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The discovery of new materials often requires collaboration between experimental and computational

chemists. Web based platforms allow more flexibility in this collaboration by giving access to

computational tools without the need for access to computational researchers. We present Liverpool

materials discovery server (https://lmds.liverpool.ac.uk/), one such platform which currently hosts six

state of the art computational tools in an easy to use format. We describe the development of this

platform, highlighting the advantages and disadvantages the methods used. In addition, we provide

source code, a tutorial example, and setup scripts, and an application programming interface (API) to

enable other research groups to create similar platforms, to promote collaboration both within and

between research groups.
1 Introduction

The development of computational tools to accelerate experi-
mental workows in materials discovery has received signi-
cant investment in recent years. However, how best to
incorporate these tools into the materials discovery workow is
still an active research area. While sharing these tools is
possible through code repositories such as GitHub, or through
sharing compiled code,1 this requires technical expertise, which
can act as a barrier in the uptake of these tools by experimental
researchers who may not have this expertise. Therefore, mini-
mising the technical expertise required for synthetic
researchers to use computational tools is crucial for these tools
to be successfully adopted.

Direct collaboration with computational experts offsets this
need for computational expertise. Computational chemists are
able to identify state of the art tools and can develop bespoke
applications where needed. This type of collaboration may
require organisational restructuring to most effectively accom-
modate computational developers and trained technical users
identifying separate priorities.
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Three distinct paradigms for sharing computational tools
may be observed; the private, shared, and cloud paradigms
(Fig. 1). Private tools are those described in literature, but not
made publicly available. Shared tools are accessible when run
on local hardware, and cloud tools are accessible for remote
usage. Notably, both shared and cloud paradigms may or may
not be open source and/or free. This paper focuses on the cloud
and shared paradigms, with the aims of promoting use of cloud
paradigms to ease collaboration between experimental and
computational chemists.

While oen nebulously dened, “the cloud” typically refers
to the global network of computer servers on which computa-
tion is executed non-locally. Cloud based tools (sometimes
referred to as applications, apps, services, or micro-services)
described here are broadly algorithms or functions which take
user input communicated via web protocols (such as HTTP2),
process this data on demand, and return the output to the user
in a presentable fashion (i.e., in a graphical web browser).
Examples of such tools for materials scientists range from state
of the art ML models to predict material properties,3 and vast
libraries of DFT calculations,4 to simple utilities that assert the
charge neutrality of a chemical formula.5

Web applications are a prominent example of soware
which promotes collaboration. Use of web browsers is ubiqui-
tous, and graphical user interfaces (GUIs) are the typical
method of interacting with soware. As such, accessing
computational tools through a GUI in a web browser minimises
the technical expertise required to use such tools.

While it is possible for web applications to be run locally
(and thus fall under the private or shared paradigm), this oen
Digital Discovery, 2023, 2, 1601–1611 | 1601
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Fig. 1 Paradigms of sharing computational tools.
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demands programming and networking expertise, which may
be outside the past experience of researchers with familiarity in
other technical domains. Further, designing bespoke applica-
tions for internal use clearly limits the audience which can
interact with a tool. Locally hosting python notebooks6 is
a common solution to sharing tools within research groups,
however this still requires some technical knowledge to setup,
and does not provide an accessible interface for non-technical
users. Publicly accessible web applications,3,5,7,8 which fall
under the cloud paradigm, can be designed towards a specic
use case to improve usability, and allow many researchers to
interact with an application.

A collection of these tools together forms a cloud platform.
Cloud platforms offer computational researchers the opportu-
nity to share their tools with a wider audience. These platforms
can also include related resources, for example, both AFLOW8

and the Materials Cloud3 platforms host datasets, and provide
a front-end to access to these datasets.

