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formed neural networks for
binary activity coefficient prediction†

Jan G. Rittig, a Kobi C. Felton, b Alexei A. Lapkin b and Alexander Mitsos *acd

We propose Gibbs–Duhem-informed neural networks for the prediction of binary activity coefficients at

varying compositions. That is, we include the Gibbs–Duhem equation explicitly in the loss function for

training neural networks, which is straightforward in standard machine learning (ML) frameworks

enabling automatic differentiation. In contrast to recent hybrid ML approaches, our approach does not

rely on embedding a specific thermodynamic model inside the neural network and corresponding

prediction limitations. Rather, Gibbs–Duhem consistency serves as regularization, with the flexibility of

ML models being preserved. Our results show increased thermodynamic consistency and generalization

capabilities for activity coefficient predictions by Gibbs–Duhem-informed graph neural networks and

matrix completion methods. We also find that the model architecture, particularly the activation

function, can have a strong influence on the prediction quality. The approach can be easily extended to

account for other thermodynamic consistency conditions.
1 Introduction

Predicting activity coefficients of mixtures with machine
learning (ML) has recently attracted great attention, out-
performing well-established thermodynamic models. Several
ML methods such as graph neural networks (GNNs), matrix
completion methods (MCMs), and transformers have shown
great potential for predicting a wide variety of thermophysical
properties with high accuracy. This includes both pure
component and mixture properties such as solvation free
energies,1 liquid densities2 and viscosities,3 vapor pressures,2,4

solubilities,5 and fuel ignition indicators6 A particular focus has
recently been placed on using ML for predicting activity coeffi-
cients of mixtures due to their high relevance for chemical
separation processes. Here, activity coefficients at innite
dilution,7–9 varying temperature,10–15 and varying
compositions,16–18 while considering a wide spectrum of mole-
cules, have been targeted with ML, consistently outperforming
well-established models such as UNIFAC19 and COSMO-RS.20,21

Given the high accuracy achieved, ML will therefore play an
increasingly important role in activity coefficient prediction.
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To further advanceML for activity coefficients and bring it into
practical application, accounting for thermodynamic consistency
is of great importance: by enforcing consistency, the number of
required training data is minimized and the quality of the
predictions is improved. Putting the prior information into the
data-driven model results in a hybrid model. In the context of
activity coefficient prediction, several hybrid model forms have
recently emerged. The hybrid models connect ML and mecha-
nistic models in a sequential or a parallel fashion, and integrate
ML into mechanistic models and vice versa (see, e.g., the reviews
in ref. 22 and 23). For example, Focke24 proposed a hybrid neural
network structure that embeds the Wilson model.25 Developing
hybrid ML structures following thermodynamic models such as
Wilson25 or nonrandom two-liquid (NRTL)26 was further investi-
gated in ref. 22, 27–29. A recent prominent example covering
a diverse mixture spectrum is the sequential hybrid ML model by
Winter et al.,18 who combined a transformer with the NRTL
model26 (i.e., the transformer predicting NRTL parameters) called
SPT-NRTL. As the NRTL model fullls the Gibbs–Duhem equa-
tion, the hybrid SPT-NRTL model by design exhibits thermody-
namic consistency for the composition-dependency of the activity
coefficients. However, using a specic thermodynamic model
also introduces predictive limitations. For example, the NRTL
model suffers from high correlation of the pure-component
liquid interaction parameters,30 which results in poor modeling
of highly interactive systems.31 In general, approaches imposing
a thermodynamic model are restricted by the theoretical
assumptions and corresponding limitations. Therefore, we
herein focus on a physics-informed ML approach that does not
rely on a specic thermodynamic model; rather, thermodynamic
consistency is incorporated in the training.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Physics-informed ML provides a hybrid approach that inte-
grates mechanistic knowledge as a regularization term into the
loss function for training an ML model.32,33 A prominent
example are physics-informed neural networks (PINNs)34 that
are typically employed to predict solutions of partial differential
equations (PDEs). In PINNs, gradient information of the
network's output with respect to the input(s) is obtained via
automatic differentiation and added as a regularization term to
the loss function accounting for the PDE. In this way, PINNs
learn to predict solutions that are consistent with the governing
PDE. Note that, in contrast to hybrid models that embed
mechanistic equations, PINNs do not necessarily yield exact
mechanistic consistency as it needs to be learned and may be in
trade-off with learning the provided data. On the other hand,
the exibility of neural networks is preserved, and no modeling
assumptions are imposed, as in the aforementioned hybrid
thermodynamic models.

Utilizing differential thermodynamic relationships, the
concept of PINNs has been applied to molecular and material
property prediction.35–40 For instance, Masi et al.36 proposed
thermodynamics-based articial neural networks building on
the idea that material properties can be expressed as differential
relationships of the Helmholtz free energy and the dissipation
rate, which can be directly integrated into the network structure
and allows for training with automatic differentiation. Simi-
larly, Rosenberger et al.38 utilized differential relationships of
thermophysical properties to the Helmholtz free energy to t
equations of states with thermodynamic consistency. They
showed that predicting properties such as pressure or chemical
potential by training neural networks to model the Helmholtz
free energy and use its differential relationships to the target
properties is advantageous over learning these properties
directly, for both accuracy and consistency. However, using
PINN-based models for predicting thermodynamic mixture
properties for a wide molecular spectrum, particularly activity
coefficients, has not been investigated so far.

We introduce Gibbs–Duhem-informed neural networks that
are inspired by PINNs and learn thermodynamic consistency of
activity coefficient predictions. We add a regularization term
related to the Gibbs–Duhem equation to the loss function
during the training of a neural network, herein GNNs and
MCMs. Specically, we use automatic differentiation to calcu-
late the gradients of the respective binary activity coefficient
predictions by a neural network with respect to the mixture's
input composition. We can then evaluate the Gibbs–Duhem
consistency and add the deviation to the loss function. The loss
that typically contains the prediction error on the activity coef-
cient value only is thus extended by thermodynamic insights,
inducing the neural network to consider and utilize known
thermodynamic relations in the learning process. We empha-
size that our approach allows for the integration of further
thermodynamic insights that can be described by (differential
or algebraic) relations to the activity coefficient; herein, we use
the Gibbs–Duhem equation as a prime example. Our results
show that Gibbs–Duhem-informed neural networks can effec-
tively increase Gibbs–Duhem consistency at high prediction
accuracy.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Themanuscript is structured as follows: First, we present the
concept of Gibbs–Duhem-informed neural network training
including a data augmentation strategy in Section 2. In Section
3, we then test our approach on two neural network architec-
tures, GNNs and MCMs, using a database of 280 000 binary
activity coefficients that consists of 40 000 mixtures covering
pair-wise combinations of 700 molecules at 7 different compo-
sitions and was calculated with COSMO-RS20,21 by Qin et al.17 We
analyze and compare the prediction accuracy and thermody-
namic consistency of GNNs and MCMs trained without (Section
3.1) and with Gibbs–Duhem loss (Section 3.2). This also
includes studying corresponding vapor–liquid equilibrium
predictions (Section 3.2.2). We further analyze generalization
capabilities to new compositions (Section 3.2.3) and mixtures
(Section 3.2.4). The last Section 4 concludes our work.
2 Methods & modeling

