials
acceleration platform.” However, these systems should be
costly and difficult to install in most laboratories.'® Further,
special equipment is required for small sample sizes such as
1 mm x 1 mm and such data are sometimes not consistent with
that acquired by researchers."”** Therefore, we aim to develop
a relatively compact system, where a robot can work concertedly
with humans to perform fully automated experiments.

Herein, we propose a fully automatic robot (Fig. 1) consisting
of sample preparation and characterization parts that enable
the high-throughput fabrication and screening of noble metal-
free Co-Mn-Fe-Ni composite-oxide anodic electrocatalysts for
model seawater (aqueous NaCl) electrolysis. The ability of the
developed robotic system to synthesize noble-metal-free Co-
Mn-Fe-Ni composite-oxide anodic electrocatalysts and
promote the selective and stable production of O,/HCIO at the
anode was tested. The proposed robot can not only prepare 88
samples in a single run but can also perform a wide range of
electrochemical measurements, including relatively long-term
ones such as stability tests. Moreover, our robot resembles
human researchers in terms of operations, measurement
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Fig. 1 (a) Photograph and (b) top-view outline of the high-throughput
automatic robot used for electrocatalyst screening. (1) Transfer arm, (2)
pick-up arm, (3) pipetting arm, (4) sample holder, (5) solution well, (6)
hot plate, (7) electric furnace, (8) H-type electrochemical cell, (9)
potentiostat, and (10) plate reader for absorbance measurement.

conditions, facility size, and the employed electrode (area = 0.5
cm?®) and electrochemical cell (solution volume = 21 mlL)
dimensions, thus having the potential to replace human labor.
The photographs and schematic representations of each step
are shown in Fig. 2, and a video of the system operation is
provided in the ESI (Movie S1%). Initially, the pipetting arm with
a disposable tip dispenses and mixes up to 10 different metal
ion-containing starting solutions to prepare precursor solu-
tions (Fig. 2a), which are then deposited onto fluorine-doped tin
oxide (FTO) glass plates with dimensions of 5 mm x 30 mm in
a stainless-steel sample holder and dried on a hotplate (Fig. 2b).
Subsequently, the samples are transported to an electric furnace
using the transfer arm and calcined to obtain composite elec-
trodes with different compositions (Fig. 2c). The pick-up arm,
which has two pins connected to a potentiostat and functions as
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a working electrode (Fig. S1t), transfers each electrode to an H-
type cell for electrochemical measurements (Fig. 2d). Finally,
the pipetting arm withdraws a small amount of the electrolyte
from the cell, mixes it with a coloring reagent, and measures the
solution absorption using a plate reader to quantitate the
generated HCIO (Fig. 2e).>* After each measurement, the solu-
tion is automatically replenished from the tank behind the
robot. More detailed experimental procedures and video
recordings of each step are provided in the ESL{
High-throughput experiments examined the effect of elec-
trocatalyst composition on the selectivity and stability of HCIO
formation during the electrolysis of aqueous NaCl (Fig. 3). The
developed robot can deal with 88 samples including electro-
chemical measurements in one day, indicating that the dataset
(286 samples) was collected in four days. This results was
comparable to the reported Burger's work (688 experiments over
eight days). The four constituent elements (Co, Mn, Fe, Ni)
were selected because their simple oxides promote O, evolution
during water oxidation** and exhibit well-characterized
product selectivities in aqueous NaCl solutions.>?** Overall
current density (j) at 2.0 V vs. the Ag|AgCl reference electrode,
reaction selectivity (faradaic efficiency of HCIO formation
(FEucio) for a transferred charge of 0.2C (1 mA for 200 s)), and
the ratio of current densities at 2.0 V vs. Ag|AgCl after 1000 and

Fig. 3 Effects of composition on (a) j @ 2.0 V vs. Ag|AgCL, (b) FEHCIO,
and (c) stability (i—1000/jt=100) for three-element systems containing
Co, Mn, Fe, and Ni (202 measured points are shown as black dots).

Fig.2 Photographs and schematics of the procedures used for automatic sample preparation and characterization. (a) Solution mixing in a deep
well, (b) deposition of precursor solutions on separate FTO glass plates in a stainless-steel sample holder, (c) 30 min calcination at 773 K in an
electric furnace, (d) electrode pick-up and electrochemical measurements, and (e) absorbance measurement using a plate reader to quantify

HCIO.
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100 s (stability; ji—1000lji=100) Were used as figures of merit.
Representative raw electrochemical data are shown in Fig. S2,f
and the effects of catalyst composition on the above parameters
are presented in Fig. 3. Co-rich compositions provided high
current densities for O,/HCIO production, whereas Mn-rich
electrodes produced little HCIO.

