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al theory and machine learning for
electrochemical square-scheme prediction: an
application to quinone-type molecules relevant to
redox flow batteries†

Arsalan Hashemi, *a Reza Khakpour,a Amir Mahdian,a Michael Busch,b

Pekka Peljo c and Kari Laasonen a

Proton–electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage

applications. How electrons and protons are involved or which mechanism dominates is strongly

molecule and pH dependent. Quantum chemical methods can be used to assess redox potential (Ered.)

and acidity constant (pKa) values but the computations are rather time consuming. In this work,

supervised machine learning (ML) models are used to predict PET reactions and analyze molecular

space. The data for ML have been created by density functional theory (DFT) calculations. Random forest

regression models are trained and tested on a dataset that we created. The dataset contains more than

8200 quinone-type organic molecules that each underwent two proton and two electron transfer

reactions. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of

the product participating in the oxidation reaction appeared to be strongly associated with Ered.. Trained

models using a SMILES-based structural descriptor can efficiently predict the pKa and Ered. with a mean

absolute error of less than 1 and 66 mV, respectively. Good prediction accuracy of R2 > 0.76 and >0.90

was also obtained on the external test set for Ered. and pKa, respectively. This hybrid DFT-ML study can

be applied to speed up the screening of quinone-type molecules for energy storage and other applications.
Introduction

Proton–electron transfer (PET) is a fundamental reaction in
electrochemistry,1–3 biochemistry,4,5 material science,6,7 and in
some other elds.8,9 To give one example, we can consider the
charging and discharging processes in aqueous redox ow
batteries,10–14 in which the two elementary steps, i.e., electron
transfer (ET) and proton transfer (PT), are taken either
competitively or jointly to interconvert electricity and chemical
energy. Therefore, understanding the pathways from reactants
to products through PET reactions is crucial to understand ow
battery performance.

In the recent development of redox ow batteries (RFB),
water-soluble organic molecules are at the forefront of attention
due to their affordability, safety, and structural diversity.15,16 In
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water, pH will impact the protonated/deprotonated form of the
reduced or oxidized molecules participating in the redox
reaction.17–20 When the proton concentration is lowered, i.e., the
pH is raised, even strong bases may not be protonated. Hence,
pH-potential diagrams of the electrolyte species, known as
Pourbaix diagrams,21 should be assessed early in the battery
design process. The Pourbaix diagram can be constructed using
the redox potential (Ered.) and pKa of the involved species.

Rational designing and testing of materials in order to nd
better candidates is the focus of molecular engineering. Organic
molecules can be modied either by their functional groups or
their backbones. Numerous experimental studies have been
performed to improve solubility, electrochemical redox prop-
erties, and cycling stability by modifying functional
groups.19,20,22–26 For instance, Wedege et al.20 and Wiberg et al.22

in separate studies observed that solubility and redox potential
is inuenced by the position, type, and number of functional
groups. Moreover, another study showed that heterocycles,
where one carbon is substituted by oxygen, sulfur, and nitrogen,
can change charge states and improve reactivity.27 Nevertheless,
the experimental verication of the RFB active molecules is
slow, especially if new molecules need to be synthesised, the
computational pre-screening is very useful.
Digital Discovery, 2023, 2, 1565–1576 | 1565
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In the past few years, there have been several computational
high-throughput studies that combined quantum mechanical
density functional theory (DFT) and machine learning (ML) to
nd potential candidates for ow batteries.28–43 Mostly, for sets
of limited isomeric backbones, these studies primarily focused
on solubility and redox potential of the hydrogen atom transfer
reaction at pH = 0 when functional groups were decorated.
ChemAxon soware44 has also developed powerful models for
predicting pKa and solubility. However, its accuracy always
depends on both the quality and the size of the dataset. To the
best of our knowledge, the PET reaction mechanism has not yet
been studied in a systematic high-throughput manner.