In this section, we introduce Gibbs–Duhem-informed neural
networks, propose a data augmentation strategy to facilitate
training, and then describe GNNs and MCMs to which we apply
our training approach. A schematic overview of the Gibbs–
Duhem-informed GNNs and MCMs is provided in Fig. 1. We
further provide insights on the data set used for training/testing
and the implementation with corresponding model
hyperparameters.
2.1 Gibbs–Duhem-informed training

Our approach for Gibbs–Duhem-informed training combines
prediction accuracy with thermodynamic consistency in one
loss function. The approach is inspired by PINNs,32,34 that is,
utilizing physical knowledge as a regularization term in the loss.
For the application of composition-dependent activity coeffi-
cients, we can calculate the gradients of the predicted loga-
rithmic activity coefficient value, denoted by ln(ĝi), with respect
to the compositions of the mixture, xi, as illustrated in Fig. 1.
We can then use this gradient information to evaluate the
consistency of the Gibbs–Duhem differential constraint, which
has the following form for binary mixtures for constant
temperature T and pressure p:

x1

0
@vln

�cg1

�
vx1

1
A

T ;p

þ x2

0
@vln

�cg2

�
vx1

1
A

T ;p

¼ 0 (1)

Please note that eqn (1) can equivalently be formulated for the
partial derivative with respect to x2 and can also be described
analogously by using dx1 = −dx2. For model development, we
treat x2 implicitly by setting it to 1− x1, so we consider the Gibbs–
Duhem differential constraint with respect to x1.

We propose to add the deviation from the Gibbs–Duhem
differential constraint as a term to the loss function. The loss
function for training a neural network on activity coefficient
prediction typically accounts for the deviation of the predicted
value, ln(ĝi), from the data, ln(gi); oen the mean squared error
(MSE) is used. By adding the deviation from the Gibbs–Duhem
Digital Discovery, 2023, 2, 1752–1767 | 1753
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Fig. 1 Schematic model structure and loss function of Gibbs–Duhem-informed GNN and MCM for predicting composition-dependent activity
coefficients.
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equation (cf. eqn (1)) in the form of the MSE, the loss function
for Gibbs–Duhem-informed training of a mixture's binary
activity coefficients at a specic composition k equals

LOSSk ¼
�
ln

�cg1
k

�
� ln

�
g1

k
��2

þ
�
ln

�cg2
k

�
� ln

�
g2

k
��2

þ l

0
BB@x1

k

vln

�cg1
k

�
vx1

k
þ x2

k

vln

�cg2
k

�
vx1

k

1
CCA

2

; (2)

with l being a weighting factor to balance the prediction and
the Gibbs–Duhem loss. The logarithmic activity coefficient is
typically used in the loss function for normalization
purposes.

We also include the innite dilution case which is formally
dened for compositions xi / 0 and xj / 1 with the innite
dilution activity coefficient gi / gi

N of the solute and activity
coefficient of the solvent gj/ 1. Herein, we use xi= 0 and xj= 1
to represent innite dilution, similarly to other recent publi-
cations.17,18 We stress that compositions of 0 and 1 are only used
for the innite dilution case and that the Gibbs–Duhem
consistency also needs to be satised for this case. Note that in
thermodynamics some properties are problematic for x / 0,
e.g., innite derivative of the ideal mixing enthalpy with respect
to the mole fraction; however, since we directly predict activity
coefficients, we do not run in any numerical issues.
1754 | Digital Discovery, 2023, 2, 1752–1767
The proposed Gibbs–Duhem-informed loss function can
directly be integrated into standard ML frameworks. Since
modern neural networks frameworks enable automatic differ-
entiation and ln(gi) is the output and xi is one input of the
network, the partial derivatives in eqn (2) can directly be
calculated in the backpropagation pass. Therefore, the practical
application of Gibbs–Duhem-informed training is
straightforward.

When applying the presented Gibbs-informed training
approach, thermodynamic consistency is only induced for the
mixture compositions for which activity coefficient data is
readily available. To facilitate learning at compositions for
which no data is available, we present a data augmentation
strategy in the next session.
2.2 Data augmentation for Gibbs–Duhem-informed training

We propose a data augmentation strategy for training Gibbs–
Duhem-informed neural networks by randomly perturbing the
mixtures' compositions between 0 and 1. We create additional
data samples that consist of the binary mixtures in the training
data set but at other (arbitrary) compositions x ˛ [0, 1]; we use
random sampling from a uniform distribution in x. Indeed, the
activity coefficients for these compositions are not known. Yet,
we can evaluate the Gibbs–Duhem consistency of the model
predictions at these compositions and add only the Gibbs–
Duhem error to the loss during training. That is, for training
© 2023 The Author(s). Published by the Royal Society of Chemistry
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data samples created with the data augmentation, we only
consider the second term of the loss function, the Gibbs–
Duhem loss. We can therefore use additional data for training
Gibbs–Duhem-informed neural networks on compositions of
mixtures for which no experimental data is available.

When using data augmentation, it is important to consider
that additional training data results in an increased expense of
calculating the loss and its derivative, i.e., requires more
training resources. Further, adding too many augmented data
samples to the training, can result in an imbalanced loss
focusing too much on the Gibbs–Duhem term and neglecting
the prediction accuracy. We therefore set the amount of
augmented data to equal the number of data points in the
training set for which activity coefficient data are available to
have an overall balanced data set of compositions with and
without activity coefficient data.
2.3 Machine learning property prediction methods

We investigate the thermodynamic consistency and test the
Gibbs–Duhem-informed training approach for two different
machine learning methods: GNNs and MCMs. Both methods
have recently been investigated in various studies for thermo-
dynamic property prediction of mixtures.7,9,10,13,16 While a third
ML method, namely transformer which works on string repre-
sentation of molecules, has also been very recently utilized for
predicting mixture properties with very promising results,12,18

they typically require extensive pretraining with millions of data
points, which is out of the scope of this work.

The structure of Gibbs–Duhem-informed GNNs and MCMs
for activity coefficient prediction at different compositions is
shown in Fig. 1. GNNs utilize a graph representation of mole-
cules and learn to encode the structure of two molecular graphs
within a binary mixture to a vector representation that can be
mapped to the activity coefficients. In contrast, MCMs learn
directly from the property data without further information
about the molecular structures. Rather a matrix representation
is used in which the rows and columns each represent a mole-
cule in the binary mixture as a one-hot encoding and the matrix
entries correspond to the activity coefficients. With the available
activity coefficient data lling some entries of the matrix, MCMs
learn to predict the missing entries. For further details about
GNNs and MCMs, we refer to the reviews in ref. 8, 23 and 41–43.

We herein use a GNN based on the model architecture
developed by Qin et al.17 for predicting activity coefficients of
binary mixtures at different compositions, referred to as
SolvGNN. The GNN rst employs graph convolutional layers to
encode the molecular graph of each component into a molec-
ular embedding vector – oen referred to as molecular nger-
print. Then, a mixture graph is constructed: each node
represents a component and includes the corresponding
molecular embedding and composition within the mixture;
each edge represents interactions between components using
hydrogen bond information as features. The mixture graph
passes a graph convolutional layer such that each molecular
embedding is updated based on the presence of other compo-
nents in the mixture, thereby accounting for intermolecular
© 2023 The Author(s). Published by the Royal Society of Chemistry
interactions. Each updated molecular embedding is then
passed through hidden layers of a multilayer perceptron (MLP)
which predicts the logarithmic activity coefficient ln(gi) of the
respective components present in the mixture; the same MLP is
applied for all components. The GNN's model structure can be
trained end-to-end, i.e., from the molecular graphs to the
activity coefficients.

