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thesis patterns of nanomaterials:
a text mining and meta-analysis approach with ZIF-
8 as a case study†

Joseph R. H. Manning * and Lev Sarkisov *

With the continuously growing number of scientific articles on the synthesis of nanomaterials, it becomes

impossible for researchers to grasp and comprehend the landscape of synthetic protocols available for

a particular material. The aim of this study is to explore the feasibility of extracting the collective

knowledge on the synthesis of a particular material accumulated over the years from the published

corpus of articles and organizing it in a systematic manner. Accordingly, we developed methods to

perform detailed text mining on a single nanomaterial target for the purposes of methodology

optimisation. Taking the common material ZIF-8 as a case study, we analysed 1600 synthesis protocols

to identify trends in parameters, such as reagents, concentrations, and reaction time/temperature. We

used this information to find the distribution of synthesis parameters and their relationships to one

another, identifying the limits of common reaction parameters and revealing subtle details, such as

insolubility of metal acetate reagents in alcoholic solvents, or the occurrence of amorphous oxides at

low stoichiometric ratios. We then clustered similar synthesis protocols together, using their relative

popularity to identify promising regions of the synthesis phase space for optimisation, reducing the need

for brute force synthesis optimisation. The techniques developed here are a general tool accelerating the

synthesis development of a wide range of nanomaterials by aggregating existing research trends,

averting the need for laborious manual comparison of existing synthesis protocols or repetition of

previously-developed techniques.
Introduction

The number of chemical syntheses reported is large and
growing exponentially.1 While naturally indicative of greater
scientic progress, this leads to two signicant challenges.
Firstly, researchers are confronted with the growing difficulty of
maintaining a comprehensive overview and understanding of
the diverse landscape of synthesis routes and conditions
accessible for a particular group of compounds. Secondly,
although the repository of published synthesis data contains an
immense wealth of information, its potential for systematic
development of new synthesis methods remains largely
untapped and underutilized. In response to this, various
informatics approaches have been adopted to standardise the
data produced during chemical research. For example, the
creation of chemical synthesis ontologies2–4 and automated
reactionware5,6 has enabled new procedures to be directly
compared against previously-published data or shared openly
through chemical “programming languages”.7,8 However, the
sity of Manchester, M13 9PL, UK. E-mail:

kisov@manchester.ac.uk

tion (ESI) available. See DOI:

the Royal Society of Chemistry
nature of reporting synthesis methods – as unformatted prose
in a written report – has remained largely unchanged.

As a result, most new publications and the entire body of
prior chemical synthesis reports remains unlabelled, with the
potential for far broader data mining and informatics research
if these reports could be standardised. Accordingly, with the
advent of text mining methods and natural language processing
(NLP),9 soware has been developed to interpret chemical
details from the plain text within chemistry publications10,11

including compound structure,12 reaction stoichiometry,13 and
performance.14 Using these tools, large databases of organic14,15

and inorganic16–19 chemicals and reactions have been developed
and used for novel materials discovery. For example, Cole and
co-workers created a database of organic dyes to identify ideal
mixtures for broad-spectrum light absorption in dye-sensitized
solar cells, regardless of the intension of the original studies.15

Similar strategies have been used by Olivetti and co-workers to
analyse how synthesis gel composition and organic structure
directing agent can dictate crystal polymorphs for a range of
zeolite syntheses.16

One weakness of these text mining approaches is their reli-
ance on unambiguous identication of the chemical entities in
question, using named-entity recognition (NER)9,20 and the
programmatic naming conventions dened by IUPAC21 to
Digital Discovery, 2023, 2, 1783–1796 | 1783
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succeed. In the absence of such well-accepted naming schemes
– as is the case for a variety of emerging nanomaterial families
like porous silicas, polymers of intrinsic microporosity, and
covalent organic framework materials – large scale data mining
becomes far less practical. An excellent example of this is metal–
organic framework (MOF) materials – innite condensation
polymers of various organic ligands and metal ions or clusters.
There are millions of possible MOFs,22–25 and hundreds of
thousands of frameworks already synthesized,26–29 necessitating
data-driven approaches to accelerate progress in the eld.
However, unambiguous naming conventions for MOFs have yet
to be fully adopted,30 frustrating text-mining of the primary
publications themselves. Instead, informatics methods have
largely been driven by the creation of a subset of the Cambridge
Structural Database (CSD)31 focused on MOF materials,28 as
these resources allow researchers to analyse the full range of
experimentally known MOF structures, identifying the best
experimentally-realised materials for future research and
development.

To accelerate development of experimental procedures to
make MOFs, however, data-mining approaches must look
beyond structure into the synthesis protocols – unique sets of
synthesis parameters varying from one another in any way –

used to make them. By understanding the relationships
between protocol and eventual material, new synthesis methods
can be digitally generated, obviating the need for arduous trial-
and-error or intuition-based approaches.6 To this end, large-
scale post hoc analyses of experimental MOF synthesis proto-
cols have recently been developed.32,33 These studies apply NLP
to the underlying publications in the CSD MOF subset to
interpret their synthesis protocols, identifying such details as
solvents used, specic reagents, solvents, and reaction param-
eters. As a result, broad descriptive statistics about the synthesis
strategies to produce MOFs have been developed,33 and even
predictive models to suggest synthesis parameters for novel
MOF materials when given a hypothetical structure.32

While these approaches give an excellent overview of the
eld of MOFs in general, they are vulnerable to bias in the
papers submitting to the CSD. As the database focuses of
chemical structure rather than synthesis protocols, only 1–2
synthesis examples of each framework are included. Further,
the synthesis protocols are generally submitted from initial
studies reporting the discovery of a material, rather than
exploring the full range of potential approaches to a single
target, meaning that only a very vague understanding of any
individual MOF can be generated with this approach. For
example, while candidate solvents and reaction parameters can
be suggested, other salient parameters such as reagent ratios,
product isolation methods, and alternative synthesis strategies
(e.g. hydrothermal or mechanochemical versus solvent crystal-
lisation) cannot. Deeper insight into individual MOFs and the
peculiarities of their synthesis protocols can be gained through
targeted meta-analysis of studies focusing on that particular
material,34 enabling regression of product properties like defect
density against synthesis details. However, challenges of
manually comparing synthesis protocols against one another
1784 | Digital Discovery, 2023, 2, 1783–1796
severely limit the scale of such meta-analyses, preventing their
widespread use.

