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A rigorous uncertainty-aware quantification
framework is essential for reproducible and
replicable machine learning workflows

Line Pouchard,? Kristofer G. Reyes,?° Francis J. Alexander® and Byung-Jun Yoon (2 *d

The capability to replicate the predictions by machine learning (ML) or artificial intelligence (Al) models and
the results in scientific workflows that incorporate such ML/Al predictions is driven by a variety of factors. An
uncertainty-aware metric that can quantitatively assess the reproducibility of the quantities of interest (Qol)
would contribute to the trustworthiness of the results obtained from scientific workflows involving ML/AI
models. In this article, we discuss how uncertainty quantification (UQ) in a Bayesian paradigm can
provide a general and rigorous framework for quantifying the reproducibility of complex scientific
workflows. Such frameworks have the potential to fill a critical gap that currently exists in ML/AI for
scientific workflows, as they will enable researchers to determine the impact of ML/Al model prediction
variability on the predictive outcomes of ML/Al-powered workflows. We expect that the envisioned
framework will contribute to the design of more reproducible and trustworthy workflows for diverse
scientific applications, and ultimately, accelerate scientific discoveries.

The ability to successfully replicate predictions by machine
learning (ML) or artificial intelligence (AI) models and results in
scientific workflows that incorporate such ML/AI predictions is
driven by numerous factors, such as the availability of training/
testing datasets, the choice of model architectures and param-
eters, and initial conditions."” In applications relying on deep
learning models, e.g., in image recognition, reproducibility
depends upon initializing random seeds that can be silently set
by underlying libraries, among other factors.®® Even when the
same data input and initial scripts are re-used, predictions by
ML/AI models can exhibit large variability, including outliers
that make these results appear unreliable.** Changing the
underlying ML platforms, even new versions of the same, can
alter results in a significant way.>® For example, a recent
reproducibility study” reported that a simple transcription of
the same model that was originally implemented in the Java-
based Magpie/Weka framework’™ to the Python-based
Matminer/scikit-learn framework resulted in a significant
unexpected discrepancy in the predictions made by the two
platforms. Published results for ML experiments often privilege
accuracy obtained with much tuning, and the publications
reporting these results may not necessarily provide the ranges
of input conditions that produce the reported accuracy, result-
ing in irreproducible results.”® Varying input ranges for key
physical variables in physical experiments and computational
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studies can be crucial to the applicability of ML algorithms to
various classes of experiments. The systems-level view that
encourages users to ignore low-level details and focuses instead
on modeling the aggregate input-output of a particular process
has generated progress in automating experimental and
computational scientific workflows. In this perspective,
complicated sub-systems are replaced by black-box ML/AI built
from data. However, the probabilistic viewpoint that makes ML
powerful at general-purpose modeling can also make its
calculations opaque.®™*** This is particularly important when
ML models behave in unpredictable ways or when models are
used to predict quantities for which there is no ground truth, as
in the cases of models developed for scientific discovery.
Instead of a verified result based on trusted calculations,
scientists may be faced with varying predictions and no ratio-
nale to determine the best course of action.

One of the major challenges scientists will face in the coming
years is the integration of ML/AI models and predictions in
scientific computational and experimental workflows, whether
these predictions replace expensive computational calculations,
aid in predicting calculation results, help search through high-
dimensional spaces to obtain preliminary candidates for anal-
ysis, and numerous new, emerging or yet unforeseen applica-
tions. We consider ML/AI predictions for scientific experiments
that include numerical simulation campaigns and machine
learning tasks, typically orchestrated in computational work-
flows. Traditionally, scientific workflows rely on building blocks
carefully composed with high quality, curated data and first-
principles scientific calculations often executed on High
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Performance Computing (HPC) systems."* Examples of prom-
ising use of ML/AI in scientific workflows include replacing
some computationally expensive modules with cheaper ML-
based ones, mitigating challenges that arise from limited and
possibly noisy observational data, efficiently sorting through
potentially billions of combinations of input candidates in
discovery, and aiding just-in-time analysis of high-volume
sensor data. To maximize benefits, scientists must be able to
replicate the results obtained with these methods, and the
ability to measure reproducibility and replicability of compu-
tational experiments, scientific workflows, and their outcomes
is paramount to establishing trust in the predictions produced
by ML/AI models and workflows that incorporate such models.