While cloud platforms offer many benets, they may not
offer suitable extensibility for computational researchers who
want to share newly developed tools. Some platforms, like
Materials Atlas,5 allow developers to upload new tools; however,
developers may be reticent to launch a tool with these platforms
for a number of reasons. Vendor lock-in can arise when relying
on third parties to host tools, direct access to live code may be
limited, use of certain code libraries or programming languages
may be restricted, there may be limited control over end of life
provisioning, and a culture of collaboration may not have been
established between teams. An alternative solution is to host
applications in house. Using modern frameworks, this can be
done easily and securely while minimally increasing mainte-
nance duties for the research team.

We present a new cloud platform, the “Liverpool Materials
Discovery Server” (LMDS). We detail the applications currently
accessible on this platform and our approach to enable
researchers exibility when deploying new applications. The
aim of this platform is not only to share tools created by local
researchers, but also to provide frameworks for other research
groups to launch bespoke platforms while minimising the
technical debt associated with such a task.

LMDS is designed to be simple and easily replicated, with
an emphasis on reducing technical overhead rather than
computational overhead. Source code and architectural infor-
mation is provided, allowing easy adoption by other research
groups to share their ML models either on their local intranet
1602 | Digital Discovery, 2023, 2, 1601–1611
or on a public facing website. Giving each team personal
ownership of their work promotes diversity in the eld, and
allows each group to discover their own optimal workow as
well as share their ndings to the wider community. The
approaches outlined in this paper should allow the launch of
new cloud platforms with minimal time and nancial invest-
ment. In the following discussion we address considerations
that must be taken into account when sharing computational
tools, and the role of such tools in the materials discovery
workow.

2 Available tools

This section will discuss the tools currently publicly available on
the LMDS server (https://lmds.liverpool.ac.uk/). We start with
tools to explore chemical space using a mathematically driven
chemical distance metric, the element movers distance.9 A
tool predicting the porosity of metal organic frameworks
(MOFs) is then discussed before three tools to investigate the
transport and thermal properties of inorganic crystals. These
are tools to explore Li ion conductivity, thermal conductivity,
and heat capacity. Finally we briey detail the application
programming interfaces (APIs) which are available for these
applications.

2.1 ElMTree

The Element Movers Distance (ElMD)9 has been applied to
assess the compositional similarity of both hypothetical and
previously reported compounds.10–12 The comparatively high
computational complexity of the metric does not impede usage
for small numbers of comparisons, but it does make it less
suitable for use in high throughput similarity searches. Never-
theless, due to its clear utility, a brute force search interface to
return the most similar composition reported in materials
databases is included as a part of the Materials Atlas suite.5

Here the intensive nature of the search is given as the justi-
cation for limiting the search to restricted datasets (http://
materialsatlas.org/tool_similarcomposition), but even with
this constraint, brute force searches take up to a minute to
execute on modern hardware, which is not fast enough for
general usage.

The ElMTree improves on this by using a metric indexing
data structure,13,14 the List of Clusters (LC),15 where randomly
selected objects of the search space are designated as routing
objects. The remaining objects are assigned to their closest
© 2023 The Author(s). Published by the Royal Society of Chemistry
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routing object, with the distance from each routing object to its
furthest child stored as the routing objects' covering radius.
This ensures that objects which are in close proximity to one
another in the metric space are found in similar clusters of the
indexed LC. When similarity searches are performed, large
regions of the LC may be completely disregarded via the
covering radius property. As the metric must obey the triangle
inequality, we can use the distance to the routing object and its
covering radius to ignore any children of routing objects which
must be further away than the desired cut-off value of proximity.
This allows signicantly fewer comparisons to be made in total,
enabling search times which increase logarithmically in
proportion to the total number of items in the search space. The
ElMTree has been indexed with 1 367 526 unique compositions
across 5 410 119 records from 57 materials datasets16–61 via the
public APIs for Optimade62 and Matminer,63 and indexed with
permission using the licensed APIs for the ICSD,58 CSD,59

Pearsons,60 and the MPDS.61 Each of these datasets give the
composition as well as a reported property or structure of
a material, with both experimental and computationally char-
acterised materials indexed.