To address these issues, in this article we pose the following
questions: can we leverage previously-developed chemistry text
mining tools to analyse the synthesis protocols for a single
target nanomaterial? If so, can we develop methods to process
the extracted information on a uniform basis, enabling like-for-
like comparison regardless of original format? Finally, can we
harness this information to accelerate synthesis renement of
the material e.g. by generating proposed synthesis conditions
correlated to high material quality and yield?

As a case study, we consider ZIF-8, a commonly synthesized
MOF material which has been extensively studied within the
literature. ZIF-8 is constructed from a combination of zinc ions
and 2-methylimidazole in the sodalite topology, held together
with metal–amine bonds rather than the more common metal–
carboxylate bonds, thus rendering the material both hydro-
phobic and water-stable.35,36 Accordingly, ZIF-8 has garnered
signicant interest in the literature for applications including
gas storage and separation, adsorptive refrigeration,37 biomol-
ecule encapsulation,38 catalysis,39 and sensing.40 Further, ZIF-8
can be synthesized from a number of strategies – for example
using protic or aprotic solvents,41 a range of temperatures,42

reagent concentrations,43 modulators and crystal growth
modiers,44 and acid/base conditions.45 In sum, over 7500
papers have been published regarding ZIF-8 to date. Given the
breadth of synthesis protocols established for ZIF-8, it practi-
cally impossible to manually compare all possible synthesis
methodologies to one another. Applying text miningmethods to
automatically and quantitively analyse ZIF-8 synthesis protocols
would enable larger-scale analysis and the identication of
promising synthesis strategies.

In this study we developed methods to extract and aggregate
synthesis protocols in a uniform format. We studied 1600
synthesis protocols of ZIF-8 and related materials from 3197
original articles, performing an automated meta-analysis of the
synthesis methods contained. We analysed the chemical iden-
tities used alongside quantities and reaction conditions to
provide a systematic design space for ZIF-8, identifying key
trends in the approaches used. Finally, we group similar
synthesis protocols together with unsupervised clustering
techniques, identifying hidden patterns in the data.

Methodology

The workow of extracting and analysing synthesis protocols
was split into four overarching steps: text collection, where
a corpus of research papers is identied and downloaded;
paragraph identication, where raw synthesis protocols are
identied within the prose; grammar parsing, where the natural
language is converted into hierarchical data for later interpre-
tation; and synthesis protocol extraction, where the extracted
data is standardised to produce a structured “recipe” for each
synthesis protocol. Key steps in the workow are depicted in
Fig. 1. The rst three steps have been widely described else-
where, and only a brief description is provided in this section
(with associated code provided by the authors on GitHub at
© 2023 The Author(s). Published by the Royal Society of Chemistry
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https://github.com/SarkisovTeam/SynOracle-preprocessing).
The nal stage of the workow was developed in this study
using python 3.9,46 and is made freely available by the authors
on GitHub at https://github.com/SarkisovTeam/
SyntheticOracle.
Text collection, paragraph identication, and grammar
parsing

To produce a corpus of ZIF-8 synthesis protocols, we initially
followed established methods to download collections of
papers and identify synthesis protocols within them.32,33

Synthesis papers were identied by searching the SCOPUS
database using Elsevier's elsapy soware (https://github.com/
ElsevierDev/elsapy). Papers were identied using the search
term “ZIF OR zeolitic imidazole* AND synthesis”, returning
4198 results published between June 2010 and April 2022.
These were then categorised by publisher, from which the
three largest groups were targeted for downloading (ACS, RSC,
and Elsevier), reducing the total corpus to 3179 papers. XML
or HTML versions of each paper were then downloaded
according to their publisher's specications – using elsapy in
the case of Elsevier, web scraping in the case of the RSC, and
through the text and data mining service at the ACS.

Once downloaded, synthesis paragraphs were identied
using ChemDataExtractor2.1 (ref. 10) according to previously
developed protocols for identifying MOF synthesis methods.32,33

In this procedure, chemical named entity recognition was per-
formed using BERT47 to identify potential reagents, and part-of-
speech (POS) tagging was carried out on the remaining tokens
to interpret sentence grammar. Chemical quantities were
identied from the POS tags as CD-NN bigrams (phrases con-
sisting of a cardinal number followed by a noun), and regex
matching of the noun against a library of SI units. Synthesis
paragraphs were identied as containing three or more chem-
ical named entities and three or more chemical quantities, aer
which each paragraph was extracted as plain text for manual
conrmation and later analysis.

Once conrmed that each extracted paragraph contained
a synthesis procedure, hierarchical grammar parsing was per-
formed in the ChemicalTagger soware11 to associate chemical
named entities with quantities and specic synthesis actions
(termed ActionPhrases). These were stored as nested tags within
an XML document. No further analysis was used to compensate
Fig. 1 Scheme of the data processing pipeline used in this study.