Fig. 4 shows the effects of j @ 2.0 V vs. Ag|AgCl on FEy10 and
stability. A wide range of FEycjo values could be accessed by
changing the catalyst composition, ie., FEgco could be
controlled by composition tuning. Co-Fe-Ni-based catalysts
such as Cog ¢Fe( 3Nip 10, and Cog 4Fe( 1Nig 50, exhibited high
current densities for HCIO production and good stability,
whereas Co-Mn-Ni-based catalysts, such as Cog,Mng 5Nij 30,
and Cog,Mn, ;Niy 0y, showed superior O, evolution perfor-
mance and relatively high stability. We assumed only O, and
HCIO were produced at the measurement condition. Fig. 4 also
shows that the Pareto front for HCIO production was mainly
composed of three-element catalysts, whereas four-element
catalysts did not exhibit superior FEs for either HCIO or O,
production. In a previous study, simple Co and Mn oxides were
reported to preferentially generate HCIO and O,, respectively.”
Therefore, in our case, these two effects canceled each other out
to result in moderate selectivity. In contrast, multimetal cata-
lysts, especially those containing four metals, exhibited
improved stability. Currently, we do not fully understand the
factors which determine the selectivity, more detailed experi-
ments such as high-throughput XPS or XAFS should be
required. To the best of our knowledge, no other works have
performed high-throughput experiments of this type to inves-
tigate the effects of composition on the multiple characteristics
of electrocatalysts for both selective and stable seawater
electrolysis.

Although the developed robot can prepare and characterize
approximately 100 samples per day, the search space of multi-
element systems is still sufficiently large for random
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Fig. 4 Effects of j@ 2.0 V vs. Ag|AgCl on (a) FE(HCLO) and (b) stability
for a four-element Co-Mn—-Fe-Ni system (286 points). Red, green,
yellow, and blue circles refer to samples containing one, two, three,
and four metals, respectively. Dashed lines indicate the Pareto front for
(a) effective HCLO production and (b) high stability.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

exploration. For example, 286 samples need to be examined to
search for a four-element system with a 10% interval in mol%,
and more than 1000 and 3000 samples need to be examined for
five- and six-element systems, respectively. In our system, 10
types of solutions can be mixed, i.e., a search for a 10-element
system is possible. Moreover, even when focusing only on four-
element systems, we need to choose four elements from more
than 30 metals, ie, combinatorial explosion remains
a problem. Therefore, the combination of high-throughput
screening and machine learning is a promising approach.

In view of the above, we performed simulated composition
optimization using the Bayesian optimization (BO) algo-
rithm**>?¢ for a dataset of the four-element Co-Mn-Fe-Ni
system with 286 entries that were already measured (Fig. 4). The
dataset is presented in the ESIL{

The explanatory and target variables were composition and j
@ 2.0 V vs. Ag|AgCl, respectively. The histogram of the current
density (Fig. 5a) shows that good samples exhibited current
densities of >32 mA cm ™. Whereas a BO-assisted experiment is
typically performed for each sample, we performed multi-
sample BO, because our robot can handle multiple samples in
a single run. The initial 10 points were selected using a D-
optimal design,*”®* and 10 candidates were suggested after
BO.>?*" Afterward, 10 measured samples were added to the
initial points. Gaussian process regression was performed to
suggest another 10 points, and this cycle was repeated until all
samples with a current density of >32 mA cm ™~ were searched.
As a result, compositions with high current densities were
successfully elucidated after examining 40 out of 286 candidates
(Fig. 5b). The detailed procedure is explained in the ESL.{ If the

BN NI o I S
j @20 Vpgge/ MAcm?

G

L s 1 "

IS
S

o
£
o
< 354 L
& o § g
I i L O o ¥
46 30 N Y o )
S5 jee
o { L
< 25 ° :
® °
~ 20 T T T T
0 10 20 30 40

Sample number

Fig. 5 (a) Current density histogram for a Co-Mn-Fe—Ni four-
element system and (b) an example of Bayesian optimization cycles for
current density in the above system. Black, red, blue, and green circles
indicate the results obtained for the initial samples and the second,
third, and fourth runs, respectively. Ten samples suggested by
Bayesian optimization were characterized in each run. The dashed line
indicates a current density of 32 mA cm 2.
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robot randomly searched, the expected value for obtaining top-
10 samples is about 240, The acceleration factor for the BO to
random sampling is about six, which is comparable to previ-
ously reported systems.**> Furthermore, the best composition
was found after examining 30 samples. Thus, BO-based
composition optimization worked well in our system and
could be applied to a larger feature space (e.g., to systems with
more than four elements, which is the subject of our ongoing
research); however, other machine learning algorithms may
also be introduced. In this study, although single-objective
optimization was simulated, multi-objective optimization
should be also investigated in the future work.