This contribution attempts to carefully map the chemical
and structural characteristics of a library of quinone-type
compounds45,46 to their square-scheme representations of the
potential for ET and PT. In this report, we provide (i) a deeper
understanding of molecule design for energy storage applica-
tions from a screening of large chemical space and (ii) a trained
ML model to predict so far unknown redox-active molecules.
Theoretical framework

The redox properties of a molecule can be described in two
ways: as a proton–electron transfer (PET; red arrows in Fig. 1), or
as a decoupled sequence of electron transfer (ET; blue arrows in
Fig. 1) and proton transfer (PT; green arrows in Fig. 1). In this
study, a molecule QH2 (Q) is oxidized (reduced) to Q (QH2) by
releasing (accepting) two electrons and two protons as follows:

QH2 # Q + 2H+ + 2e−, (1)
Fig. 1 Square representation for two-proton two-electron transfer
redox reactions. Electron transfer (ET) and proton transfer (PT) reac-
tions are represented by blue horizontal and green vertical arrows,
respectively. The diagonal red arrows indicate proton–electron
transfer (PET) reactions. Each state was numbered to simplify
demonstrations of Ered. and pKa involved in the reactions.

1566 | Digital Discovery, 2023, 2, 1565–1576
which results in multiple coupled or decoupled pathways, as
shown in Fig. 1. In practice, the required proton (H+) is trans-
ferred from an aqueous solution, while electron (e−) is obtained
from an electrode.

In order to assess the redox reaction (eqn (1)), it is necessary
to calculate Gibbs free energy change DG at each ET/PT step: DG
leads to the measurable reduction potential Ered. and acidity
constant pKa for the ET and PT reactions, respectively. One can
also predict the number of transferred electrons and protons at
the given solution pH and electrode potential using these
quantities.

Clearly, the most delicate part of DG calculation is to deter-
mine the energetics of the involved proton and electron trans-
fers without explicit solvent and physical electrode in our model
system. We use a three-step protocol to determine DG of PET,
PT, and ET reactions in order:

(i) Following earlier works, the energetics of the PET step can
be computed using the computational standard hydrogen
electrode (SHE).47,48 According to this method, the energetic of
a PET step, e.g. for QH / Q + H+ + e−, under standard condi-
tion, i.e. pH = 0, is given by

DGPET ¼ GðQ; aqÞ þ 1

2
GðH2; gasÞ � GðQH; aqÞ (2)

where, G(QH, aq) and G(Q, aq) correspond to the Gibbs free
energies of the reduced species (QH) and the oxidized species
(Q), respectively, in the aqueous phase. Hydrogen dimer in the
gas phase is considered as a reference for electron and proton
energies, i.e. G(H2, gas)/2.

(ii) The DG of a PT step, e.g. for QH+ / Q + H+, is computed
using the isodesmic method, as follows:

DGPT = G(Q, aq) + G(H+, aq) − G(QH+, aq). (3)

It leads us to calculate the measurable pKa value as follows:

pKa ¼ DGPT

RT lnð10Þ ; (4)

where R and T are the general gas constant and temperature,
respectively. While the Gibbs free energies of the deprotonated
(Q) and protonated (QH+) species are easily examined in eqn (3),
the G(H+) is a challenging part to assess. To address this issue,
we use the experimental pKa as a reference.49,50 Herein, formic
acid (HCOOH) dissociation reaction with pKref.

a = 3.77 is
employed:51

HCOOH 0 HCOO− + H+. (5)

Using eqn (4) and, subsequently, eqn (3), the values of DGPT

and GH+ are calculated. Having the latter quantity enables us to
compute the pKa value of any PT reaction.

The obtained pKa values then need to be scaled to overcome
shortcomings of the implicit solvation model52 used in the
present study53–56 as follows:

pKscaled
a = 0.49pKa + 3.2, (6)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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where pKscaled
a is correlated to the experimental measurements.

We get DGscaled
PT when eqn (6) is put into eqn (4).

(iii) The potential associated with the ET step is nally
computed as the difference between the energetics of the PET
and the PT step as57,58

DGET = DGPET − DGscaled
PT . (7)

In addition to DGPET, DGET values are also referenced to the
computational standard hydrogen electrode (SHE).

Generally, the accuracy of the calculated data in comparison
to experiments depends essentially on the adopted approxi-
mations and the electronic structure calculations to compute
Gibbs free energy values. In other words, a negligible systematic
error can be expected at this level of calculations.