For the MCM model, we use a neural network structure that
was recently proposed by Chen et al.11 and further investigated
in our work for prediction of innite dilution activity coeffi-
cients of solutes in ionic liquids.13 The MCM model employs
several hidden layers to map the one-hot encoding of the
components to a continuous molecular vector representation –

analogous to the molecular embedding/ngerprint in GNNs.
The resulting molecular vectors are then concatenated with the
composition into a mixture vector that enters two MLPs to
obtain the respective predictions for the logarithmic activity
coefficients ln(g1) and ln(g2).

It is important to note, that in contrast to GNNs, the MCM
inherently does not preserve permutation invariance with
respect to the representation order of the components in the
mixture. For example, the predictions for 90% ethanol–10%
water and 10% water–90% ethanol are not necessarily identical
when using the MCM, whereas the GNN results in the same
activity coefficient values. The inherent inconsistency of the
MCM is caused by the concatenation of the learned molecular
vector representations into the mixture vector. For the example
of ethanol–water, either the rst or the second half of the
mixture vector will correspond to ethanol depending on the
input order (vice versa for water), hence the input to the nal
MLPs is different which results in different activity coefficient
predictions. The GNN architecture, on the other hand, uses the
updated molecular embedding of an individual component
aer the graph convolutions on the mixture graph, i.e., without
a concatenation, as input to the nal MLP, which then provides
the corresponding activity coefficient prediction. Since the
mixture graph convolutions are permutation invariant, i.e., the
nal molecular embeddings that enter the MLP are indepen-
dent of the component input order, and the same MLP is used
for all components, the GNN preserves permutation invariance
(cf. ref. 17). To address the permutation variance of the MCM,
future work could consider data augmentation, i.e., training on
the samemixture with different order of the components (cf. ref.
18), or an extension of the model structure by a permutation
invariant operator as used in GNNs.

We also note that further formulations of MCMs, e.g., based
on Bayesian inference, are frequently investigated, cf. ref. 7 and
10. We herein focus on neural architectures, also referred to as
neural collaborative ltering.11,44 In future work, it would be
interesting to investigate if our Gibbs–Duhem-informed
approach is also transferable to other MCM formulations.
2.4 Data set and splitting

We use the data set of binary activity coefficients at different
compositions and a constant temperature of 298 K calculated
with COSMO-RS20,21 for 40 000 different binary mixtures and
Digital Discovery, 2023, 2, 1752–1767 | 1755
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covering 700 different compounds, which was created by Qin
et al.17 The activity coefficients were calculated at seven different
compositions: {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}, thus including
innite dilution, cf. Section 2.1. Thus, the total number of data
points amounts to 280 000. Since COSMO-RS was used for data
generation, all data points are Gibbs–Duhem-consistent,
thereby providing a solid basis for testing our approach.

We consider three evaluation scenarios when splitting our
data: composition interpolation (comp-inter) and composition
extrapolation (comp-extra) as well as system extrapolation
(system-extra).

Comp-inter refers to the case of predicting the activity coef-
cient of a specic binary mixture at a composition not used in
training for this mixture but for other mixtures. This evaluation
scenario was also used by Qin et al.;17 in fact, we use the same 5-
fold stratied split based on the polarity features of individual
mixtures (i.e., 5 different splits into 80% training and 20% test
data, cf. ref. 17). Comp-inter thus allows us to evaluate if the
models can learn the composition-dependency of the activity
coefficient for a mixture from other mixtures in the data with
thermodynamic consistency.

Comp-extra describes the case of predicting the activity
coefficient of a specic binary mixture at a composition that was
not used in training for any of the mixtures. We specically
exclude the data for the compositions of a respective set of x ˛
{{0.0, 1.0}, {0.1, 0.9}, {0.3, 0.7}, {0.5}} from training and use it as
a test set. This results in four different comp-extra splits, one for
each excluded set of x. With the comp-extra splits, we can
evaluate whether the models can extrapolate to compositions
not present in the training data at all, referred to as general-
ization, thereby capturing the underlying composition-
dependency of the activity coefficient.

Mixture-extra aims to test the capability of a prediction
model to generalize to binary mixtures not seen during training
but constituting molecules that occurred in other combina-
tions, i.e., in other binary mixtures, during training. We sepa-
rate the data set into training and test sets of unique binary
mixtures by using a 5-fold stratied split based on polarity
features (cf. ref. 17). In contrast to comp-inter, where only
individual compositions of mixtures were excluded from the
training data for testing, mixture-extra excludes all available
compositions of a mixture for testing and thus allows to test
generalization to new mixtures.

We note that further evaluation scenarios, e.g., extrapolating
to new molecules not used in training of the ML models at all,
which was successfully demonstrated by ref. 14 and 18, are
herein not considered and could be investigated in future work.
2.5 Evaluation metrics for prediction accuracy and
consistency

To evaluate the predictive quality of models, we consider both
the prediction accuracy and the thermodynamic consistency.
The prediction accuracy is calculated based on the match
between predicted values and the data values for the test set. We
consider standard metrics for the prediction accuracy, i.e., root
mean squared error (RMSE), mean absolute error (MAE), and
1756 | Digital Discovery, 2023, 2, 1752–1767
coefficient of determination (R2). Thermodynamic consistency
is assessed by calculating the deviation of the Gibbs–Duhem
differential equation from zero. We refer to the Gibbs–Duhem
root mean squared error (GD-RMSE) for predictions cgi

k of the
test data by

GD-RMSEtest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

k

0
BBB@x1

k

vln

�dg1
k

�
vx1

k
þ x2

k

vln

�dg2
k

�
vx1

k

1
CCCA

2
vuuuuuut

(3)

Since the Gibbs–Duhem equation can be evaluated at any
composition in the range between 0 and 1 without requiring
activity coefficient data, we further test the thermodynamic
consistency for compositions outside the data set (cf. Section
2.4) in 0.05 steps, i.e., xexti,test ˛ {0.05, 0.15, 0.2, 0.25, 0.35, 0.4,
0.45, 0.55, 0.6, 0.65, 0.75, 0.8, 0.85, 0.95}, to which we refer to as
GD-RMSEext

test.

2.6 Implementation & hyperparameters

We implement all models and training and evaluation scripts in
Python using PyTorch and provide our code openly accessible at
ref. 45. The GNN implementation is adapted from Qin et al.17

using the Deep Graph Library (DGL)46 and RDKit.47 We use the
same model hyperparameters as in the original implementa-
tion, i.e., two shared graph convolutional layers are applied for
the molecule embedding, then the compositions are concate-
nated, followed by a single-layer GNN for the mixture embed-
ding and a prediction MLP with two hidden layers. For the
MCM, we use the re-implementation of the architecture by
Chen et al.11 from our previous work.13 We take the hyper-
parameters from the original model, but we adapt the model
structure to allow for composition-dependent prediction. The
MCM has a shared molecular embedding MLP with four hidden
layers, aer which the compositions are concatenated and two
subsequent prediction MLPs constituting two hidden layers are
applied.