We would like to emphasize that our robotic system can
significantly accelerate the research and development of
multielement composite electrocatalysts than a conventional
method that is performed by a human researcher and random
sampling by a robot, and hope that researchers working in
other fields, such as data science and first-principle calcula-
tions, will expand and develop analyses using our dataset. As
our dataset is newly established and very limited, researchers
interested in its enrichment are welcome to comment on it or
request additional data, which will set a major communicative
trend for the future of open science. Moreover, our robotic
system can perform reactions other than water splitting (acidic
and basic mediums), such as photoelectrochemical trans-
formations, high-value-added chemical production, and bio-
electrocatalysis. However, the present system can only design
composite-metal-oxide catalysts synthesized via calcination.
In the future, we plan to expand our database to cover a wide
range of electrochemistry-related materials by incorporating
the robotic processing of additional synthesis methods and
characterizations.

In conclusion, a high-throughput robot was developed to
automatically perform all experimental steps, from sample
preparation to sample characterization, under settings nearly
identical to those used by human researchers. For a practical
utility demonstration, we investigated the effects of composi-
tion on the performance of Co-Mn-Fe-Ni catalysts for saline
water electrolysis, revealing that CoggFeq3Nip10, and Cog 4-
Fe( 1Nio 50O, exhibited high current densities for HCIO produc-
tion and high stability. Furthermore, machine learning-assisted
composition optimization was performed using a BO algorithm,
which was modified to achieve multisample optimization in
a single run. However, the present robotic system is unable to
detect evolved gases and can only design composite-metal-oxide
catalysts. Therefore, in the future, a versatile robotic system will
be designed that can perform other synthesis processes and
characterizations. This work is the first to utilize high-
throughput experiments to investigate the effects of electro-
catalyst composition on the selectivity and stability of seawater
electrolysis. Although the potential of artificial intelligence and
high-throughput robots should not be overestimated, we
believe that robot-aided research not only mitigates the
problem of labor force shortage but also introduces a novel
approach by taking advantage of machine learning and thus
accelerating innovation.
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Data availability

Data and processing scripts for this paper are available at
github at https://github.com/masanorikodera/dd.

Author contributions

Masanori Kodera: data curation, formal analysis, investigation,
visualization, writing - original draft, writing - review & editing.
Kazuhiro Sayama: conceptualization, funding acquisition,
project administration, supervision, writing - review & editing.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We would like to thank Editage (https://www.editage.com) for
English language editing.

Notes and references

1 S. Bouckaert, A. Fernandez Pales, C. McGlade, U. Remme,
B. Wanner, L. Varro, et al., Net Zero by 2050: A Road Map
for the Global Energy Sector, International Energy Agency,
2021.

2 M. J. Orella, Y. Roman-Leshkov and F. R. Brushett, Curr.
Opin. Chem. Eng., 2018, 20, 159-167.

3 R. Xia, S. Overa and F. Jiao, JACS Au, 2022, 2, 1054-1070.

4 E. Asghari, M. I. Abdullah, F. Foroughi, J. J. Lamb and
B. G. Pollet, Curr. Opin. Electrochem., 2022, 31, 100879.

5 S. Bolar, S. Shit, N. Chandra Murmu and T. Kuila, Sustainable
Energy Fuels, 2021, 5, 5915-5945.

6 M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure,
P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell
and P. Balcombe, Chem. Soc. Rev., 2022, 51, 4583-4762.

7 W. Zheng, L. Y. S. Lee and K. Y. Wong, Nanoscale, 2021, 13,
15177-15187.

8 R. d'’Amore-Domenech, O. Santiago and T. J. Leo, Renewable
Sustainable Energy Rev., 2020, 133.

9 A. L. Severing, J. D. Rembe, V. Koester and E. K. Stuermer, J.
Antimicrob. Chemother., 2019, 74, 365-372.

10 M. Palau, E. Mufioz, E. Lujan, N. Larrosa, X. Gomis,
E. Marquez, O. Len, B. Almirante, J. Abella, S. Colominas
and J. Gavalda, Microbiol. Spectrum, 2022, 10, €0236522.