© 2023 The Author(s). Published by the Royal Society of Chemistry
for incorrect or missing values in the original text (e.g. unre-
ported drying temperatures).
Synthesis protocol extraction

To interpret and compare synthesis protocols against one
another, data about synthesis steps, conditions, and chemicals
involved had to be converted from nested XML data into useful
information using the soware developed in this study. To
perform this, XML data extracted from ChemicalTagger was
recursively parsed into strings within a pandas48,49 DataFrame
object such that each row consisted of a single ActionPhrase, its
associated time and temperature, and details of any chemical
entity involved.

Chemical identities were rst conrmed by cross-referencing
identied chemical names against the PubChem database50

using the pubchempy python library (https://
pubchempy.readthedocs.io/en/latest/index.html). From this,
a unique identier for each individual chemical was
generated, enabling extraction of key information about each
chemical and summation of identical chemicals together. To
prevent semantically identical reagents from being considered
separately (e.g. zinc nitrate and their hydrates), PubChem
identiers were supplemented with structural information
gathered from the cheminformatics tool RDkit.51 Specically,
chemicals whose formulae contained the elements zinc or
cobalt, as well as the nitrate, acetate, sulfate, and imidazole
substructures were separately identied.

Then, numerical quantities associated with each chemical
were calculated. To do this, chemical quantities were cat-
egorised by type from the structured XML output of Chem-
icalTagger (e.g. by volume, moles, mass etc.), and parsed into
physically meaningful units with the pint python library
(https://pint.readthedocs.io/en/0.20.1/index.html). To prevent
double-counting in situations where two units were
mentioned, e.g. by the common phrase “5 g of [reagent] (0.8
mmol)”, only a single unit type was considered for each chem-
ical entity according to the priority list (moles > mass > volume).
These units were then converted into moles using the molecular
mass identied from the PubChem identity. In the case of
converting volume to moles, densities were estimated from the
ChEDL database of critical point properties52 using the COS-
TALD method.53 Once chemical identities and quantities had
been fully converted, these were aggregated into a single bill of
Digital Discovery, 2023, 2, 1783–1796 | 1785
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Table 1 Example of a synthesis protocol bill of materials taken from ref. 54

PubChem identier Chemical name Original quantities Amount (millimol)

12 749 2-Methylimidazole 0.24 g, 3.4 mmol 3.4
15 865 313 Zn(NO3)2$6H2O 0.956 g, 3.2 mmol 3.2
6212 Chloroform 40 mL 500
6228 DMF 70 mL 1210
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materials for each synthesis (visualised in Table 1). Conditions
(i.e. time and temperature values) were similarly parsed from
strings into meaningful units using the pint python library, and
stored as minutes and degrees kelvin, respectively.

Finally, to reduce the effect of original authors' writing styles
on the interpretation of synthesis sequences, synthesis actions
were condensed into a smaller vocabulary than originally
dened by ChemicalTagger using a similar technique to the
recently developed ULSA for inorganic nanomaterials
syntheses.55 Synthesis labels from ChemicalTagger were cat-
egorised as either being related to the set up stage of the
synthesis (labelled “addition”), the synthesis itself (labelled
“reaction”), or reaction workup (labelled “extraction”), as
described in Table 2. Some synthesis actions could reasonably
occur during any of those reaction stages, e.g. changing the
temperature, therefore a fourth “other” category for these
ambiguous actions was also dened. A h category, “start”,
was used to signify opening statements of synthesis protocols
(e.g. “ZIF-8 was produced by our previously publishedmethod”),
which would otherwise be miscategorised as an “extraction” or
“other” action. “Start” actions were then excluded from further
analysis.

Grouping similar synthesis protocols together

To group synthesis protocols together, we related individual
syntheses to one another by the identity of the reagents used
only. To calculate the mathematical relationship between
different synthesis protocols the list of chemicals was rst
vectorised, creating a numerical representation of the chemical
combination used in each synthesis. Briey, an M × N matrix
was created, where M is the number of synthesis protocols, and
N is the number of unique chemicals present across all of
synthesis protocols studied. To reduce noise in the data, only
synthesis protocols containing 2-methylimidazole were
considered, and metal sources were grouped by chemical
substructures as described previously. In total, 139 unique
chemicals were identied across 1134 synthesis protocols.

For each synthesis protocol, a vector was generated using the
term frequency–inverse document frequency algorithm (TF-
Table 2 Relationship between ChemicalTagger-identified ActionPhrase

Action type ActionPhrase

“Addition” Add, dissolve, s
“Reaction” ApparatusActio
“Extraction” Degass, dry, ex
“Other” Concentrate, co

1786 | Digital Discovery, 2023, 2, 1783–1796
IDF), a commonly used text mining method to estimate the
importance of words in a group of documents.56 The TF-IDF
algorithm weights the frequency of a word used in each docu-
ment against its frequency across the group of documents –

words present in many documents are given a low weight, while
words occurring in only rarely are given a high weight. This is
shown in eqn (1), which calculates the weight of word t in the
individual document d as part of the group of documents D
(containing n total documents), where f is the frequency the
word occurs. As in this study the “words” are chemical names,
common chemicals like methanol are afforded a low weight,
while rarer chemicals like CTAB are afforded a relatively higher
weight.