Given the range of datasets, searches on the ElMTree may be
further rened by the user, where results may be ltered to only
include materials which have had crystal structures reported, to
exclude materials which have only been characterised compu-
tationally, or to force each of the search results to include or
exclude certain elements. As this is based on the ElMD, which
uses the 103 elements from the modied Pettifor scale64 as its
underlying elemental metric, unexpected behaviour may occur
for the unstable elements which are not in this index. Despite
the large search space, similarity queries typically nd the 100
closest matches in under a second. These user friendly response
times enable researchers to make comparisons against a wider
range of reported compositions in high throughput computa-
tional workows.

2.2 ElM2D

A method of generating ElM2D scatter plots of compositional
similarity65 is provided, which allows the results of querying the
ElMTree application to be visualised in 2 dimensions. A matrix of
ElMD distances may be constructed between a query and the 100
most similar compositions returned by the ElMTree (Fig. 2c).
Alternatively, a list of compositions separated by commas may be
input to the search box, and the distance matrix will be formed
between these specic compositions only. This distance matrix is
embedded to the plane using UMAP,66 with an interactive scatter
plot and distance matrix generated using the plotly library.67 This
allows ElMTree queries and datasets of compositions to be placed
within chemical context, providing an intuitive representation of
the chemical distribution.

2.3 Metal organic framework porosity prediction

The pore size of a MOF determines its guest accessibility,
however it is not immediately apparent which metal-linker
combinations will result in desired pore size. As such the
ability to predict MOF porosity from just metal and linker is
© 2023 The Author(s). Published by the Royal Society of Chemistry
useful in aiding experimental chemists in choosing a metal
linker combination to synthesise.

This application is a front end for a previously reported ML
model which predicts the porosity of a MOF from a metal and
a linker SMILES string.68 These inputs are sequentially passed
through three random forests (RFs). Each RF is trained to
perform a binary classication of the porosity of MOFs as above
or below an increasing threshold of pore limiting diameter
(PLD). The rst RF classies the porosity of a MOF as being
porous or non-porous (PLD of greater or less than 2.4 Å). The
second classies porosity as having large or small pores (PLD
greater or less than 4.4 Å given porosity > 2.4 Å). The last model
classies porosity pores as being large or very large (PLD greater
or less than 5.9 Å given porosity > 4.4 Å). In combination these
random forests assign a MOF porosity as one of four categories
(porosity < 2.4 Å, porosity < 4.4 Å, porosity < 5.9 Å, and porosity
$ 5.9 Å), this classication was be 80.5% accurate on a random
test set. 80% (5912 MOFs) of the data in the dataset was used for
training and 20% (1479 MOFs) for the test set.

The user has the option to download the results or view them
in the web page (Fig. 2a). In order to suit a variety of potential
use cases, this tool can take a variety of inputs, being; two equal
length comma separated lists (one of metals, one of linkers);
one linker and a list of metal symbols (or vice versa); or a single
metal and linker combination can be input. Due to limitations
in the training set of this model, only certain metals are sup-
ported, a list of these can be found in the associated code
repository,69 and is linked to on the application itself.
2.4 Composition based ML predictions of Li-electrolyte
conductivity