All training runs are conducted with the ADAM optimizer, an
initial learning rate of 0.001, and a learning rate scheduler with
a decay factor of 0.8 and a patience of 3 epochs based on the
training loss. We train all models for 100 epochs and a batch
size of 100, as in Qin et al.;17 we could robustly reproduce their
results for the GNN. The quality of the nal models is then
assessed based on the test set. We executed all runs on the High
Performance Computing Cluster of RWTH Aachen University
using one NVIDIA Tesla V100-SXM2-16GB GPU.

3 Results & discussion

We rst investigate the Gibbs–Duhem consistency of GNNs and
MCMs trained in a standard manner, i.e., on the prediction loss
only, in Section 3.1. Then, in Section 3.2, we present the results
with Gibbs–Duhem-informed training. This includes a compar-
ison of different model architectures and activation functions
trained with Gibbs–Duhem loss to those trained on the
prediction loss only. We also analyse the effects of Gibbs–
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Duhem-informed training on vapor–liquid equilibria predic-
tions in Section 3.2.2. Lastly, we test the generalization capa-
bilities of Gibbs–Duhem-informed neural networks to
compositions with unseen activity coefficient data in Section
3.2.3 as well as to unseen mixtures in Section 3.2.4.

3.1 Benchmark: evaluation of Gibbs–Duhem consistency
with standard training

We rst evaluate the prediction accuracy and Gibbs–Duhem
consistency of GNNs and MCMs for predicting activity coeffi-
cients of a binary mixture at a specic composition with the
comp-inter split (cf. Section 2.4). The models are trained using
a standard approach, i.e., minimizing the deviation between the
predicted and the data activity coefficients without the Gibbs–
Duhem loss. Fig. 2 shows the error distribution of the absolute
prediction errors and absolute Gibbs–Duhem errors for the
GNN (2a) and MCM (2b) model. We also report the errors for
specic compositions according to the composition intervals in
the data set (cf. Section 2.4) for both prediction accuracy (2c)
and Gibbs–Duhem (2d) consistency.

Fig. 2a shows high prediction accuracy of the GNN, with the
MCM model performing slightly worse but still at a high level.
Fig. 2 Absolute prediction error and absolute deviation from Gibbs–
composition-dependent plots (c, d) for the GNN and the MCM trained
activation function: ReLU. The outlier thresholds (a, b) are determined b

© 2023 The Author(s). Published by the Royal Society of Chemistry
The low MAEs of 0.03 and 0.04 and high R2 values of 0.99 and
0.98 for the GNN and the MCM, respectively, indicate strong
prediction capabilities. Please note that the GNN prediction
results are a reproduction of the study by Qin et al.,17 who re-
ported an MAE of 0.03 and an RMSE of 0.10, which are very
similar to our results. The composition-dependent errors
shown Fig. 2c highlight that activity coefficient predictions for
solvents with lower compositions have higher errors, which is
expected. Innite dilution activity coefficients with xi /

0 represent the limiting case with MAEs of 0.077 for the GNN
and 0.093 for the MCM. In contrast, at high compositions xi /
1, the activity coefficient converges to 1 for all solvents, which is
well captured by the GNN with an MAE of 0.002 and the MCM
with an MAE of 0.006. Overall, we nd strong prediction quality
for both models.

For the Gibbs–Duhem consistency shown in Fig. 2b, the GNN
again performs better than the MCM. Notably, the distribution
for the GNN is more le-skewed than the MCM distribution and
shows a peak fraction of deviations close to 0, i.e., with high
Gibbs–Duhem consistency. However, it can also be observed
that both models have many errors signicantly greater than 0,
with an MAE of about 0.1 for the GNN and 0.14 for the MCM.
Duhem differential equation are illustrated in histograms (a, b) and
with a standard loss function based on the prediction error and MLP
ased on the top 1% of the highest errors for the GNN.

Digital Discovery, 2023, 2, 1752–1767 | 1757
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Considering the composition-dependent Gibbs–Duhem
consistency illustrated in Fig. 2d, we can observe similar
behavior for the GNN and the MCM: At the boundary
Fig. 3 Activity coefficient predictions and their corresponding gradient
deviations for exemplary mixtures by (a) the GNN ensemble and (b) MCM
error and MLP activation function: ReLU. Results are averaged from the

1758 | Digital Discovery, 2023, 2, 1752–1767
conditions, i.e., innite dilution, the models yield slightly
higher consistencies than at intermediate compositions, with
the GNN overall resulting in a slightly favorable consistency.
s with respect to the composition with the associated Gibbs–Duhem
ensemble trained with a standard loss function based on the prediction
five model runs of the comp-inter split.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Interestingly, we nd that changing the structure of the
prediction MLP to be a single MLP with two outputs, i.e., pre-
dicting both activity coefficients with one MLP at the same time,
results in opposite behavior with higher consistency observed at
intermediate compositions compared to innite dilution (cf.
ESI†). Without any form of regularization, we nd that the
predictions from both models oen exhibit Gibbs–Duhem
inconsistencies.

To further analyze the Gibbs–Duhem deviations, we show
activity coefficient predictions and composition-dependent
gradients with the corresponding thermodynamic consistency
for exemplary mixtures in Fig. 3a for the GNN and Fig. 3b for the
MCM. We selected mixtures that have different activity coeffi-
cient curves, contain well-known solvents, and for which
Antoine parameters are readily available (cf. Section 3.2.2).
Specically, we show the predictions and Gibbs–Duhem
consistency with the gradient information for three mixtures
that were included in the training (1–3) and three mixtures that
were not included in the training at all (4–6). Here, the predic-
tions of the ve models trained in the cross-validation of comp-
inter are averaged, referred to as ensemble model (cf. ref.
48–50). Note we can calculate the Gibbs–Duhem consistency of
the ensemble by rst averaging the ve models' partial deriva-
tives of the logarithmic activity coefficients with respect to the
composition and then applying eqn (1). Further ensemble
features like the variance are not considered.

For the exemplary mixtures in Fig. 3, the predictions exhibit
a high level of accuracy but also striking thermodynamic
inconsistencies. For the rst two mixtures as part of the training
set, the predictions are at high accuracy. However, particularly
for chloroform–hexane, the prediction curves for each compo-
nent show some signicant changes in their slope at varying
compositions, causing high thermodynamic inconsistencies.
For example, the ln(g2)-curve for the GNN at x1 = 0.2 or for the
MCM at x1 = 0.4 exhibits a step-like behavior, with the ln(g1)-
curve not changing the slope at these compositions, yielding
a high Gibbs–Duhem error. This behavior is also reected in the
gradients, which highly uctuate and have a discontinuous
curve over the composition. Notably, within some composition
ranges, the gradient is a constant value, e.g., for chloroform–

hexane for ln(g2) from x1 between 0 and 0.4 and for ln(g1) from
x1 between 0.7 to 1. For the mixture of 2-thiabutane and
butylene oxide, discontinuities in the gradients causing high
Gibbs–Duhem errors are even more prominent. We additionally
nd the prediction curves both have either positive or negative
gradients for specic compositions, i.e., both increasing or both
decreasing, which strictly violates thermodynamic principles.
For two of the mixtures not used in the training at all, i.e.,
chloroform–acetone and ethanol–water, both models overall
match the data but also show prediction errors at low compo-
sitions of the respective component. Especially for the GNN
predictions of the chloroform–acetone mixture, the ln(g2)-curve
exhibits a change in the gradient within the composition range
from 0.6 to 0.8 which is not reected in ln(g1). For the last
mixture, ethanol–benzene, also not being in the training set, the
predictions match the data values well, but for both models,
Gibbs–Duhem deviations occur at low compositions of the
© 2023 The Author(s). Published by the Royal Society of Chemistry
respective component and for the MCM also at intermediate
compositions. The gradient curves of the three mixtures not
being part of the training set are again discontinuous, resulting
in further thermodynamic inconsistencies.