TF-IDFðt; d;DÞ ¼ ft;d � log10

 
1þ n

1þ ft;D

!
(1)

Once the chemical identities had been vectorised, similarity
was calculated by the DBSCAN clustering method.57 DBSCAN
calculates the local density of data points in Euclidean space
(synthesis protocols in the case of this study), dened as the
number of neighbours closer than a threshold distance from
each data point. Clusters are identied as disconnected regions
containing a high density of data points, while isolated data
points with no connection to a larger cluster as identied as
noise.

To visualise the results of the clustering analysis, the high
dimensional data were projected into two dimensions using the
t-distributed stochastic neighbour embedding (t-SNE)
method.58 To do this the algorithm calculates the distances
between each datapoint in high dimensional space, and esti-
mates low-dimensional coordinates for each datapoints which
preserves the distance between each point and its neighbours.

Results and discussion
Validation against manually-extracted information

To perform a quantitative meta-analysis of ZIF-8 synthesis, we
rst demonstrate the validity of the information extracted by
types and aggregated action types used here

tir
n, synthesize, wait
tract, lter, partition, precipitate, purify, quench, recover, remove, yield
ol, heat

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Parsing fidelity metrics as a percentage for manually-labelled quantities in the NIST ISODB corpus of ZIF-8 synthesis procedures

Metric Precision Recall F1-score Matching quantities

Synthesis actions 59 77 66 —
Aggregated actions 83 89 84 —
Reagent identication 82 96 87 82
Temperature parsing 76 83 77 74
Time parsing 72 74 72 69

Fig. 2 Histograms of reagent compound frequency in ZIF-8
syntheses, broken down by (A) linker choice and (B) metal choice.
Abbreviated chemical names refer to: MeIM – 2-methylimidazole; bIM
– 2-benzylimidazole; IM – imidazole; IM-CHO – imidazole-2-
carbaldehyde.
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comparing the performance of our text mining approach
against a manually identied “ground truth” from a small
number of papers sourced from the NIST database of emerging
adsorbent materials. Using this database served two purposes:
it was sufficiently small to provide a tractable number of articles
for high-delity analysis, and each synthesis report was
conrmed to contain ZIF-8 by the isotherm data provided.
Overall, 44 publications describing ZIF-8 synthesis were iden-
tied, of which full information could be extracted for 43. The
manuscripts were downloaded from their publisher, synthesis
paragraphs manually identied, and synthesis information
extracted both manually and using our soware. In all cases,
data reported within the paper and manually collated were
considered as the ground truth. Full information on the specic
publications and paragraphs identied for validation are
provided in the ESI.†

From these paragraphs, three key parameters were extracted:
a sequence of synthesis actions taken, a table of constituent
© 2023 The Author(s). Published by the Royal Society of Chemistry
chemicals, and the reaction conditions (i.e. temperatures and
quoted times). For each parameter, the F1-score was calculated
providing a numeric score for each text mining task compared
against the manually-extracted ground truth. Extracted chem-
ical identities were cross-referenced against the PubChem
database of compounds to act as both a unique identier and
source of key information about each species. Finally, physical
quantities – the values of time, temperature, and chemical
quantity – were converted from plain text to numerical units
using the pint python library and compared against their
manually extracted counterparts. These data are summarised in
Table 3, with further details provided in the ESI.†

Identication of individual synthesis actions performed
similarly to the original ChemicalTagger benchmarking, with
an F1-score of 66% cf. 55–63% agreement in the original study.11

We believe this is due to the relatively large vocabulary of
synthesis actions which led to sensitivity during human label-
ling due to the resultant ambiguity; for example, introduction of
reagents at the start of the reaction could reasonably be
assigned the “add” or “dissolve” action labels due to their
semantic similarities. This conclusion was supported when
ChemicalTagger's performance was compared against ChatGPT
(Table S4 and Fig. S2†), which had an almost ideal F1-score of
99%. When synthesis actions were converted to their concep-
tual types and aggregated, the F1-score between manual iden-
tication and ChemicalTagger increased signicantly to over
80% indicating that all synthesis stages were identied even if
the specic ActionPhrases themselves were not. Therefore, we
conclude that the text mining captures the essence of the
synthesis protocol, but is unable to fully summarise the
semantics of synthesis due to “linguistic noise” i.e. variability
between different authors writing styles.

In terms of synthesis parameters, F1-scores and quantity
matching were between 60 and 80% in all cases. These range of
scores are slightly lower than previous text-mining efforts,
which generally score between 60 and 98%.1,60 We ascribe this
relatively low score to more stringent criteria used in this study:
as we dene true positive to be the successful identication of
a PubChem database entry, precision is lowered when cross-
referencing fails. This is further exacerbated by the presence
of typographical errors and colloquial chemical names which
are not recognised by an automated PubChem database search
(e.g. 2-methylinidazole or 2-MeIM, rather than 2-methyl-
imidazole). Failure to successfully convert numerical quantities
similarly reduced the F1-score during time and temperature
parsing.
Digital Discovery, 2023, 2, 1783–1796 | 1787
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Fig. 3 Histograms of reagent quantities used. (A) Metals, (B) linkers, and (C) metal/linker ratios broken down by synthesis metal. Where multiple
variables are plotted in (A) and (C), data bars are stacked on top of one another.
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In sum, while individual synthesis features could be reliably
extracted using the methods developed here, it is currently
impossible to reliably reproduce the entirety of any specic
synthesis protocol. To achieve such high-delity reproduction,
methods would have to be developed to estimate the
completeness of a synthesis protocol, requiring a much larger
set of manually-labelled synthesis sequences, similar to that
developed by Wang et al. for individual synthesis actions.55

Efforts to create such a dataset are ongoing in our research
group. Instead, further analysis in this study is performed by
compiling a group of similar synthesis protocols to extract
a representative aggregate of synthesis details, hence enabling
quantitative meta-analysis.
Interpreting ZIF-8 synthesis strategies

Given the effectiveness of our text mining methods to extract
synthesis information from text, we progressed to a larger
dataset of 3179 experimental synthesis reports of ZIF-8. From
this dataset we processed 1600 synthesis protocols, enabling
strong statistical analysis of the synthesis options which have
been explored.