It is worth noting that, in accordance with the IUPAC
convention,59 we state every electrochemical potential as
a reduction reaction potential. Hereaer, E0 = DGPET/e and Ered.
= DGET/e are indicators for H atom and e− affinity of molecule Q
participating oxidation reaction (i.e. eqn (1)), respectively. The
theoretical framework employed in this study has previously
been established and extensively used for the pKa, Ered., and E0

estimations.43,53,60–62 When compared to the experiments, the
predictability of the DFT-calculated Ered. and E0 is very good.43
CompBatPET database

Our CompBatPET database consists of 8213 organic
compounds undergoing two-proton two-electron reactions. The
data are stored in the comma-separated values (CSV) le format
and XYZ le. One data set was made for each ET, PT, and PET
reaction, containing the molecular weights, cavity volumes,
highest occupied orbital energies (HOMOs), lowest unoccupied
orbital energies (LUMOs), and simplied molecular input line
entry system (SMILES) string representations of only the reac-
tants involved in the oxidation and deprotonation reactions.
Open Babel63 soware was used to record the SMILES. Since
SMILES contains information about H-bond changes but not
net electron charges, we also add the sample's net charge to the
data sets. Note that the molecular weights, cavity volumes, and
molecular orbital energies are reported in atomic units, Å3, and
Hartree, respectively.

Each reactant of the oxidation reaction, namely QH2, QH2
+,

QH−, QH, Q2−, and Q−, is accompanied by its target variable
Ered.. While, pKa is featured by the protonated samples found in
the QH2, QH2

+, QH2
2+, QH−, QH, and QH+ forms. Deprotona-

tion converts alcohol (C–OH) fragments into ketone (C]O). In
addition, QH2, QH2

+, QH−, and QH are considered as reactants
for PET reactions when E0 is the target variable. All the
numerical values are imported up to three digits aer the
decimal point.

All the molecules in the database are built upon a group of 15
core structures, as schematized in Fig. 2, decorated by –CH3, –
CF3, –OCH3, –C2H3, –F, –CN, –NO2, –OCOCH3, and –CO2CH3

functional groups. These functional groups do not participate
in the PT reaction, but they have either electron-donating or
© 2023 The Author(s). Published by the Royal Society of Chemistry
electron-withdrawing characteristics. The IUPAC names of the
core structures can be found in Fig. S1 of ESI.†

Each core is manually designed by one or two functional
groups. The task of functional group enumeration is performed
using the Maestro modeling interface of Schrödinger Material
Science Suite (SMSS).64 The combinatorial search of molecular
structures results in 8213 molecules with a diversity of (1:254,
2:605, 3:267, 4:139, 5:644, 6:523, 7:55, 8:55, 9:100, 10:271,
11:1187, 12:970, 13:649, 14:604, and 15:1890). We provide open
access to full source code and data sets at https://doi.org/
10.5281/zenodo.7952777.

Computational details

All DFT calculations were performed using Gaussian 16 revision
C.01 (ref. 65) soware. First, the semi-empirical PM7 (ref. 66)
method was used to optimize the geometry of molecular
structures solvated in PCM67,68 implicit water model. Note that
for each molecule the initial atomic coordinates were prepared
by Maestro, as mentioned before, and visually inspected by the
authors. At this stage, the energetics of two different structures
were compared in order to determine the most stable tautomers
of the individual QH−, QH, and QH+ forms. Aer the structure
optimization, harmonic vibrational frequencies were assessed
for free energy stability evaluation. The structure of a molecule
with an imaginary frequency less than −200 cm−1 was modu-
lated and reoptimized until the stable structure was obtained.
Then, the total energy was computed for each optimized
structure using M06-2X69 together with a Def2-TZVP basis set70

and the more accurate SMD solvation model. This exchange–
correlation functional was found to provide the best accuracy
for predicting redox potentials of organic molecules.60 To
compute the Gibbs free energy, thermal correction to Gibbs free
energy and total energy were obtained from the computationally
cheaper PM7 (the rst step) and high accuracy M06-2X calcu-
lations (the second step), respectively. The thermal correction
includes the zero-point vibrational energy as well as vibrational
enthalpy and entropic contribution to the free energy. This
procedure leads to moderate computational cost and has been
validated previously.36

For high-throughput screening, we used Random Forest
Regressor (RFR) as implemented in Scikit-learn package71 of
Python. The optimal set of hyperparameters was computed
using a cross-validation score over a grid of predened space.
More specically, the training data was split into ten groups, or
folds, where nine were used to train the model and one is used
to evaluate its performance. Mean squared error (MSE) was used
as an evaluation metric for hyperparameter optimization. To
train our RFRmodel, the data set was initially randomized, then
80% of the data were used for training the model, while 20% for
validation. Subsequently, the trained models were used to
predict the electrochemical square-schemes, i.e. Ered., pKa, and
E0 values. Note, for each target variable listed above a separate
model is trained.