Fig. 3 further shows that the magnitude of the activity coef-
cient values for a specic system inuences the metrics of
Gibbs–Duhem consistencies. Since mixtures with large absolute
activity coefficient values naturally tend to have higher gradi-
ents, they oen show larger absolute deviations from the Gibbs–
Duhem differential equation than mixtures with low absolute
activity coefficients. Future work could consider weighting
Gibbs–Duhem deviations for individual mixtures based on the
magnitude of the activity coefficients, e.g., dividing the Gibbs–
Duhem error by the sum of absolute values of ln(g1) and ln(g2),
which was out the scope of our investigations.

We additionally show the results of the individual models in
the ESI,† where the thermodynamic inconsistencies become
even more prominent and visible. In fact, for the ensemble
model results shown in Fig. 3, some inconsistencies partly
average out. Using ensembles can thus, in addition to higher
prediction accuracy,9,13 also increases thermodynamic consis-
tencies. It would thus be interesting to systematically study
ensemble effects in combination with Gibbs–Duhem-informed
neural networks, which we leave for future work.

Overall, we nd theMLmodels with standard training on the
prediction loss to provide highly accurate activity coefficient
predictions, but they also exhibit notable thermodynamic
inconsistencies, which can be related to the ML model struc-
ture. Particularly, we nd the gradient curves of the activity
coefficient with respect to the composition to be discontinuous,
resulting in high Gibbs–Duhem errors. The discontinuities of
the gradients are inherent to the non-smooth activation func-
tions typically used in ML models, e.g., ReLU. Specically, the
gradient of ReLU changes from 1 for inputs >0 to 0 for inputs <0,
which we nd to yield non-smooth gradients of the ln(gi)-
curves, thereby promoting violations of the Gibbs–Duhem
consistency. This motivates us to investigate the incorporation
of the thermodynamic consistency into the training of ML
models with different activation functions and an adapted loss
function accounting for the Gibbs–Duhem-equation, which we
refer to as Gibbs–Duhem-informed neural networks.
3.2 Proposal: Gibbs–Duhem-informed training

We apply Gibbs–Duhem-informed training according to eqn (2)
for the GNN and MCM models. Since, in the previous section,
we found the non-smoothness of ReLU activation to have an
impact on the thermodynamic consistency of the predictions,
we investigate two additional activation functions, namely ELU
and soplus. In contrast to ReLU, ELU exhibits rst-order
continuity and soplus is smooth. The smoothness of so-
plus has already been utilized in models for molecular
modeling by Schuett et al.51 In addition, we investigate an
adapted GNN architecture, which we refer to as GNNxMLP, where
we concatenate the composition to the output of the mixture
embedding instead of the input of the mixture embedding, cf.
Section 2.3. Using the composition aer the mixture embedding
Digital Discovery, 2023, 2, 1752–1767 | 1759

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00103b


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/2
1/

20
26

 1
2:

37
:3

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and applying a smooth activation function for the prediction
MLP results in a smooth relation between the activity coefficient
predictions and the compositions. It also has computational
benets since we avoid calculating gradients through the graph
convolutional layers used for mapping molecular to mixture
embeddings. Furthermore, we investigate the proposed data
augmentation strategy (cf. Section 2.2) by adding pseudo
gradient data at random compositions to the Gibbs–Duhem-
informed training.

3.2.1 Effect on predictive quality and thermodynamic
consistency. Table 1 shows the results of Gibbs–Duhem-
informed the GNN, MCM, and GNNxMLP aggregated for the
ve comp-inter splits. We compare different activation func-
tions in the MLP and different weighting factors of the Gibbs–
Duhem loss (cf. eqn (2)), “lambda”, with l = 0 representing
training without Gibbs–Duhem loss, i.e., standard training on
the prediction error from the previous Section 3.1. We also
indicate whether data augmentation is applied.

First comparing the prediction accuracy and thermodynamic
consistency of the activation function without Gibbs–Duhem-
informed training, i.e., l = 0, in Table 1, we nd for the GNN,
GNNxMLP, and MCM comparable prediction accuracies, with
soplus being slightly favorable for the MCM. For the thermo-
dynamic consistency calculated by GD-RMSE, we can observe
a consistent improvement from ReLU over ELU to soplus
across all models for the test data. We thus nd the choice of
the activation function to highly inuence the thermodynamic
consistency, with ELU and soplus being favorable over ReLU.
Table 1 Prediction accuracies and thermodynamic consistencies measu
by ensembles of the GNN, MCM, and GNNxMLP. The models are trained w
loss weighting factor l, and data augmentation. Results are aggregated
modynamic consistency for additional compositions outside the data se

Model setup GNN MCM

MLP act l Data augm RMSEtest GD-RMSEtest GD-RMSEexttest RMS

Relu 0.0 False 0.088 0.212 0.298 0.102
0.1 False 0.082 0.116 0.247 0.137
1.0 False 0.085 0.055 0.236 0.594

10.0 False 0.093 0.015 0.387 0.667
100.0 False 0.196 0.016 0.065 0.688

1.0 True 0.084 0.042 0.048 0.584
10.0 True 0.107 0.023 0.025 0.663

Elu 0.0 False 0.089 0.164 0.192 0.109
0.1 False 0.081 0.102 0.169 0.114
1.0 False 0.084 0.058 0.265 0.128

10.0 False 0.096 0.036 0.329 0.176
100.0 False 0.154 0.011 0.297 0.293

1.0 True 0.080 0.029 0.034 0.121
10.0 True 0.094 0.014 0.015 0.179

Soplus 0.0 False 0.089 0.140 0.220 0.091
0.1 False 0.080 0.103 0.175 0.088
1.0 False 0.083 0.061 0.183 0.091

10.0 False 0.090 0.013 0.410 0.115
100.0 False 0.145 0.008 0.126 0.196

1.0 True 0.081 0.032 0.038 0.088
10.0 True 0.096 0.013 0.015 0.114

1760 | Digital Discovery, 2023, 2, 1752–1767
For additional comparative illustrations of the different activa-
tion functions, we refer the interested reader to the ESI.†

Now, we consider the results of Gibbs–Duhem-informed
neural networks using different weighting factors l in Table 1.
We observe that for all cases except the MCM and the GNNxMLP

with ReLU activation, Gibbs–Duhem-informed training results
in decreasing GD-RMSE values, indicating higher thermody-
namic consistency for the compositions present in the activity
coefficient data. Higher l factors generally lead to lower GD-
RMSE. The prediction accuracy mostly stays at a similar level
for the Gibbs–Duhem-informed neural networks when using l

factors of 0.1 and 1. For higher l factors, i.e. 10 and 100, the
prediction accuracy starts to decrease consistently, indicating
an imbalanced loss with too much focus on thermodynamic
consistency. Generally, we observe that l = 1 yields a signicant
increase in thermodynamic consistency compared to training
without Gibbs–Duhem loss, e.g., for the GNN with soplus from
a GD-RMSEtest from 0.140 to 0.061. The prediction accuracy
stays at a similar level, sometimes even slightly improving. For
the example of the GNNwith soplus, we observe an RMSEtest of
0.89 vs. 0.83 without and with Gibbs–Duhem loss, respectively,
thereby indicating a suitable balance between accuracy and
consistency.