We rst analysed the reagent compounds used during
synthesis, which should consist of 2-methylimidazole and Zn
salts only. As can be seen in Fig. 2, this is not the case: while
methylimidazole was by far the most common linker molecule
mentioned (Fig. 2A), 34% of the synthesis protocols mentioned
1788 | Digital Discovery, 2023, 2, 1783–1796
cobalt salts. In fact, 32% of the synthesis protocols omitted zinc
entirely, indicating that these were synthesis protocols of ZIF-67
instead – the cobalt equivalent of ZIF-8. The remaining cobalt-
mentioning synthesis protocols also contained zinc, indi-
cating that they may be mixed-metal systems. This ambiguity
highlights some of the key nomenclature issues with MOF
materials – ZIF-8 and -67 are practically the same material in
terms of synthesis protocol but this proximity is not reected in
the common name. The use of unambiguous naming algo-
rithms such as MOFid30 can avoid this linguistic ambiguity,
even accurately describing the continuous transition between
the two frameworks.

To further analyse the reagents used we grouped the metal
salts used by anion type (Fig. 2B), assuming that there was no
consequence of using anhydrous versus hydrated salts. Nitrate
was the most commonly used counterion, being present in 75%
of syntheses. Ambiguous mentions of zinc and cobalt
compounds were present in 17.2% of the 1600 protocols,
encompassing minor zinc salts (e.g. Zn(OH)2 in the case of ref.
61), indirect reference to zinc precursors in synthesis (e.g. “the
sample obtained with Zn”62), or mis-identied zinc compounds
due to word tokenisation errors (e.g. “rstly, 645 mg (2.469
mmol) of Zn (NO3)2$4H2O was dissolved”,63 where the space
character between “Zn” and its counterions causes incorrect
chemical parsing). Aside from nitrates and ambiguous
mentions, the only other commonly-mentioned metal salt was
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Histograms of solvent usage in ZIF-8 synthesis. (A) Frequency of solvent mentions in all synthesis procedures, (B) frequency of solvent
usage broken down by stage of the procedure, (C) quantity of solvent used, broken down by solvent type, and (D) total solids loading. Where
multiple variables are plotted in (C), data bars are stacked on top of one another.
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zinc acetate (present in 11.5% of synthesis protocols). The
presence of chloride, acetate, and oxide precursors indicate that
the synthesis is compatible to a range of electrolyte environ-
ments, agreeing with experimental reports which have shown
that counterion choice signicantly alters crystal nucleation
and growth rates.64,65 Despite the utility of these other salts, the
overwhelming popularity of nitrate counterions found during
our analysis indicates that other factors e.g. cost may have been
prohibitive to their widespread adoption.

In addition to reagent identity, our text mining method
provides information about the quantity of each reagent used,
enabling analysis of synthesis protocol scale and reaction stoi-
chiometry (Fig. 3). The scale of ZIF-8 synthesis follows approx-
imately a log-normal distribution, with 95% of synthesis using
0.18–46 millimol of metal ions and 0.73–330 millimol of 2-
methylimidazole (Fig. 3A and B, respectively), demonstrating
the exibility of ZIF-8 synthesis with respect to scale. In terms of
reaction stoichiometry, most synthesis protocols use an excess
of linkers compared to the stoichiometric ratio of 2 : 1 (Fig. 3C).
This excess has been shown to control particle sizes by slowing
the rate of crystal growth,38,66–68 although few synthesis proto-
cols use a higher ratio than 8 : 1. Interestingly, despite clear
evidence that excess concentration of metal ions forms unde-
sired by-products such as Zn(OH)(NO3)(H2O),43,68–70 6% of the
synthesis protocols analysed used a molar ratio of 1 : 1 or lower.

Aer considering reagents, the next most import aspect of
a synthesis protocol lies in the choice of solvent environment
© 2023 The Author(s). Published by the Royal Society of Chemistry
for the reaction. Solvent choice has ramications on the reac-
tion mixture dielectric constant, in turn dictating factors such
as reagent solubility and reaction kinetics. Further, the choice
between protic and aprotic solvents, can accelerate reaction
mechanisms relying on proton transfer, such as the linker
deprotonation present during ZIF-8 synthesis.66 Finally, overall
reaction concentration is critical for determining whether the
reaction mixture will act as an ideal solution, and in terms of
the relative mass efficiency of the synthesis, both of which have
consequences in terms of synthesis protocol viability in terms of
scaleup to process-level manufacture.