The attempts to mitigate the problems related to the lack of
reproducibility of scientific and computational workflows have
generally focused on increasing transparency and settling on
a taxonomy of reproducibility. Numerous papers point to the
need to increase transparency by providing access to data, code,
adequate documentation for methods and execution;'**° these
papers often propose rules and rubrics for measuring the
degree to which scientific papers rate on various reproducibility
scales.””'® To increase transparency, publishers and major
conferences have adopted reproducibility requirements for
submitted papers.”>" Containers and software package
managers, tools that help build software by capturing depen-
dencies, are often used to satisfy these requirements and
provide mitigating solutions.”” Related to these efforts, the
Findable, Accessible, Interoperable, Re-useable (FAIR) princi-
ples**?* have provided structured guiding concepts and stimu-
lated tool development for FAIR data and software,* >’
including metrics of FAIR compliance.?***

Trustworthy computing has been an active area of research
for several decades notably within the National Science Foun-
dation and multiple other federal agencies.***' Trustworthy Al is
dealing with complex systems and analytical processing pipe-
lines that raise the bar for trust in computing results.** Trust-
worthy AI requires additional properties to achieve the goal of
trustworthy computing: in particular, probabilistic accuracy
under uncertainty, fairness, robustness, accountability,
explainability, and formal methods are needed.*® While trust
can be subjective, it can be built from such objectified proper-
ties, the ability to reproduce results is the property of interest
here. The definitions of concepts related to reproducing scien-
tific experiments have been the object of debate among scien-
tists and practitioners, and the preferred taxonomies have not
been uniformly adopted across communities.**** The taxon-
omies proposed by Claerbout,>*® Donoho®” and Peng®® have
informed the definitions proposed in a 2019 report from the
National Academies of Sciences, Engineering, and Medicine
(NASEM).** NASEM defines Reproducibility as “Obtaining
consistent computational results using the same input data,
computational steps, methods, code, and conditions of anal-
ysis”. NASEM assigns Replicability a broader definition:
“Obtaining consistent results across studies aimed at answering
the same scientific question, each of which has obtained its own
data”. In a reversal from its earlier position, the Association for
Computing Machinery (ACM) now follows a similar taxonomy to
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NASEM in its submission policies.t In addition, ACM intro-
duces measurements obtained with stated precision and the
measuring system. In medical studies and clinical research, the
consequences of overfitting for the purpose of raising the
statistical significance of a study have been described early.*’ In
machine learning for health care “technical, statistical, and
conceptual replicability” that are required for full reproduc-
ibility of a study involve internal and external validity.** While
we note that replicability and reproducibility are reversed from
the NASEM definitions in (ref. 41), the introduction of statistical
measures to assess replicability is without doubt a critical initial
step in the direction we are proposing for computational
workflows.

While the term “reproducibility” is commonly used across
diverse science and engineering fields, its meaning is often
complex and multi-faceted. An underlying reason is that, while
there may be various factors affecting the reproducibility of an
experimental outcome or inference result of a scientific work-
flow, “reproducibility” is frequently used as an umbrella term
referring to the net effect of multiple factors affecting the
outcome without necessarily differentiating the main sources or
factors that contribute to reproducibility, or the lack thereof. It
is critical to have the computational means to rigorously
quantify the reproducibility of the quantities of interest, as well
as assess the respective impact of diverse factors on reproduc-
ibility, e.g., stochasticity of the data generation process, poten-
tial data corruption (noise or missing values) issues in scientific
measurements, model uncertainty, randomness in the model
training process. Even when holding fixed these quantities,
additional sources of variability exist linked to software, hard-
ware and algorithms® - these sources of variability are not
addressed here but can be with our approach in a broader
perspective.

Key to successfully employing current and future ML/AI
methods is quantifying and understanding the uncertainty
inherent in their recommendations and predictions. For
example, when ML/AI models are employed for decision-
making in scientific applications to guide future experiments
- where experiments might be costly and time-consuming,
experimental resources are limited, or decisions are irrevers-
ible — care must be taken in every choice made.

In this article, we focus on reproducibility (as defined in the
NASEM and ACM definitions) as a necessary components of
Trustworthy AI. We propose that Uncertainty Quantification
(UQ) metrics®™* can be defined within a generalizable,
objective-driven, and uncertainty-aware framework to enhance
reproducibility for ML/AL. Of specific interest are scientific
workflows that involve ML/AI models, whose predictions
directly guide or indirectly inform decision-making in the
workflow to achieve scientific goals - e.g. discovery, operation,
verification.