The commercial interest of solid state electrolyte materials has
driven a range of studies which construct statistical models to
predict the ionic conductivity of materials. These are typically
used in screening purposes for assessing the potential conduc-
tivity of novel formulations before the lengthy process of
synthesis.70–72 Here we present one such model12 which aims to
predict the ionic conductivity of candidate electrolyte materials
based solely on composition. As synthesising a compound and
then characterising its structure is both time consuming and
error prone, it is advantageous to perform virtual screens of
much broader compositional spaces before focusing on formu-
lations of interest for further investigation. Regression and
classication CrabNet models73 are trained on the 403 compo-
sitions in the Liverpool ionics dataset (https://pcwww.liv.ac.uk/
∼msd30/lmds/LiIonDatabase.html) to predict specic values of
conductivity in log10 (S cm−1) or whether a compound is likely
to possess a conductivity greater than 10−4 S cm−1 at room
temperature. In 5-fold cross validation on the Liverpool ionics
dataset, regression models were found to possess a mean
absolute error of 0.85 log10 (S cm−1), with classication models
achieving a mean accuracy of 0.81 across the 5 folds. The
interface takes in a chemical composition, or a comma
separated list of compositions, processes these to be machine
readable, generates predictions, and returns these predictions
to the user as a downloadable table. As this uses the ElMD
Digital Discovery, 2023, 2, 1601–1611 | 1603
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Fig. 2 (a) A screenshot of theMOF porosity prediction tool described in Section 2.3. (b) A screenshot of the thermoelectrics thermal conductivity
prediction tool described in Section 2.5. (c) A screenshot from the ElM2D tool described in Section 2.2. (d) A screenshot of the heat capacity
modelling tool described in Section 2.6.
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package for parsing compositions, valid predictions are limited
to compositions which only contain elements reported in the
modied Pettifor scale. This architecture and user interface
can be extended into other domains by replacing the trained
conductivity model with a bespoke model predicting other
materials properties.
1604 | Digital Discovery, 2023, 2, 1601–1611
2.5 Thermal conductivity prediction for thermoelectric
materials

Thermoelectric materials generate an electrical potential in
response to a difference in temperature across the material and
vice versa. Thermoelectric materials have many applications,
with one of the most notable being a solid state replacement for
© 2023 The Author(s). Published by the Royal Society of Chemistry
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chemical refrigerants. The suitability of materials as thermo-
electrics is a combination of a low thermal conductivity, high
electrical conductivity, and a high Seebeck coefficient. To screen
materials for use as thermoelectrics, all three properties are of
importance, we present a front end to a RFmodel of the thermal
conductivity of thermoelectrics.

The model presented here is an updated version of a previ-
ously reported thermal conductivity prediction model74 for
probing the Ba–Y–Ti–O phase space of thermoelectric materials.
The RF was trained on a mixture of experimentally measured56

and DFT computed75 thermal conductivities for a range of 1958
different thermoelectric materials. The RF is trained using
a composition based featurization, and as such predictions can
be obtained from a chemical formula only.

Users can input chemical compositions in plain text and
receive a prediction for the thermal conductivity at room
temperature and atmospheric pressure. This model was found
to have an R2 of 0.71 and a root mean squared error of 0.55
log10(W m−1 K−1) in predicting the logarithm of the thermal
conductivity using 5-fold cross validation on the available data
(note that training and validation was done on the previously
reported thermoelectric materials dataset,74 so outside of the
thermoelectric material domain performance may differ). This
can be useful for mapping out chemical phase spaces to nd
candidate regions with useful thermal properties.
Fig. 3 A non-exhaustive demonstration of how different computa-
tional issues may impact the ease of launching new tools to a web
platform combined, with labels as to the decisionswemade on each of
these issues when creating the LMDS.
2.6 Heat capacity modelling

Modelling the heat capacity (Cp) of materials is important as it
allows for the extraction of parameters such as the Debye and
Einstein temperatures. To extract these parameters, Cp can be
modelled by a linear combination of the Debye and Einstein
functions:

CpðTÞ ¼
X
i

aiCDiðTÞ þ
X
i

biCEiðTÞ þ gT

where CD and CE represent the Debye and Einstein contribu-
tions to the heat capacity, respectively. g is a linear term, and ai
and bi are prefactors that are normalised to sum to 1. The Debye
contributions to the heat capacity are modelled by:

CDðTÞ ¼ 9R

�
T

qD

�3 ð T
qD

0

x4ex

ðex � 1Þ2 dx

in which R is the ideal gas constant, and qD is the Debye
temperature.76 Whereas, the Einstein contributions are
modelled by:

CEðTÞ ¼ 3R

�
qE

T

�2
e
qE
T0

@e
qE
T � 1

1
A

2

where qE is the Einstein temperature.77

One linear component, any number of Debye terms, and any
number of Einstein terms (along with their respective pre-
factors) can be manually adjusted in order to identify optimal
parameters for modelling heat capacity data. The outputted
© 2023 The Author(s). Published by the Royal Society of Chemistry
heat capacity models can be viewed as Cp(T) or Cp/T
n(T) plots in

linear, log, and log–log scales in order to aid tting in the high
and low temperature regions.

2.7 APIs

Each tool also has an associated (API) to enable programmatic
access to underlying models. This allows developers to integrate
these models into automated workows, or other web applica-
tions. The exception to this is the ElM2D app, as it would be
more appropriate to make a query to the ElMTree API, and
visualise those results locally. Details of each API may be found
on the web page for each tool.

3 Discussion
3.1 Architectural considerations

A key consideration in the LMDS was the ease of extending the
platform through publication of new tools. While ML experts
may have limited knowledge in computer networking, frame-
works and examples (such as those found in the associated code
repositories78) can reduce the technical complexity of deploying
new tools. New web frameworks are frequently released, and
balancing the technical debt of learning how to interface and
maintain each new library with networking and computational
resource issues becomes non-trivial (Fig. 3). We outline some of
the technical design choices which were taken when designing
the LMDS architecture.

One such consideration was the level of restriction on the
range of technologies that technical users may employ in their
development cycle. Constraining developers to certain libraries
enforces a greater degree of homogeneity in a codebase,
allowing for a larger quantity of each application's code to be
reused and reducing the work required to deploy new tools.
However, restricting to specic libraries may impose limits on
newer approaches which could be deployed, or may simply not
align with developers' personal preferences. Each of the
provided tools is written in Python (when applicable) owing to
its popularity, but otherwise collaborators are not constrained
by which external libraries they may use. Were researchers to
Digital Discovery, 2023, 2, 1601–1611 | 1605
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Fig. 4 Architectures possible using provided tools (a) The architecture
used in the LMDS. (b) A simpler architecture using Nginx reverse proxy
security certificates to serve a single AI model. This could be hosted on
redundant hardware, such as an older workstation, and expanded to
additional hardware when required.
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propose tools based in other programming languages or
frameworks, existing HTML and styling are provided for reuse.

The degree of separation between applications in a cloud
platform is a notable design decision. Malfunction or security
compromise of one tool should not effect other tools on the
platform. In the past, applications were isolated their own
physical server, in a process referred to as server segmentation.
Current best practice is to isolate applications virtually for
efficiency purposes.

One suchmethod to separate applications from each other is
virtualisation, which allows multiple virtual “machines” (VMs)
to operate on a single physical machine through the use of
hardware emulation. A host operating system runs a virtualisa-
tion program (hypervisor) which manages the computational
resources of each VM. Each VM runs its own operating system,
which may be selected depending on the task at hand, with
Linux distributions oen chosen for web applications. Virtual-
isation allows for dynamic scheduling of resources, while
ensuring that a single application's malfunction does not affect
other tools on the platform. VMs are easy to deploy, and
updating VMs remains similar to updating to physical
machines, although VMs are accessed through a hypervisor.
Each VM does carry some overhead, as each operating system
needs to store its own data in memory for each application, but
the capacity of modern systems means this is generally not
a concern.

Where the capacity of a system is a concern, containerisation
provides a similar method of isolating applications from one
another, with Docker79 and Kubernetes80 being two popular
tools for this. Containerisation comes with a lower computa-
tional overhead than VMs (in particular with regards to memory
consumption).81,82 However this becomes yet another tech-
nology for developers to learn when deploying new tools. As
a low barrier to entry for new application deployment is a key
goal for the LMDS, we have opted not to use containerisation
technology.