The vast majority of synthesis protocols studied here contain
one of methanol, ethanol, water, and DMF. Methanol was by far
the most frequently mentioned solvent, present in 66% of
synthesis protocols (Fig. 4A), followed by water (40% of
synthesis protocols), ethanol (27%), and nally DMF (12%).
Less frequently used solvents included chloroform (1.4%),
toluene (1.0%), and ethylene glycol (0.88%). To analyse the
usage of each solvent present, we separated them by “synthesis”
and “workup” procedure steps, as well as incorporating binary
solvent mixtures (Fig. 4B). This analysis revealed that, while
ethanol was the third most prevalent solvent overall, it was the
second most common solvent used for washing and purica-
tion (and the h most common reaction solvent). Mixed
solvent systems, primarily methanol–water, were present in 8%
of syntheses presumably to tune the reaction dielectric and
proton transfer catalysis rate.71
Digital Discovery, 2023, 2, 1783–1796 | 1789
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Fig. 5 Histograms of ancillary chemical prevalence in ZIF-8 synthesis. (A) Acids, (B) bases, and (C) surfactants.
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The distribution of solvent quantities used within the
syntheses studied (Fig. 4C) showed that each solvent followed
approximately lognormal distributions. Both DMF and ethanol
were used in smaller quantities than methanol or water (means
of 0.4, 0.6, 1.4, and 1.6 mol per synthesis, respectively), indi-
cating that the latter two solvents were more appropriate for
scaling up the synthesis. Finally, we analysed the total solids
concentration of synthesis protocols by dividing total reagent
amounts by the solvent amounts used (Fig. 4D). As with indi-
vidual reagent concentrations, the total solids concentration
followed an approximately log-normal distribution between 0.1
and 10% mol. Separately, 7.7% of synthesis protocols had
a solids loading of approximately 100% mol – signifying
mechanochemical synthesis protocols. Although mechano-
chemistry is a promising synthesis route due to its high yields72

and low environmental impact73 compared to conventional
solvent synthesis methods, the relatively low popularity may be
explained due to practical difficulties of mechanochemical
synthesis e.g. prevention of hot-spot formation in the reaction
vessel.74

In addition to reagents and solvents, ancillary chemicals
such as surfactants, pHmodiers, andmodulators are oen key
to ensure the success of MOF syntheses as well as dictating
secondary particle characteristics such as size and crystal form.
Three chemical types were prevalent within the synthesis
protocols studied: acids, bases, and surfactant compounds.
Unlike solvents and reagents, no individual ancillary chemical
1790 | Digital Discovery, 2023, 2, 1783–1796
was identied in more than 3.5% of synthesis protocols (Fig. 5).
However, bases were present in 18% of all the synthesis proto-
cols analysed, carrying out the important role of deprotonating
the linker molecule in the reaction mixture. From the variety of
distinct molecules used for this role, it appears that no molec-
ular recognition occurs, simply pH control. Despite the
requirement for methylimidazole deprotonation for the reac-
tion to progress, acids were detected in 6.3% of syntheses,
however from inspection of the individual synthesis protocols
acids only appeared during post-synthetic modication of the
ZIF-8 materials e.g. aer carbonisation75 or impregnation into
silicas.76 Finally, surfactants like cetyltrimethylammonium
bromide (CTAB) or sodium dodecylsulfate (SDS) were present in
4.6% of synthesis protocols, being used to slow the growth of
individual ZIF-8 crystals and therefore control the particle
shape.59,77

While it is possible to identify broad differences in synthesis
strategy from feedstock compounds alone, it is impossible to
understand why one chemical is chosen over another without
further detail about the synthesis protocol being described. For
example, the modulator sodium formate has been shown to
perform different roles in room-temperature syntheses
compared to hydrothermal alternatives.44,78 In the rst instance,
we also consider the conditions (i.e. time and temperature)
during the process. These are shown in Fig. 6, demonstrating
that the majority of protocols have synthesis times under six
hours. Even aer disregarding protocols with a reported
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Histograms of conditions during ZIF-8 synthesis processes. (A)
Total time elapsed and (B) temperatures used during synthesis.
Annotational on (B) indicate the boiling points of the four most
common solvents identified. Data are broken down by reaction step
type as defined in Table 2. Where multiple variables are plotted, data
bars are stacked on top of one another.

Fig. 7 2-Dimensional representation of the chemical combination
space for ZIF-8 synthesis, generated using the t-SNE algorithm. Major
synthesis pathways are identified using the DBSCAN clusteringmethod
and colour coded, while noise data is shown in light grey. Clusters are
circled and described in Table 4.

Table 4 Cluster labels and common features from Fig. 7, alongside
the number of synthesis protocols in each cluster and number of
synthesis protocols with unique features in parenthesis. N. B. all
synthesis protocols included 2-methylimidazole, which was omitted
for brevity

Cluster number
(colour) Common chemicals

Number of protocols
in cluster
(number with unique
features)

1 (blue) Zinc, nitrate, methanol 225 (177)
2 (red) Cobalt, nitrate, methanol 147 (119)
3 (brown) Zinc, nitrate, water 50 (42)
4 (orange) Zinc, nitrate 39 (38)
5 (green) Zinc, cobalt, nitrate, methanol 31 (31)
6 (pink) Cobalt, nitrate, water 28 (27)
7 (grey) Zinc, nitrate, DMF 25 (25)
8 (purple) Zinc, acetate, water 24 (23)
9 (olive) Zinc, nitrate, methanol, water 21 (20)
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synthesis time of 0 minutes as being spurious, it is clear that
synthesis can be completed very quickly. In terms of synthesis
temperature, the majority of the extracted temperatures were
found to be room temperature indicating that thermal driving
forces were not necessary for the formation of ZIF-8. This is
further corroborated by the relative lack of procedures
mentioning heated reaction conditions compared to heated
drying conditions (Fig. 6B).