For example, consider a relatively simple workflow illus-
trated in Fig. 1, which involves processing X-ray scattering data
using a convolutional neural network (CNN) for data

T https://www.acm.org/publications/policies/artifact-review-and-badging-current.
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classification. The inherent measurement noise and heteroge-
neity of the training data introduces significant variability in the
trained ML/AI model. This gets exacerbated when the sample
size of the training data is small with respect to the model
complexity, which is common in scientific applications due to
the high cost of data acquisition. For example, the design and
training of deep network models adds additional variability,
where the model architecture, choice of hyper parameters, and
the use of popular optimizers based on stochastic gradient
descent (SGD) with adaptive learning rates.**” The interactions
between these sources of variability can be highly complex,
partly owing to the non-linear transformations inherent to deep
learning models, which contribute to the uncertainty of the ML/
Al predictions as well as the final outcomes of the overall
workflow. This gives rise to several practical questions. Knowing
that there will be inherent uncertainty in the predictions, to
what extent can they be trusted? How will the various sources of
variabilities and uncertainties affect the reproducibility of the
outcomes of a given scientific workflow? How can scientists
determine under what conditions they can accept and trust the
results obtained from complex workflows that comprise ML/AI
models? Clearly, the capability to accurately quantify the
reproducibility of the outcomes of a given scientific workflow in
the presence of variabilities and uncertainties would be crucial
for answering these questions.

In fact, an accurate “uncertainty-aware” metric that can
quantitatively assess the reproducibility (or lack thereof) of
quantities of interest (QoI) would meaningfully contribute to
the trustworthiness of results obtained from scientific work-
flows involving ML/AI models. Moreover, such a UQ metric will
allow us to prioritize the various sources of uncertainties and
attribute the (lack of) reproducibility to its primary source,
thereby suggesting potential ways to enhance the design and
training of the models and the workflow to enhance reproduc-
ibility. In addition, it may be used to assess the trade-offs
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between reproducibility and performance (e.g., prediction
accuracy), which will inform researchers to optimize the design
and training of the ML models and the overall workflow.

As we elaborate in what follows, UQ in a Bayesian paradigm
can provide a general and rigorous quantification framework
for reproducibility for complex scientific workflows. It has the
potential to fill a critical gap that currently exists in ML/AI for
scientific workflows, as it will enable researchers to determine
the impact of ML/AI model prediction variability as well as other
sources of variabilities on the predictive outcomes of ML/AI-
powered workflows. The envisioned framework will contribute
to the design of more reproducible and trustworthy workflows
for diverse scientific applications, and as a result, ultimately,
accelerating scientific discoveries.

Uncertainty quantification metrics for
reproducibility and replicability in ML
models

Availability of code and datasets are insufficient metrics to
assess reproducibility and replicability for ensemble models
and composable workflows as they do not account for the sto-
chasticity of training deep learning models and do not guar-
antee the reproducibility of the QoI in workflows involving such
models.

One promising approach to help design more effective
metrics is to consider the distribution of ML/AI prediction
results iterated over different training sets and quantify the
uncertainty of the predictions (reflected in these distributions).
Uncertainty quantification based on a Bayesian paradigm is
helpful here - not only because its efficacy in taking these
uncertainties into account but also because many factors,
including physics-informed quantities/relations and expert
knowledge, can contribute to the construction of priors that
mathematically represent such uncertainties.®® Our key

data
classification

distribution
of predictions

Fig.1 The complex interactions between sources of variability result in a distribution of predictions that are difficult to interpret (credit: Kevin
Yager, Center for Functional Nanomaterials, Brookhaven National Laboratory).
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hypothesis is that designing metrics that introduce UQ based
on a rigorous Bayesian paradigm, will help evaluate the vari-
ability of ML predictions when using such algorithms into
operations. The process of training and optimizing ML/AI
models typically involve various random components, which
draw on several sources of variabilities - including the random
splitting of available data into training, validation, and test
datasets as well as the utilization of stochastic gradient descent
(SGD) techniques for model training. This results in random-
ness of the model predictions, and as a result, when the process
is repeated, we obtain an entire probability distribution of
model predictions (Fig. 1). In this context, UQ primarily involves
understanding and characterizing this distribution as well as
quantifying its impact on the predictions of interest. We can assess
existing ML/AI models for the respective impact of diverse
factors - stochasticity of the data generation process (e.g., in
hydrology®® and microgrid applications®®), potential data
corruption issues (noise or missing values), model uncertainty,
randomness in the model training process, and so forth - on the
reproducibility of the results obtained from compositional
workflows in operational settings.