Notably, for the cases of the MCM and the GNNxMLP with
ReLU activation and the Gibbs–Duhem loss, we observe high
prediction errors. For these cases, we nd the loss not
improving aer the rst epochs during training and the gradi-
ents being mostly constant for all compositions – 0 for high
red by root mean squared error (RMSE) for comp-inter split (cf. ref. 17)
ith different hyperparameters: MLP activation function, Gibbs–Duhem
over five runs on comp-inter split. GD-RMSEexttest indicates the ther-

t

GNNxMLP

Etest GD-RMSEtest GD-RMSEext
test RMSEtest GD-RMSEtest GD-RMSEexttest

0.263 0.278 0.082 0.248 0.270
0.212 0.188 0.151 0.260 0.252
0.182 0.147 0.627 0.163 0.131
0.023 0.018 0.672 0.018 0.014
0.003 0.002 0.680 0.002 0.002
0.209 0.168 0.614 0.188 0.151
0.027 0.021 0.671 0.022 0.017

0.202 0.209 0.086 0.187 0.150
0.129 0.163 0.086 0.085 0.117
0.076 0.126 0.087 0.057 0.104
0.026 0.281 0.106 0.022 0.339
0.013 0.026 0.158 0.010 0.101
0.055 0.061 0.089 0.036 0.033
0.030 0.031 0.103 0.017 0.014

0.163 0.151 0.083 0.160 0.122
0.103 0.135 0.079 0.093 0.114
0.063 0.101 0.083 0.044 0.068
0.020 0.063 0.099 0.013 0.055
0.010 0.014 0.179 0.009 0.021
0.034 0.035 0.083 0.028 0.025
0.022 0.022 0.104 0.018 0.014

© 2023 The Author(s). Published by the Royal Society of Chemistry
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lambdas. Interestingly, the GNN, which, in contrast to the MCM
and GNNxMLP, employs graph convolutions aer adding the
compositions, does not suffer from these training instabilities.
Future work should further investigate this phenomenon, e.g.,
by considering the dying ReLU problem and second-order
vanishing gradients that can occur when using gradient infor-
mation in the loss function, cf. ref. 36. For ELU and soplus,
Gibbs–Duhem-informed training results in higher thermody-
namic consistency for compositions included in the activity
coefficient data across all models. In fact, Gibbs–Duhem-
informed neural networks with soplus lead to the most
consistent improvement of thermodynamic consistency with
high prediction accuracy.

Lastly, we analyze the effect of data augmentation by
considering the GD-RMSEext

test, i.e., the Gibbs–Duhem consis-
tency evaluated at compositions that are not used in training for
any mixture at all, which indicates the generalization for ther-
modynamic consistency. Table 1 shows that for Gibbs–Duhem-
informed training without data augmentation, the GD-RMSE on
the external test set is signicantly higher than for the test set,
and in some cases even higher than for training on the
prediction loss only, e.g., for the GNN with lambda $1 and
without data augmentation. We show the errors at specic
compositions in the ESI,† where we nd the largest errors occur
at low compositions, which is expected since the corresponding
gradients naturally tend to be higher. The model thus learns
thermodynamic consistency for compositions present in the
training but does not transfer this consistency to other
compositions, which indicates overtting. When using data
augmentation, as shown for l factors of 1 and 10, the GD-
RMSEexttest decreases to the same level as the GD-RMSEtest. Data
augmentation additionally reduces the GD-RMSEtest in most
cases, thus further increases thermodynamic consistency in
general. Data augmentation without the requirement of further
activity coefficient data (cf. Section 2.2) therefore effectively
increases the generalization capabilities of Gibbs–Duhem-
informed neural networks for thermodynamic consistency.

Overall, Gibbs–Duhem-informed neural networks can
signicantly increase the thermodynamic consistency of the
predictions. Using the soplus activation function, a l factor of
1, and employing data augmentation leads to the most consis-
tent improvement of thermodynamic consistency with high
prediction accuracy across all Gibbs–Duhem-informed neural
network models. Hence, we focus on the models with these
settings in the following.

Comparing the three different models, we nd similar
prediction accuracies and consistencies for the GNN and the
GNNxMLP, with the GNNxMLP, reaching the highest consistency.
The MCM exhibits comparable consistency but a slightly lower
prediction accuracy compared to the GNNs. Interestingly, the
Gibbs–Duhem-informed MCM shows higher prediction accu-
racy compared to the standard MCM. The runtimes averaged
over the ve training runs of comp-inter split are 231 minutes
for the GNN, 108 minutes for the MCM, and 177 minutes for the
GNNxMLP. Hence, we nd the GNNxMLP to be computationally
more efficient than the GNN for Gibbs–Duhem-informed
training. The MCM, which has the simplest architecture
© 2023 The Author(s). Published by the Royal Society of Chemistry
without any graph convolutions, shows the highest computa-
tional efficiency. We note that the respective runtimes for the
GNN, the MCM, and the GNNxMLP are, as expected (cf. Section
2.2), lower for Gibbs–Duhem-informed training with the same
hyperparameters but without data augmentation with 159, 90,
and 128 minutes, and even lower for training on the prediction
loss only with 107, 75, and 113 minutes. Nevertheless, the
computational costs for Gibbs–Duhem training with data
augmentation remain in the same order of magnitude and are
therefore practicable.

In Fig. 4, we further show the predictions for the same
mixtures as in Fig. 3 for the GNNxMLP, which exhibits the
highest thermodynamic consistency, and the MCM; further
results for the GNN and the individual model runs can be found
in the ESI.† We now observe smooth predictions and gradients
of ln(gi) induced by the soplus activation, which results in
signicantly reduced GD-deviations from zero in comparison to
the standard training shown in Fig. 3. We also nd notably less
uctuations and less large changes of the gradients, e.g., for 2-
thiabutane and butylene oxide the predictions curves are visibly
more consistent. For some mixtures, slight inconsistencies are
still notable yet, e.g., for the MCM predicting ethanol–water at
high x1 compositions. Regarding accuracy, the match of the
predictions and the data remains at a very high level for the
presented mixtures. We also nd prediction improvements for
some mixtures, e.g., the GNNxMLP model now predicts ln(g2) for
the ethanol–water mixtures at high accuracy. The exemplary
mixtures thus highlight the overall highly increased thermo-
dynamic consistency of the activity coefficient predictions with
high accuracy by Gibbs–Duhem-informed neural networks.