Overall, the tools developed in this study provide wide-
ranging descriptive statistics of various ZIF-8 synthesis routes.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The data generated are an excellent addition to existing litera-
ture review methods, facilitating the interpretation of different
synthesis aspects e.g. reagent choices, stoichiometric ratios and
reaction conditions. From these data we are able to identify
gaps in the existing literature or synthesis conditions most
likely to succeed, as well as providing useful input data for later
technoeconomic analysis.
Harnessing synthesis information for accelerated
methodology development

While the analysis performed is useful as a means of under-
standing the ZIF-8 reaction system, a key aim of this study was
to systematize the collective synthesis knowledge for the
material, thereby connecting synthesis protocols to some key
performance indicators either of the synthesis (e.g. yield) or
material (e.g. crystal form, surface area). One crucial barrier to
this goal was the correlation of material performance data with
synthesis protocol information: research papers are inconsis-
tent in reporting of material properties (primarily as different
quality metrics are used depending on the motivation of the
original research), and the sample naming conventions used
within research articles prevent unambiguous linking between
the described protocols and materials produced. For example,
while a synthesis paragraph might detail the synthesis of “nano-
sized ZIF-8”, later mentions in the text may be labelled differ-
ently e.g. “ZIF-8nano”,79 confounding attempts for automated
identication of reaction products using regular expressions.33

While this issue will undoubtably be resolved by the adoption of
transformer-based language models such as BERT80 and GPT-
4,81 such models became available only recently and the scien-
tic community,82 including our group, is in the process of
probing their extension to scientic data mining. In fact, the
current study highlighted a number of issues with the current
structure and completeness of reported synthetic protocols,
understanding of which will be very helpful in engineering and
ne-tuning GPT-based models.
Digital Discovery, 2023, 2, 1783–1796 | 1791
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Table 5 Approximate number of experiments required to fully optimise the synthesis of ZIF-8 versus the proposed approaches to reducing to
the synthesis space, for various values of N

Exhaustive exploration
(N8)

Limited experimental
complexity (18(N5))

Identied clusters
only (6(N3) + 2(N4))

N = 3 6500 4400 320
N = 5 390 000 56 300 2000
N = 10 1 × 108 1.8 × 106 2.6 × 104
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As a result, the analysis performed in this study can only
provide insight into how the MOF material is made rather than
linking different synthesis features to specic outcomes like
yield or quality. In the absence of such synthesis outcome
information, we instead focus on how best to prepare the
information gathered in this study for the generation of
predictive models for ZIF-8 materials quality. A key challenge
when attempting to optimise synthesis protocols either through
systematic experimentation5 or by training machine learning
models6 is the high dimensionality of the information con-
tained in each synthesis. For example, 8 unique reagent
chemicals were discussed in the previous section – 3 metal
sources, 1 linker, and 4 solvents. Although intuitively only 3
chemicals are typically required for synthesis – a metal salt,
linker, and solvent – recent automated optimisation of HKUST-
1 synthesis included protocols containing anywhere from 1 to 5
different solvents.6 Therefore, to fully explore the 8-dimensional
chemical space and nd the globally optimum set of synthesis
parameters, N8 experiments would be required (where N is the
number of quantity values tested for each variable). While
theoretically this dimensionality would scale with the number
of synthesis steps used, we were unable to identify meaningfully
Fig. 8 Scheme of a synthesis protocol optimisation feedback loop. Wor

1792 | Digital Discovery, 2023, 2, 1783–1796
distinct groups of synthesis actions (data not shown here, for
brevity) and hence did not consider the sequence as impacting
the synthesis outcome.

Exhaustive searching an 8-dimensional synthesis space is
highly impractical, however, requiring many hundreds of
experiments even for N = 2. Therefore, although we cannot use
the database of synthesis protocols to identify the quality of the
ZIF-8 produced, it can be used to identify patterns in the
synthesis protocols published hence reducing the synthesis
space for optimisation. First, we reduced the chemical space by
identifying the most complex synthesis protocols published,
revealing that few synthesis protocols in our database contained
more than 2 different solvents or metal sources. If the protocols
considered in the synthesis space were limited to this level of
complexity, the dimensionality would be reduced to 18(N5) i.e.
a 5-dimensional combinatorial space with 18 different combi-
nations of reagents.

Second, we also considered the frequency of different
synthesis routes, reasoning that only successful synthesis
protocols are generally published therefore simple synthesis
routes that are never published are likely to be unsuccessful. To
this end, we used clustering to identify lower-dimensional sub-
k carried out in this study is shaded in grey.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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regions of the synthesis phase space which have been widely
researched in experimental papers – essentially using a chem-
ical combination's popularity as a proxy for its importance. The
chemical identities used were encoded using TF-IDF vectorisa-
tion, then similar synthesis protocols were grouped by their
density in the encoded space. The outcome of this clustering
analysis is visualised using a 2-d projection in Fig. 7 and sum-
marised in Table 4, where the distance between points is
indicative of each protocol's similarity to its neighbours. Eight
clusters of reagent combinations were identied each contain-
ing 2–4 chemicals of a total of 6 reagents. We posit that these
clusters represent well dened strategies to synthesize ZIF-8,
which can be explored separately, therefore reducing the total
amount of information required to explore these regions of the
synthesis space.

The well-dened synthesis strategies clustered in Fig. 7 are
notably different from the analysis performed in the previous
section. In the rst instance, ethanol was fully absent signifying
its insignicance as a reaction solvent and matching the earlier
analyses. Separately, acetate salts are only identied in one
cluster and only associated with water. This association is due
to the lack of solubility of zinc acetate in methanol (ca. 15 g L−1

cf. 430 g L−1 in water), information which can only otherwise be
gained by specic knowledge of the chemistry of zinc acetate.
While obvious to those who already are aware of the system, this
information may otherwise be overlooked by chemists naive to
the intricacies of ZIF-8 synthesis – an example of chemical
intuition.6 Therefore, clustering of similar synthesis protocols
together can help users to avoid some common pitfalls when
planning experiments for the rst time.