To balance the increased memory cost of VMs over
containers such as docker and the need for the isolation of
apps, the LMDS hosts smaller applications (for example the
MOF prediction tool and heat capacity modelling tool) on
a single VM. Meanwhile, individual VMs are allocated to larger
tools (such as ElMTree) to provide a level of isolation.

Managing these different VMs requires a reverse proxy server
to direct requests with different web addresses the correct tool
without requiring a separate domain name or subdomain for
each tool. To create this reverse proxy HTML requests to each
application are routed through a VM running Nginx,83 which
enables each of the separate applications to be accessed
through a single domain name. Internally this server resolves
each request to the internal IP address the specic application
is hosted on. The reverse proxy provides some protection from
direct denial of service (DDOS) attacks by enabling rate limiting
functionality. This Nginx server also encrypts HTTP traffic into
HTTPS traffic84 (Fig. 4), which provides a security assertion to
users that their data has not been seen or interfered with by any
third parties. Apache HTTP server is an application historically
popular for this task,85,86 however Nginx was selected due to its
1606 | Digital Discovery, 2023, 2, 1601–1611
wide market adoption, strong performance,87 and simple
conguration. Nginx can redirect requests to additional phys-
ical machines external to the hypervisor that the LMDS is
currently hosted on, providing exibility in future expansion
(Fig. 4a). Setup scripts have been provided to congure this
proxy for new tools.78
3.2 Development and maintenance of cloud platforms

Creation of web applications as outlined here may require
some knowledge outside the main domain of a computational
researcher, such as HTML and cascading style sheets (CSS).
While ample learning materials for such skills exist online,
this adds a barrier to the launch of new web applications.
While styling presented here65,69,88 can be used as a template,
it is likely research groups will wish to develop their own
aesthetic with which to brand their website. While heavily
adjusted, the front end seen here was outsourced commer-
cially. Other research groups may nd outsourcing front end
web development to be a cheap and fast way to overcome the
limitations in front end design skills.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Where work is outsourced, basic HTML skills would still be
helpful to make ongoing changes to web platforms. Mainte-
nance of cloud platforms is a major consideration which should
be made, not just to ensure the longevity of a platform, but also
to ensure its security. Using scheduled commands (such as
Linux's Crontab) generated les (plots, output data etc.) can be
deleted and operating system updates can be installed. Updates
such as these do run the risk of breaking existing code, but for
simple apps this is not a major risk. Going without updates
creates a large security risk, as such best practice is to apply
updates regularly.

With scheduled updates maintenance of cloud platforms can
be minimal, but manual intervention will eventually be needed.
Fixing broken applications, launching new applications, or
taking applications offline all require some technical skill, and
knowledge of the cloud platforms architecture. As such consid-
erations should be made as to how systems will be maintained
including following changes in staffing. While no website can
stay online 100% of the time, good documentation, and forward
planning can help to minimise issues when they arise.
3.3 Research context and signicance

As the user complexity and model complexity of ML projects
grow, it is important that access to, and understanding of, ML
tools do not become a barrier for their use. Cloud platforms
such as the LMDS provide easier access to these tools, however
it is on a per-practitioner basis to portray the understanding of
best use and interpretation of such tools.

For example many ML models (such as that used in the
thermal conductivity prediction model) take composition as
input, but have no mechanisms to check the chemical viability of
such compositions. Without adequately communicating this
limitation with collaborators, the trust in such a model may be
hindered, and the interpretation of its results will be incomplete.
While explainability and uncertainty estimates in ML are active
research areas,89,90 a good understanding of the limits and correct
usage of ML models by those who use them is also important.
Drawing up interesting counter examples when presented with
predictive models to demonstrate their limits is a valid method of
testing the capabilities of models. This may not be a particularly
useful test in many cases, as we know that statistical models will
under perform on chemical domains they have never been
exposed to, and this may not be how the model should be used in
practice. For example, the thermal conductivity model (Section
2.5) is trained only on thermoelectric materials, while it may be
used to predict thermal conductivity for other materials, it may
under-perform outside the thermoelectric domain.