3.2.2 Effect on vapor–liquid equilibrium predictions. We
further study the effect of Gibbs–Duhem-informed neural
networks on estimated vapor–liquid equilibria (VLE). To
calculate VLEs, we use modied Raoult's law, with vapor pres-
sures estimated by using Antoine parameters obtained from the
National Institute of Standards and Technology (NIST) Chem-
istry webbook,52 similar to Qin et al.17,53

Fig. 5 shows the isothermal VLEs at 298 K for the exemplary
mixtures investigated in the two previous sections. Specically,
the VLEs for the GNN (a) and MCM (c) trained with ReLU acti-
vation and standard loss (cf. Section 3.1) and the Gibbs–Duhem-
informed (GDI-) GNNxMLP (c) and MCM (d) with soplus activa-
tion, l= 1, and data augmentation (cf. Section 3.2) are illustrated.

For themodels without Gibbs–Duhem loss, we observe abrupt
changes in the slopes of the bubble and dew point curves caused
by the non-smooth gradients of the ln(gi) predictions, cf. Section
3.1. For both the GNN and MCM, these inconsistent slope
changes are particularly visible for 2-thiabutane and butylene
oxide and for chloroform and acetone, and can also be observed,
for example, for x1 compositions between 0.1 and 0.4 for
ethanol–benzene. The thermodynamic inconsistencies in the
activity coefficient predictions are therefore reected in the VLEs.
Comparing the GDI-GNNxMLP and GDI-MCM to the standard
GNN and MCM, we observe that the consistency of the bubble
and dew point curves are vastly improved; in fact, we do not nd
visible inconsistencies. Gibbs–Duhem-informed ML models
therefore also show notably increased consistency in VLEs.
Digital Discovery, 2023, 2, 1752–1767 | 1761
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Fig. 4 Activity coefficient predictions and their corresponding gradients with respect to the composition and the associated Gibbs–Duhem
deviations for exemplarymixtures by (a) GNNxMLP ensemble and (b) MCM ensemble trainedwith Gibbs–Duhem-informed (GDI) loss function and
following hyperparameters: MLP activation function: softplus, weighting factor l= 1, data augmentation: true. Results are averaged from the five
model runs of the comp-inter split.
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Our results so far show that Gibbs–Duhem-informed
training of GNNs and MCMs with smooth activation functions
such as soplus greatly increases the thermodynamic
1762 | Digital Discovery, 2023, 2, 1752–1767
consistency of activity coefficient predictions compared to
standard training on the basis of prediction loss only, while
prediction accuracy remains at a similar, very high level. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Isothermal vapor–liquid–equilibrium plots at 298 K based on activity coefficient predictions by (a) GNN and (c) MCM trainedwith standard
loss based on the prediction error and MLP activation function: ReLU; (b) GDI-GNNxMLP ensemble and (d) GDI-MCM ensemble trained with
Gibbs–Duhem-informed (GDI) loss function and following hyperparameters: MLP activation function: softplus, weighting factor l = 1, data
augmentation: true. Results are averaged from the five model runs of the comp-inter split.
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higher consistency also reects in predicted VLEs. Next, we
investigate whether the increase of thermodynamic consistency
also transfers to higher generalization capability of Gibbs–
Duhem-informed neural networks.

3.2.3 Generalization to compositions with unseen activity
coefficients. We rst test the generalization to compositions
with unseen activity coefficients, representing an extreme case
of predicting the binary activity coefficient at compositions that
are not present for any mixture in the training data. Thereby, we
aim to investigate the effects of Gibbs–Duhem-informed
training on the activity coefficient prediction quality at
compositions for which no experimental data is readily avail-
able. Specically, we use the comp-extra split (cf. Section 2.4),
i.e., in each run, the data for the compositions of a respective set
of x ˛ {{0.0, 1.0}, {0.1, 0.9}, {0.3, 0.7}, {0.5}} is excluded from
training and used for testing. The results for the respective runs
of the ML models without and with Gibbs–Duhem loss are
shown in Table 2.

The thermodynamic consistency evaluated by the GD-
RMSEtest is generally higher for all models trained with Gibbs–
Duhem loss. Particularly, if data augmentation is used, the
consistency is signicantly increased, oen in the order of one
magnitude with respect to the RMSE. Here, we stress that data
augmentation enables the models to learn thermodynamic
consistency over the whole composition range – also at
compositions similar to the excluded ones – without the need
for any additional activity coefficient values, so that a lower GD-
RMSE is expected. Interestingly, we nd for low and high
compositions, i.e., excluding xi ˛ {0.1, 0.9} and xi ˛ {0, 1}, that
models trained with Gibbs–Duhem loss but without data
augmentation sometimes do not result in higher consistency,
which indicates that the model is not able to transfer consis-
tency learned from other compositions, hence overts. For
these cases, data augmentation is particularly effective.
Table 2 Prediction accuracies and thermodynamic consistencies mea
excluding specific compositions from the training set and using those as t
models are trained with different hyperparameters: MLP activation functio
RMSEexttest indicates the thermodynamic consistency for additional compo

Model cong Excl. xi ˛ {0.5} Excl.

Type MLP act l Data augm RMSEtest GD-RMSEtest RMSE

GNN Relu 0.0 False 0.067 0.453 0.180
Soplus 0.0 False 0.053 0.188 0.090

1.0 False 0.052 0.105 0.089
1.0 True 0.040 0.030 0.064

MCM Relu 0.0 False 0.064 0.330 0.083
Soplus 0.0 False 0.058 0.161 0.080

1.0 False 0.048 0.124 0.076
1.0 True 0.043 0.039 0.067

GNNxMLP Relu 0.0 False 0.066 0.386 0.084
Soplus 0.0 False 0.058 0.165 0.069

1.0 False 0.047 0.070 0.079
1.0 True 0.039 0.021 0.065

1764 | Digital Discovery, 2023, 2, 1752–1767
For the prediction accuracy, we rst observe higher RMSEs for
more extreme compositions, which is expected, cf. Section 3.1.
Notably, for all runs, the Gibbs–Duhem-informed models ach-
ieve a higher accuracy than models trained only on the predic-
tion loss. We nd the strongest increase in accuracy for the case
of excluding xi ˛ {0.1, 0.9}, e.g., the GNN with ReLU activation
and without Gibbs–Duhem loss has an RMSE of 0.302, hence
failing to predict the activity coefficients with high accuracy,
whereas the Gibbs–Duhem-informed GNN with soplus and
data augmentation shows an RMSE of 0.075 corresponding to an
accuracy increase by a factor of 4. For these compositions, the
gradients of the activity coefficient with respect to the composi-
tions tend to be relatively high, and thus accounting for these
insights during training seems to be very valuable for prediction.
Generally, data augmentation increases the prediction accuracy
in all cases, demonstrating that even if activity coefficient data is
not available at specic compositions, utilizing the thermody-
namic consistency information at similar compositions can be
highly benecial for predicting the corresponding activity coef-
cient values. For the boundary conditions, i.e., xi ˛ {0, 1} the
accuracy increase of the Gibbs–Duhem-informed models is
rather minor considering that the overall RMSE of approximately
0.3 is at a high level. Since the Gibbs–Duhem differential
constraint is not sensitive to the gradient at xi / 0, the regula-
rization has less effect on the network predictions at innite
dilution. Hence, predicting the innite dilution activity coeffi-
cient thus benets less from Gibbs–Duhem information and
remains a challenging task. Providing further thermodynamic
insights for innite dilution activity coefficients would thus be
interesting for future work. Overall, we nd Gibbs–Duhem-
informed neural networks to increase generalization capabil-
ities for compositions with unseen activity coefficient data.