The isomeric SMILES representation of the molecules is
transformed into a bit-vector using extended-connectivity
ngerprints (ECFPs) algorithm.72,73 We used RDKit package74
Digital Discovery, 2023, 2, 1565–1576 | 1567
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Fig. 2 The core structure of studied compounds accompanied by 9 organic functional groups. The cores are numbered from 1 to 15. The
functional groups are demonstrated in the central part of the picture. The molecular space is constructed by the combinatorial attachment of
one or two functional groups.
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View Article Online
to rapidly calculate ECFPs. In general, they work by circularly
analyzing the environment of each atom and, then, hashing the
information to create the ngerprints (FPs). A radius of 3
nearest neighbors was used. Chirality was also considered for
the FP assessment. It is critical for backbone 2. The bit vector
contains 0 and 1 with a length of 1024 for each molecule.

It is oen difficult to interpret the output of ML models
because the methods provide very little information on the
descriptors' contribution to the output. We employed Shapley
additive explanation75 (SHAP) to test whether our chemical
intuition agrees with the results of the ML model. Feature
importance analysis is also performed. Additionally, Matplot-
lib,76 Seaborn,77 and Pandas78 as the main Python visualization
and data manipulation libraries were used. The ESI† provides
more details on the package dependencies as well as a suitable
environment for ML calculations.
1568 | Digital Discovery, 2023, 2, 1565–1576
Results and discussion
Data analysis

In order to inspect the data, we examine the distribution of Ered.,
pKa, and E0 as shown in Fig. 3. Detailed statistical data was
presented in Table S1.† In chemistry, Ered. is dened as the
tendency of a molecule to accept an electron: a more positive
Ered. indicates a stronger electron-accepting ability of the reac-
tant participating in the reduction reactions. The distribution of
Ered. potential is shown in Fig. 3(a): (i) as a result of different ET
reactions, there are six distinct peaks, (ii) each ET case shows
a multimodal distribution with a dominant peak in the center,
(iii) when the number of protons is constant, the second elec-
tron donation reaction occurs at a lower Ered. value, (iv)
protonation makes reduction reaction thermodynamically
more favorable, and (v) Ered. ranges from −1.629 to 2.426 VSHE.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Data distribution accompanied by violin plots showing the contributions of each compound (i= 1,., 15) for ((a) and (b)) ET, ((c) and (d)) PT,
and ((e) and (f)) PET. The reactions in the plots are shown in Fig. 1. The ease of ET, PT, and PET reactions is indicated by the target values Ered., pKa,
and E0, respectively. Ered. and E0 were referenced to the SHE.
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The impact of the core architecture and functionalization on
the Ered. is demonstrated in Fig. 3(b). A violin plot depicts the
shape of the data distribution: the broader section of a violin
represents a higher variation of Ered.. A narrow bit thick in the
middle of the plot indicates that data is highly concentrated
around the median. One can also say that a fairly uniform violin
plot with long tails indicates (cores 7 to 9) that functional type
and/or position have a signicant impact on that type of core.
When compared to other counterparts, cores 1 and 10 have the
highest electron-donating characteristic. ET reduction reactions
are thermodynamically less favorable for molecules in these two
families. We found that small single-ring compounds 3, 4, 7, 8,
and 9 are sensitive to functional group addition. This is not very
surprising since inductive/mesomeric effects will pump in or
remove the electron density for carbons.79

Fig. 3(c) depicts the pKa distribution: each of the PT03, PT14,
and PT47 deprotonation reactions is determined by a unimodal
peak, while the others are bimodal. The conversion to a ketone
through oxidation increases the acidity of the molecules while
deprotonation decreases it. This is in line with common trends
in acid–base chemistry which clearly indicate that ketones are
very strong acids.79 Additional negatively charged or the removal
of positively charged functional groups reduce the acid strength
(i.e. increase the pKa).61 Therefore, compounds in QH2

2+ and
QH− states represent the strongest and weakest acids, respec-
tively. Those with negative pKa are unstable in normal solutions
and they release proton into the solution even at pH = 0. As
a general rule, deprotonation occurs whenever the pH of the
solution is greater than the pKa of the solvated molecule. Note
that not all the studied QH2 terminate to Q at pH = 0. It is seen
© 2023 The Author(s). Published by the Royal Society of Chemistry
from the partially positive pKa of QH+ (i.e. PT58 reaction). In
other words, some molecules are deprotonated in a less acidic
media.