Finally, to demonstrate the benet of this approach towards
synthesis optimisation, we consider the reduction in the
combinatorial space that would be required to fully optimise
the identied popular sub-regions of the synthesis space. From
the clustering analysis, we identied 6 sub-regions with only 3
chemicals of interest – clusters 1, 2, 3, 6, 7, and 8 in Table 4,
containing only a single metal salt, 2-methylimidazole, and
a single solvent – and a further 2 sub-regions with 4 chemicals
of interest: clusters 5 and 8 containing either mixed salts or
solvents. Accordingly, instead of exhaustively exploring all
combinatorial options, or all combinatorial options up to
a certain number of synthesis reagents, full optimisation of the
commonly-reported ZIF-8 synthesis routes would only require
6(N3) + 2(N4) z N4.4 experiments. To illustrate the extent of
dimensionality reduction in real terms, the number of experi-
ments required to explore the synthesis space are shown in
Table 5 for various values ofN. In combination with the quantity
distributions shown in Fig. 3 and 4, text mining and data
reduction tools demonstrated in this paper will provide excel-
lent initial values for efficient searching of chemical synthesis
space, thereby accelerating methodology renement for a range
of nanomaterials.

Conclusions

In this study, we used text mining to study the synthesis
methodology landscape of a single MOF material, exploring to
© 2023 The Author(s). Published by the Royal Society of Chemistry
what extent the previously accumulated collective knowledge of
a particular nanomaterial can accelerate the development of
reliable and scalable synthesis protocols. As the rst step
toward this objective, in this study, we posed three research
questions: rst, is it possible to use text mining tools to provide
deep insight into a single synthetic target, rather than
a comprehensive overview of a family of materials? Second, is it
possible to standardise the synthesis details extracted as
a means of performing like-for-like comparison between
different studies? Finally, is it possible to use this analysis to
suggest optimal synthesis conditions, thereby accelerating
methodology development?

To this end, we developed soware to systematically analyse
nanomaterials synthesis methods based on established text
mining protocols. We extracted structured data to describe the
details of each synthesis protocol, enabling large-scale statis-
tical analysis of the synthesis parameter space and clustering of
similar methods together to identify well-explored regions of
the synthesis space. We believe that this progress represents the
rst step in creating a closed feedback loop for the automated
optimisation of experimental nanomaterials synthesis, visual-
ised in Fig. 8. In this feedback loop text mined information can
identify common limits to parameters as well as low-
dimensional sub-regions of interest in the synthesis space. By
using this information as initial conditions for iterative high-
throughput experimentation, the search for synthesis proto-
cols optimised against any target material quality metric can be
greatly accelerated.

As a case study to demonstrate the utility of this approach,
we performed a quantitative meta-analysis of 1600 synthesis
methods for the common MOF ZIF-8. Using this framework, we
identied key aspects of the synthesis including the range of
chemicals used as reagents, solvents, and ancillary modulators/
pH modiers. We extracted information about the quantity of
each reagent used during the synthesis, enabling us to identify
the distribution of synthesis scales, reagent ratios, and reaction
mixture solids concentration, as well as reaction times and
temperatures. Further insight was gathered by cross-
referencing chemicals mentioned against the stage they were
introduced into the synthesis protocol – for example identifying
that ethanol is primarily used as a washing solvent rather than
in the reaction medium. We demonstrated how the quantitative
meta-analysis performed here can assist in systematic searches
of the synthesis phase space by identifying both low-
dimensional regions of interest and the distribution of
synthesis parameters. As a result, we were able to reduce the
number of hypothetical experiments required to optimise ZIF-8
signicantly. Notably, while we considered MOF materials as
a case study in this work, the methods developed here do not
depend on any specic structural identiers e.g. CSD reference
numbers, indicating that they are general to any synthesis type.
Particularly, we envisage they will be useful the systematising
understanding of other emerging nanomaterial systems such as
mesoporous (organo)silicas, covalent organic frameworks, and
polymers of intrinsic microporosity.

Despite the deep insight we were able to gain into the
synthesis system of ZIF-8, the current study also identied
Digital Discovery, 2023, 2, 1783–1796 | 1793
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signicant challenges associated with developing a true
“synthetic oracle” for predicting the ideal synthesis parameters
for any given material. While we were able to identify and
extract information about the synthesis, we were unable to
reliably connect the quality of the material produced to the
methods themselves (e.g. by identifying specic yield or surface
area). A crucial next step is therefore to adopt state of the art
transformer-based methods e.g. BERT or GPT-4 to better inter-
pret the entire research article as a single unit and therefore
identify implicitly described synthesis protocols (e.g. tabulated
changes to individual synthesis parameters). A second chal-
lenge lies in the estimating the viability of synthesis parameters
extracted during text mining or proposed by generative models,
preventing automated reproduction of a synthesis protocol
without human oversight and validation. Finally, as has been
discussed elsewhere, the synthesis protocol extraction methods
developed here can only build from published information,
which is biased towards the most successful synthesis methods
only. More comprehensive reporting of synthesis information
using structured formats akin to the crystallographic informa-
tion le format would enable far more wide-reaching analysis to
be performed.

In summary, the methods developed in this study acts as
a preliminary approach for the large-scale standardisation and
analysis of experimental synthesis data, representing the rst
step in creating a closed feedback loop for the automated
optimisation of experimental nanomaterials synthesis. By
interfacing with automated and high throughput reactionware
e.g. through integration of the XDL chemical programming
language, methodology development will be signicantly
accelerated thereby easing the adoption of nanomaterials at
larger scales and in new settings.
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