3.2.4 Generalization to unseen mixtures. For computer-
aided molecular and process design applications, predicting
sured by root mean squared error (RMSE) for comp-extra split, i.e.,
est set (indicated in the first row), by the GNN, MCM, and GNNxMLP. The
n, Gibbs–Duhem loss weighting factor l, and data augmentation. GD-
sitions outside the data set

xi ˛ {0.3, 0.7} Excl. xi ˛ {0.1, 0.9} Excl. xi ˛ {0, 1}

test GD-RMSEtest RMSEtest GD-RMSEtest RMSEtest GD-RMSEtest

1.532 0.302 0.715 0.514 0.101
0.236 0.254 0.518 0.488 0.113
0.263 0.257 0.570 0.467 0.088
0.034 0.075 0.044 0.374 0.026

0.348 0.282 0.299 0.385 0.231
0.187 0.191 0.227 0.379 0.125
0.141 0.154 0.278 0.346 0.276
0.042 0.094 0.036 0.342 0.051

0.330 0.333 0.363 0.455 0.123
0.152 0.165 0.192 0.353 0.293
0.154 0.140 0.285 0.334 0.272
0.028 0.087 0.032 0.332 0.044

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Prediction accuracies and thermodynamic consistencies measured by root mean squared error (RMSE) for mixture-extra split, i.e.,
generalization to unseen mixtures, by the GNN, MCM, and GNNxMLP. The models are trained with different hyperparameters: MLP activation
function, Gibbs–Duhem loss weighting factor l, and data augmentation

Model setup GNN MCM GNNxMLP

MLP act l Data augm RMSEtest GD-RMSEtest GD-RMSEexttest RMSEtest GD-RMSEtest GD-RMSEexttest RMSEtest GD-RMSEtest GD-RMSEexttest

Relu 0.0 False 0.114 0.206 0.311 0.148 0.249 0.274 0.117 0.237 0.277
Soplus 0.0 False 0.114 0.124 0.210 0.125 0.140 0.142 0.117 0.146 0.125

1.0 False 0.108 0.036 0.197 0.123 0.040 0.095 0.114 0.031 0.073
1.0 True 0.105 0.040 0.038 0.120 0.039 0.036 0.113 0.035 0.030
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the activity coefficients of newmixtures, i.e., for which no data is
readily available, is highly relevant. We thus systematically
investigate the generalization to unseen mixtures by Gibbs–
Duhem-informed neural networks, beyond the exemplary
mixtures from Fig. 3 and 4. Specically, we now consider the
mixture-extra split (cf. Section 2.4), where we exclude all data
samples for a set of mixtures from the training set and use them
for testing. Since these mixtures are composed of molecules
that occurred during training but in other combinations, this
evaluation scenario represents completing missing entries in
a matrix of solute and solvent components, as is the case with
matrix completion methods7,11 and typically referred to as
interpolating within the chemical space covered during
training, e.g., in ref. 14 and 18.

Table 3 shows the results for different ML models trained
without and with Gibbs–Duhem loss aggregated from the ve
mixture-extra splits. We observe that Gibbs–Duhem-informed
neural networks using data augmentation yield notably higher
thermodynamic consistency for all models. The prediction
accuracy remains at a mostly similar, in some cases slightly
higher, level of prediction accuracy. In comparison to the comp-
inter split (cf. Table 1), the prediction accuracy decreases from
about 0.08 RMSE to 0.11 RMSE, which is expected, since pre-
dicting activity coefficients for new mixtures is more difficult
than predicting the values of a known mixture but at different
composition. Overall, the prediction quality remains at a very
high level. Therefore, Gibbs–Duhem-informed neural networks
also provide high accuracy and greatly increase thermodynamic
consistency for predicting activity predictions for new mixtures.

The generalization studies emphasize that Gibbs–Duhem-
informed neural networks enable high prediction accuracies
with signicantly increased thermodynamic consistency, cf.
Section 3.2. Additionally, generalization capabilities for
compositions with unseen activity coefficient data can be
enhanced. We therefore demonstrate that using thermody-
namic insights for training neural networks for activity coeffi-
cient predicting is highly benecial. Including further
thermodynamic relations, next to the Gibbs–Duhem equation,
is thus very promising for future work.
4 Conclusion

We present Gibbs–Duhem-informed neural networks that learn
to predict composition-dependent activity coefficients of binary
mixtures with Gibbs–Duhem consistency. Recently developed
© 2023 The Author(s). Published by the Royal Society of Chemistry
hybrid ML models focused on enforcing thermodynamic
consistency by embedding thermodynamic models in ML
models. We herein propose an alternative approach: utilizing
constraints of thermodynamic consistency as regularization
during training. We present the results for the choice of the
Gibbs–Duhem differential constraint, as this has particular
signicance. We also present a data augmentation strategy in
which data points are added to the training set for evaluation of
the Gibbs–Duhem equation at unmeasured compositions, hence
without the need to collect additional activity coefficient data.

Gibbs–Duhem-informed neural networks strongly increase
the thermodynamic consistency of activity coefficient predic-
tions compared to models trained on prediction loss only. Our
results show that GNNs andMCMs trained with a standard loss,
i.e., on the prediction error only, exhibit notable thermody-
namic inconsistencies. For instance, g1 and g2 both increase for
changing compositions or the derivatives of the activity coeffi-
cient with respect to the composition having discontinuities
caused by ReLU activation. By using Gibbs–Duhem loss during
training with the proposed data augmentation strategy and
employing a smooth activation function, herein soplus, the
thermodynamic consistency effectively increases for both
model types at the same level of prediction accuracy and is
therefore highly benecial. The higher consistency also reects
in predicted vapor–liquid equilibria.

Furthermore, we test the generalization capability by
respectively excluding specic mixtures and compositions from
training and using them for testing. We nd that Gibbs–
Duhem-informed GNNs and MCMs allow for generalization to
new mixtures with high thermodynamic consistency and
a similar level of prediction accuracy as standard GNNs and
MCMs. They further enable generalization to new compositions
with higher consistency, additionally enhancing the prediction
accuracy.

Future work could extend Gibbs–Duhem-informed neural
networks by including other relations for thermodynamic
consistency, e.g., the Gibbs–Helmholtz relation for the
temperature-dependency of the activity coefficient, cf. ref. 10
and 14, and considering mixtures with more than two compo-
nents. Since our investigations are based on activity coefficients
obtained from COSMO-RS by ref. 17, it would also be interesting
to ne-tune our models on experimental databases, e.g., Dort-
mund Data Bank.54 Further ML model types such as trans-
formers12 or MCMs based on Bayesian inference7 could also be
extended by Gibbs–Duhem insights using our approach.
Digital Discovery, 2023, 2, 1752–1767 | 1765
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Furthermore, additional thermodynamic constraints could be
added to the loss function for regularization, which might also
enable transferring the concept of Gibbs–Duhem-informed
neural networks to predict further thermophysical properties
with increased consistency.
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