For each backbone, the pKa values are shown in Fig. 3(d). The
acidity strength of the reactants participating in reactions PT25,
PT58, PT14, PT47, PT03, and PT36 decreases systematically,
with the exception of backbones 2 and 8 where PT58 data
overlaps with PT14 and PT25, respectively. The pKa of
compound 13 involved in reaction PT36 is widely distributed.
With all data taken into account, pKa ranges from −22 to 30.

The data distribution relative to the PET reactions is multi-
modal, as shown in Fig. 3(e). Each reaction showed a dominant
peak centered at a positive value. There is a resemblance
between the energy spectrum of PET15 and PET37 with that of
PET04, respectively, and PET48. Similarities in the proton states
of the reactants may explain it. E0 ranges from −1.222 to 2.722
VSHE.

By removing hydrogen atoms, molecules in the form of QH2

are converted into partially and fully oxidized forms of QH and
Q, respectively. Another possibility is that QH2 initially
undergoes an ET or PT reaction, then a PET, such as PET15 and
PET37. Whenever these reactions take place, the redox potential
in water at pH = 0 equals E0. According to our results, the PET
reactions mostly take place within the water electrochemical
potential window of ca. −1.5 to +1.5 VSHE.80 Fig. 3(f) illustrates
the backbone effects and demonstrates that compounds 1 and
10 are highly driven to lose hydrogen atoms. Compounds 7, 8,
and 9 partially and to a lesser extent exhibit the same behavior.
Otherwise, the PET reactions are endothermic. We see no
outliers in the data, and it is well-prepared for further analysis.
Digital Discovery, 2023, 2, 1565–1576 | 1569
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Table 1 Performance of RFR models trained on the property-based
feature space: test set RMSE, MAE, and Rtst

2, accompanied by train set
Rtrn

2 and out-of-bag (oob) Roob
2 score. Depending on the target

variable or descriptor, models 1 to 14 differ

Model Descriptor Target RMSE MAE Rtrn
2 Rtst

2 Roob
2

1 I Ered. 0.093 0.062 1.00 0.98 0.98
2 II Ered. 0.102 0.068 0.99 0.97 0.97
3 III Ered. 0.229 0.177 0.92 0.87 0.87
4 I pKa 1.203 0.759 0.99 0.97 0.97
5 II pKa 1.477 0.929 0.99 0.96 0.96
6 I E0 0.106 0.073 0.99 0.94 0.94
7 II E0 0.127 0.084 0.98 0.92 0.92
8 III E0 0.397 0.305 0.53 0.22 0.22
9 IV Ered. 0.132 0.081 0.99 0.96 0.96
10 IV pKa 1.406 0.909 0.99 0.97 0.97
11 IV E0 0.157 0.106 0.94 0.88 0.90
12 FP Ered. 0.099 0.066 0.99 0.99 0.96
13 FP pKa 1.003 0.628 0.99 0.98 0.97
14 FP E0 0.102 0.065 0.96 0.95 0.96
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Machine learning

Property- and structure-based descriptors are two alternative
features that are used to train ML models. DFT calculations are
used to determine chemical characteristics such as molecular
orbitals. Whereas, the structure-based descriptor is produced
directly from SMILES, which includes information about the
topology, connectivity, and subfragment of the molecules. The
latter enables high-throughput screening of candidates at
a signicantly lower computational cost, i.e. without DFT
calculations.

The RFR models are trained with 200 trees. Cross-validation
shows that the default values can be used for the remaining
hyperparameters. Model performance was evaluated using
a coefficient-of-determination (R2), root-mean-squared-error
(RMSE), and mean-absolute-error (MAE). These performance
metrics were dened in the ESI.† The performance assessment
is performed ve times: every time the data set is split, the
model is trained and tested, and the worst performance result is
reported.