Of specific interest is addressing the question of robust-
ness*”*® in ill- or poorly-posed training of ML/AI models with
many parameters, such as deep neural networks. While tradi-
tional methods address this through regularization methods®
through specific terms in a loss function or certain network
architectural components such as drop-out regularization, the
fundamental issue concerning robustness still
Training such models occurs through the optimization of a cost
function over a high dimensional space of model parameters,
and the optimization methods employed (such as SGD) perform
local optimizations without global optimization guarantees.
Thus, to mitigate this localness, such optimizations employ
heuristics to improve global exploration of the space, such as
starting such local optimizations at various, randomly sampled
initial points in the parameter space or introducing stochastic
perturbations to a search. Such random elements do not guar-
antee convergence to a global optimum, but stochastic esti-
mates of the optimal parameters with sufficient performance.
Studying the stochastic nature of training robustness through
a UQ lens does not reduce the uncertainty, or lack of robustness
that occurs during training through better optimization tech-
niques or improved regularization. Instead, we quantify such
a lack of robustness as a source of uncertainty and understand
how such uncertainty impacts a ML/AI model's effectiveness in
achieving any experimental objectives for which such a model
would be used.

Another aspect of this approach allows understanding
reproducibility in the context of the development of models
trained on synthetic data: to what degree does model perfor-
mance transfer when applied to real, experimental data. This
workflow - which entails (a) the use of physics-based models
and simulators to generate synthetic data and the correspond-
ing labels, (b) training the ML/AI models on such synthetic data,
and (c) applying the synthetically-trained model to real world
situations - is of special importance to experimental sciences in
which obtaining real-world examples and labels is difficult or

remains.
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impossible. Learning how different types of models and their
architectures generalize and transfer rules learned from
synthetic data to real world experimental data (observations of
ground truth) is another benefit of this approach. When
a model predicts an observable quantity, this study is relatively
straightforward and employing typical metrics to quantify the
difference between ML-model predictions and experimental
observations may suffice. However, in many cases, models are
trained to predict intermediate quantities or quantities that are
only partially observable in real-word experiments. For example,
we may build a ML/AI model that predicts structure given
tomographic data (or otherwise solves an inverse problem).
Generating synthetic data to train such a model could involve
forward simulations from structure to tomography. However,
when applied to physical tomographic data, while a ML/AI
model trained on such data may be able to make predictions,
it could be hard or impossible to assess to what extent such
structural predictions can be trusted. A UQ metric for repro-
ducibility can provide critical insights into the reproducibility of
predictions by ML/AI models trained on synthetic data, where
variabilities and uncertainties in the design and training
process are inevitable. Unless their impact on reproducibility -
both of the model predictions and also of the various QoI in the
experimental workflow incorporating such predictions - can be
rigorously quantified, the role of ML/AI in accelerating scientific
discoveries would be significantly hampered.

Reproducibility and replicability from
the perspective of decision-making

Many factors come into play for quantifying uncertainties in
ML/AI outcomes for the purpose of designing reproducibility
metrics. While ML/AI models may facilitate scientific discov-
eries in various ways, their ability to effectively assist — and
ultimately, automate - decision-making in complex scientific
experiments and workflows has an especially strong potential to
accelerate scientific advances. For example, ML/AI models can
remove the guesswork from experimental design, thereby
substantially improving the efficacy of the designed experi-
ments. Furthermore, they may minimize (or eliminate) the need
for human intervention in experimental design — an area that
still heavily relies on expert intuition - ultimately, enabling
autonomous experimental design loops.***® Without doubt, the
reproducibility of the ML/AI predictions that inform or guide
“decision-making” in such autonomous experimental loops
would be even more crucial. In the context of decision-making,
it makes sense to assess reproducibility in terms of how the
uncertainties and variabilities in the ML/AI predictions affect
the expected efficacy of decision-making.