Similarly, it is a per-application question as to whether a tool
will actually be useful in the materials discovery workow. While
the MOF porosity prediction tool (Section 2.3) may offer a variety
of input options for exible usage by experimental researchers, if
no such researcher exists, the usefulness of such a tool is limited.
As such, while cloud based tools do provide ease of access, it
remains vital that collaborations between experimental and
computational researchers involve open communication
channels.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Cloud platforms are an excellent supplement to existing
communications methods, and need not be a prohibitively
expensive to deploy. While ML models may be costly to train
and require signicant compute resources, aer training is
performed the models can oen be deployed using lower end
hardware and still make inferences in a timely manner.
Consequently, the LMDS platform with the architecture out-
lined above may be deployed on relatively cheap hardware. We
provide a minimum framework for launch of platforms
(Fig. 4b), as well as how we expand this for isolation of appli-
cations (Fig. 4). The frameworks and implementation details
provided here should provide a reasonable starting point for
other researchers to share their tools with the wider
community.

While the LMDS is hosted in house, the frameworks
provided could be used for platforms deployed to commercial
cloud providers, such as Amazon Web Services or Microso
Azure. Third party cloud providers alleviate concerns over server
maintenance and hardware failure. However, each commercial
cloud platform requires bespoke training to use, which may be
a niche skill for computational materials science researchers.
Concerns may be raised over vendor lock in, as such services
may become more expensive or less reliable in the future.
Further, the monthly billing cycle commercial cloud providers
oen demand is not compatible long term with the xed
consumable budgets that are typically provided as part of
a research grant. Depending on funding and available hard-
ware, a commercial cloud provider may be the best solution for
rapid delivery. If the mission critical up time that is guaranteed
by server hardware is not a driving design choice, then many
computational research groups may nd they already have the
necessary resources to hand, as this architecture may be run on
an underused workstation.

In house solutions, such as those presented here, may be
deployed onto new or existing hardware, and tailored to suit the
team's existing technical specialities, but this approach is not
without disadvantages. Local hardware needs ongoing mainte-
nance in the case of equipment failure, such as hard drives, which
will have an associated cost. Networked applications operating
under the framework of an institution will have to comply with the
organisation's pre-existing networking and security protocols,
especially if accessible from the public internet, which may
introduce further tasks which must be satised to launch a new
cloud tool. By working with the University of Liverpool's servers
and storage team to test the architecture throughout the devel-
opment process, we were able to ensure that the nal product is
robust and secure.

Releasing the LMDS as a simple technology stack with
limited functionality means other research groups can extend
this framework to rapidly prototype bespoke applications to suit
their specic requirements. Cloud platforms enhance partner-
ships between computational and experimental research teams,
and provide an additional interactive medium for accessing
research.

However, monolithic platforms are by denition less inte-
grated with experimental researchers than bespoke platforms.
Enhancing the interface between technical developers and their
Digital Discovery, 2023, 2, 1601–1611 | 1607
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expert users allows new tools to be integrated into materials
discovery workows. The process of constructing a new cloud
platform requires technical expertise, but the barrier to entry is
low enough that many computational researchers do in fact
possess these skills. We hope the tools provided here reduce this
technical gap further to make creation of cloud platforms
simpler for others. Future undertakings could investigate
methods of unifying multiple cloud platforms into singular
portals, or developing frameworks that require even less tech-
nical expertise to create new cloud applications. Centralised or
monolithic systems risk excluding researchers who wish to share
computational tools with the wider community if the technical or
organisational processes to host such tools remain unclear.