For Ered. and pKa, the data set of chemical properties
contains 49 278 samples, while the structure-based one
contains 49 271 samples altogether. There are seven fewer
samples in the second data set because of the molecules' rota-
tional symmetry. The SMILES duplicate check found them, and
they were removed. Additionally, the relevant information of
QH2, QH2

+, QH−, and QH compounds was stored for predicting
E0. There are 32 865 samples in this dataset.
Property-based descriptor

In addition to HOMO, HOMO−1, LUMO, and LUMO+1 energies
for spin-up and spin-down channels, the chemical parameters
include net charge, number of atoms, chemical weight, and
volume. Here the volume means the cavity volume used in the
solvation model for each molecule. This group is called
Descriptor I. All numbers were collected from SMD/M06-2X
calculations.

It is clear that net charge plays a signicant role in the
feature space. It affects electron density, resulting in a change in
the orbital energies. In order to gain insight into orbital impacts
on the target values, we considered only orbital energies (e.g.,
HOMO, HOMO−1, LUMO, LUMO+1) as Descriptor II. We also
made Descriptor III which includes only HOMO. This was used
for Ered. and E0 predictions.

To analyze the results of ML models trained on different
descriptors, the performance metrics were obtained in Table 1.
The closer R2 to 1 or the lower the RMSE andMAE values are, the
more accurate the model is. When considering the prediction
accuracy of various models trained on the data in Descriptor I,
Ered., pKa, and E0 are predicted by MAE # 0.062 V, #0.759 pKa

unit, and #0.106 V, respectively, which are extremely good. For
the ET steps an error of roughly 0.1 V is obtained with CCSD(T)
while the error bars for pKa values are also of the same order of
magnitude.56,60 A well-trained model and excellent correlation
between features and target parameters are also shown by the
RMSE and R2 values. Moving to Descriptor II feature space
causes the performance of the models to somewhat deteriorate
1570 | Digital Discovery, 2023, 2, 1565–1576
but is still comparable to chemical accuracy, e.g. theMAEs are of
the order of 0.05 V. It means that a limited number of molecular
orbitals carry sufficient information for ML model training.

Note that by comparing the energy of the orbitals of the spin-
up and spin-down channels, as shown in Fig. S2(a) and (b),† it
can be seen that the HOMO spin-up channel has a higher
energy level than the spin-down channel for the reactants
participated in the ET and PET reactions through the oxidation
reactions. Therefore, when we discuss HOMO, we are referring
to the spin-up channel orbitals. Through SHAP, we carried out
feature importance analysis that determines the attribution of
feature variables of each sample on the model prediction.81

HOMO state is the most important feature in model training to
predict Ered. and E0, as shown in Fig. S3.† The absence of this
feature in some samples can deteriorate Ered. prediction beyond
±1.5 V. This value for E0 is around ±1 V. For the pKa prediction,
those orbitals positioned at the edge of the HOMO–LUMO gap
are the most important.

The HOMO alone, Descriptor III, can predict Ered. reasonably
good even with RMSE= 0.229 and MAE= 0.177 V. Whereas, the
E0 forecasting is unsatisfactory and the contribution of the
other states is necessary. Plotting target value versus HOMO
reveals more sparsity for E0 values in comparison to Ered. (see
Fig. S4(a) and (b)†).

We carried out comparative analyses to determine the
inuence of product attributes on the target values. Descriptor
IV is introduced as an equivalent to Descriptor II, but it contains
the product species information. In general, models 9–11 have
predictability comparable to those trained on reactants' feature
space.

We found that the key to successfully predicting the Ered. and
E0 values is the LUMO of products participating in the oxidation
reactions (see Fig. S5†). Prediction of pKa is strongly dependent
on HOMOs. Overall, as shown in Fig. S4,† the reactant's HOMO
and the product's LUMO participating in the oxidation reac-
tions are inversely correlated to Ered. and E0. Based on Koop-
mans' theorem, the ionization energy of molecules inversely
© 2023 The Author(s). Published by the Royal Society of Chemistry
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correlates with their negative HOMO energies.82 There have
been reports of a similar trend in recent years.83,84
Fig. 5 Predicted Pourbaix diagram of 2,2-propionate ether anthra-
quinone (2,2PEAQ) by DFT (red solid line) and ML models (blue solid
line) versus experimental data.85
Structure-based descriptor

To create structure-based feature space (Descriptor FP), we (i)
generate FPs from SMILES, and (ii) concatenate bit-strings from
step (i) with the net charge of each sample. Before feeding the
ML model, it is also critical to double-check for duplicates. In
order to determine whether the bit-vector is long enough, we
gather only the SMILES of the state QH2 and then check for
duplicates versus bit length. A vector length of 1024 is needed to
generate a distinct vector for each sample. Adding the electron
charge states (0, ±1, ±2) will give us a feature space of 1025
dimensions for each sample.