As we discussed earlier, a UQ metric for reproducibility
based on a Bayesian paradigm can provide effective means of
quantifying reproducibility (or lack thereof) of various Qol
under uncertainty. When the decision-making aspect of ML/AI
in scientific workflows is of primary interest, one may define
the reproducibility metric based on an “objective-based” UQ
framework that quantifies uncertainty based on its impact on

© 2023 The Author(s). Published by the Royal Society of Chemistry
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decision-making, which will likely suffer due to its presence. For
example, the objective-based UQ framework via MOCU (mean
objective cost of uncertainty)*** characterizes the model
uncertainty by integrating them into a decision-making frame-
work. More specifically, MOCU quantifies the differential cost of
decision-making that is expected to increase due to uncertainty,
thereby solely focusing on what “actually matters” instead of
various other Qol that may be of secondary importance. Due to
this focus on optimal and robust decision making under
uncertainty, MOCU has been actively applied to optimal
experimental design (OED)*™' and active learning (AL)*>™* in
recent years, where the resulting OED and AL strategies have
been demonstrated to outperform traditional approaches in
goal-driven scientific discoveries. By defining an objective-
based UQ metric for reproducibility based on a framework, we
can characterize the impact of uncertainties in ML/AI predic-
tions as well as various other sources of variabilities on repro-
ducible decision-making in complex scientific workflows and
experiments. Furthermore, such an “objective-driven” repro-
ducibility metric will enable: (i) the identification of sources of
uncertainties/variabilities that matter to users; (ii) the
measurement of impact on decision-making and its scientific
outcomes; and (iii) the design optimization of the model/
workflow to enhance reproducibility.

Despite our primary focus on ML/Al-based scientific work-
flows, the aforementioned approaches can be generally applied
to assess reproducibility of scientific workflows and experi-
ments that involve non-Al based modules. These rigorous and
general uncertainty-aware frameworks for quantifying repro-
ducibility metrics will be essential in enabling trustworthy ML/
Al scientific workflows that produce reproducible outcomes.
Such UQ metric for reproducibility can be critical in the devel-
opment phase of, for instance, climate models that integrate
heterogeneous modules developed by a large scientific team of
experts and run on different leadership computing facilities
(LCF).** In addition, these metrics, when applied with granu-
larity can help identify missing or low-quality data, as well as
other potential sources of low reproducibility. Leveraging the
decision-making power of frameworks such as MOCU**** is an
effective way of aggregating the impact of uncertainties present
in ML/AI models on the reproducibility of end results.’
Currently, it is practically challenging to accurately identify and
attribute the major factors that cause ML/AI model outputs to
be highly variable and therefore unreliable. A generic and
objective-driven UQ metric for quantifying the reproducibility
of ML/AI in the presence of diverse uncertainties in scientific
applications can provide the formalism that scientists need to
make informed decisions about their choice of models, and
parameters given a desired level of reproducibility.

Potential applications of uncertainty-
aware reproducibility metrics

The Bayesian UQ paradigm for uncertainty-aware and objective-
based reproducibility quantification as well as the resulting UQ
metrics for reproducibility discussed in this article, can play

© 2023 The Author(s). Published by the Royal Society of Chemistry
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critical roles in enhancing the overall trustworthiness of ML/AI
models in scientific workflows. The presented framework
provides the means to measure potential trade-offs between
accuracy and reproducibility in designing and training ML/AI
models, to identify the major sources of variability and uncer-
tainty affecting reproducibility, and to propose potential ways to
make the ML/AI predictions and the end results of the work-
flows incorporating their predictions more reproducible. While
this article did not focus on controls and processes in moni-
toring the training related to hardware, software, and algo-
rithms, the preliminary inquiries in (ref. 6) indicate that our
proposed research direction is critical for enhancing repro-
ducibility on future ML/AI platforms. In a long-term, we
envisage various potential applications building on such
uncertainty-aware reproducibility metrics, which include:
adaptive learning with measuring the reproducibility of
predictions when models incorporate pieces of data not seen in
training; quantitative evaluation and comparison of ML/AI
surrogates in terms of reproducibility; mitigating critical gaps
in input data; and automatic model calibration to maximize
reproducibility or to optimize the trade-off between accuracy
and reproducibility. Finally, we would like to note that there is
increasing research efforts to develop UQ methods for ML/AI
models, which would play important roles in enabling
Bayesian UQ paradigm for uncertainty-aware quantification of
reproducibility. While detailed presentation of such methods
would be outside the scope of this article, we refer interested
readers to relevant papers on the uncertainty quantification of
ML/AI models,**%%7>7* as well as the references therein.
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