Creating new methods to access computational tools
through cloud platforms is one way of exploring how compu-
tational methods may be adopted by experimental researchers.
As computational methods continue to develop, so too will their
place in the discovery of new materials. Future research may
lead to more cloud platforms, new frameworks to ease the
creation of such platforms, or focus on entirely novel collabo-
rative techniques. While advancing the accuracy of the predic-
tions made by ML models remains a dominant research area in
this eld, the concurrent development of tools which interface
with these models is a crucial piece of supporting work to
ensure wide and effective adoption.

4 Methods

All bespoke programs presented here are implemented in Python.
The MOF porosity prediction and thermal conductivity tools use
random forests implemented in sci-kit learn.91 MOF porosity
prediction tool was featurised using mordred and RDKit.92,93 The
Li-ion conductivity tool uses CrabNet73 to predict the conductiv-
ities of compositions. ElMTree uses the ElMD9 library and
a simple implementation of the list of clusters. ElM2D uses the
aforementioned ElMTree application with the UMAP66 and
plotly67 libraries. The modeling of heat capacity was carried
forward using the SciPy library.94 Each of the web applications are
implemented using Flask, with the gunicorn process manager
used to spawn Flask processes, examples of these implementa-
tions have been provided,69,88 including a basic Flask app, which
can be used as templates for other researchers.95 VMs are run
through VMWare vSphere ESXi 7,96 with Nginx used to serve
HTTP responses to users and route URLs to each VM.83 Example
setup scripts for gunicorn and Nginx can are available.78 The linux
utility crontab is used to ensure regular updates are executed and
to remove temporary les in relevant LMDS applications.

5 Conclusions

We have presented the LMDS, a cloud platform for experimental
researchers to use in discovering new materials, available at
https://lmds.liverpool.ac.uk/. The LMDS platform allows for
easy access to previously published computational models,68

as well as novel tools to help experimental researchers.
Making computational tools easily accessible is crucial to

maximise their benet. Thus, we developed the LMDS platform
1608 | Digital Discovery, 2023, 2, 1601–1611
with the objective of simplifying the sharing of computational
tools, ensuring they are readily available to researchers with
minimal computational expertise. We provide considerations
that lead to the production of this platform, justifying key
design considerations.

Difficulties in applying computational methods in experi-
mental research are discussed, as are the barriers for deploy-
ment of suchmethods to cloud platforms. Examples of the tools
discussed in this manuscript have been provided,69,88 as well as
scripts setting these up with an Nginx reverse proxy server, and
Python process manager,78 enabling other researchers to
reproduce this tool chain and share their own methods, either
internally or on the open internet.

We believe minimising organisational overhead in collabo-
rations between computational and experimental researchers
promotes the incorporation of computational methods in the
synthesis of new materials. Access to state of the art computa-
tional methods, such as in ways presented here, accelerates
research and improves the prediction, analysis, and realisation
of new materials.
Data availability

Setup scripts for Nginx and gunicorn are available: https://
github.com/lrcfmd/LMDS_helper_scripts

Information about tools listed in Section 2 are as follows:
� Section 2.1: the code for the ElMTree tool is available at

https://github.com/lrcfmd/ElMTree
� Section 2.2: the code for the ElM2D tool is available at

https://github.com/lrcfmd/ElM2D
� Section 2.3: the code for the metal organic framework

porosity prediction tool application is available at https://
github.com/lrcfmd/LMDS_MOF_Porosity_Tool. The data
associated with the previous publication of these models is
available at https://datacat.liverpool.ac.uk/1494/

� Section 2.4: code to reproduce the ML models associated
with composition based ML predictions of Li-Electrolyte
Conductivity is available at https://github.com/lrcfmd/LiIonML

� Section 2.5: thermal conductivity prediction for thermo-
electric materials. Publication of model available at https://
onlinelibrary.wiley.com/doi/10.1002/anie.202102073. Code and
data for reproduction of model for web app available at
https://github.com/lrcfmd/thermal_conductivity_RF

� Section 2.6: the code associated with the heat capacity
modelling can be found at https://github.com/lrcfmd/
LMDS_heat_capacity_modelling
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