11 P. Karande, B. Gallagher and T. Y. J. Han, Chem. Mater.,
2022, 34, 7650-7665.

12 S. Kolluri, J. Lin, R. Liu, Y. Zhang and W. Zhang, AAPS J.,
2022, 24, 19.

13 P. Christopher, ACS Energy Lett., 2020, 5, 2737-2738.

14 M. Saeidi-Javash, K. Wang, M. Zeng, T. Luo, A. W. Dowling
and Y. Zhang, Energy Environ. Sci., 2022, 15, 5093-5104.

15 R. Iwama and H. Kaneko, J. Adv. Manuf. Process., 2021, 3.

16 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison,
Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes and
N. Rankin, Nature, 2020, 583, 237-241.

© 2023 The Author(s). Published by the Royal Society of Chemistry


https://github.com/masanorikodera/dd
https://www.editage.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00116d

Open Access Article. Published on 17 October 2023. Downloaded on 10/31/2025 9:34:29 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

17 J. A. Haber, C. Xiang, D. Guevarra, S. Jung, J. Jin and
J. M. Gregoire, ChemElectroChem, 2014, 1, 524-528.

18 S. N. Steinmann, Q. Wang and Z. W. Seh, Mater. Horiz., 2023,
10, 393-406.

19 T. Arai, Y. Konishi, Y. Iwasaki, H. Sugihara and K. Sayama, /.
Comb. Chem., 2007, 9, 574-581.

20 A. Wang, C. Bozal-Ginesta, S. G. H. Kumar, A. Aspuru-Guzik
and G. A. Ozin, Matter, 2023, 6, 1334-1347.

21 L. Moberg and B. Karlberg, Anal. Chim. Acta, 2000, 407, 127-
133.

22 R. Saito, Y. Miseki, W. Nini and K. Sayama, ACS Comb. Sci.,
2015, 17, 592-599.

23 R. D. L. Smith, M. S. Prévot, R. D. Fagan, S. Trudel and
C. P. Berlinguette, J. Am. Chem. Soc., 2013, 135,11580-11586.

24 S. Okunaka, Y. Miseki and K. Sayama, iScience, 2020, 23,
101540, DOI: 10.1016/j.is¢i.2020.101540.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

25 K. Izumiya, E. Akiyama, H. Habazaki, N. Kumagai,
A. Kawashima and K. Hashimoto, Electrochim. Acta, 1998,
43, 3303-3312.

26 C. E. Rasmussen and H. M. De, J. Mach. Learn. Res., 2010, 11,
3011-3015.

27 S. Brandmaier, U. Sahlin, I. V. Tetko and T. Oberg, J. Chem.
Inf. Model., 2012, 52, 975-983.

28 M. Baroni, S. Clementi, G. Cruciani, N. Kettaneh-Wold and
S. Wold, Quant. Struct.-Act. Relat., 1993, 12, 225-231.

29 J. Snoek, H. Larochelle and R. P. Adams, Practical Bayesian
optimization of machine learning algorithms, Adv. Neural
Inf. Process. Syst., 2012, 25, 2951-2959.

30 A. Seko, T. Maekawa, K. Tsuda and I. Tanaka, Phys. Rev. B:
Condens. Matter Mater. Phys., 2014, 89, 54303.

31 Q. Liang, A. E. Gongora, Z. Ren, et al., npj Comput. Mater.,
2021, 7, 188.

32 B. Rohr, H. S. Stein, D. Guevarra, et al., Chem. Sci., 2020, 11,
2696-2706.

Digital Discovery, 2023, 2, 1683-1687 | 1687


https://doi.org/10.1016/j.isci.2020.101540
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00116d

	An automatic robot system for machine learningtnqh_x2013assisted high-throughput screening of composite electrocatalystsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00116d
	An automatic robot system for machine learningtnqh_x2013assisted high-throughput screening of composite electrocatalystsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00116d
	An automatic robot system for machine learningtnqh_x2013assisted high-throughput screening of composite electrocatalystsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00116d
	An automatic robot system for machine learningtnqh_x2013assisted high-throughput screening of composite electrocatalystsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00116d
	An automatic robot system for machine learningtnqh_x2013assisted high-throughput screening of composite electrocatalystsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00116d