Fig. 4 shows the results of our predictive models when
compared against the actual data. Each graph contains the
performance metrics values (they are also in Table 1 with FP
Descriptor). We use two data sets to validate the ML models: (i)
an internal test set (20% of data set in each case) resulting from
the splitting of the data set and (ii) an external data set con-
taining 24 synthesized molecule structures purchasable from
the Merck company website. The molecules of the external data
set were sketched in Fig. S6.† DFT calculations are used to
determine the thermodynamics of 144 samples (24 × 6 reac-
tions) undergoing ET and PT reactions for the external data set.
Fig. 4 Scatter plots of the actual (DFT) values versus predicted values (ML
feature space. The performance of the trained model is tested by interna
metrics were written inside the graph. R2 indicates the test set coefficie

© 2023 The Author(s). Published by the Royal Society of Chemistry
For PET, 96 samples (24× 4 reactions) are evaluated. Only C]O
subfragments of these molecules undergo protonation
reactions.
) of Ered., pKa, and E0. The ML models are trained in the structure-based
l ((a)–(c)) and external ((d)–(f)) data sets. In each case, the performance
nt of determination. Ered. and E0 were referenced to the SHE.
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The prediction of Ered. achieved a R2 value of 0.99 on the
internal test set (see Fig. 4(a)). Furthermore, MAE and RMSE
reached values of 0.066 and 0.099 V, respectively, which are
close to the performance of model 1 in Table 1. Training an ML
model on ECFPs feature space produces a slightly better
prediction for pKa than model 4 (see Fig. 4(b)). There are values
of 1.003, 0.628, and 0.98 for RMSE, MAE, and R2. Similar to
other models, the structural model used to predict E0 delivers
low RMSE and MAE values of 0.102 and 0.065 eV, respectively,
accompanied by R2 = 0.95 (see Fig. 4(c)).

The performance of the structural models appeared to be
good on the external test set (see Fig. 4(d)–(f)). In this case, for
Ered., R

2, MAE, and RMSE are equivalent to 0.77, 0.263 V, and
0.336 V. For pKa and E0 prediction, models result in R2 = 0.90,
MAE = 1.885 V, RMSE = 2.584 V and R2 = 0.72, MAE = 0.205 V,
RMSE = 0.254 V, respectively. The addition of some Merck
compounds to our CompBatPET database would improve the
model's predictability, although it requires extensive additional
DFT calculations.

However, there are a few points to keep in mind regarding
the prediction of the external test set: (i) the property-based
feature space needs DFT-level computations to provide each
attribute, but the structure-based descriptor only requires the
SMILES of the molecule. Besides the signicant difference in
the computational cost, i.e. the former takes hours of CPU time
while the latter requires only minutes, the SMILES are easily
accessible in several chemistry soware but DFT computations
require more expertise. (ii) The simple backbones used to
generate the database for training MLmodels can be thought of
as the building blocks for more complicated ones, such as the
Merck data set. (iii) The ML model prediction is still reliable
enough to broadly screen the thermodynamics of PET reactions.
Applicability of square-scheme and ML models

As the second test, we compute the Pourbaix diagram for 2,2-
propionate ether anthraquinone (abbreviated 2,2PEAQ), which
is recently experimentally investigated by Amini et al.85 Our
database contains the core structure, but not the functional
group in ref. 85. We only look at two-proton two-electron
transfer reactions. Fig. S7† shows its molecular structure as
well as the square-scheme representation of reactions. In
addition to DFT, structural models using FPs were used to
calculate the related quantities.

We consider 2,2PEAQ at the pH range of 0 to 14. In this
range, direct protonation of 2,2PEAQ does not occur (path PT58
is closed). In the presence of the electrode, the rst ET appears
at a potential of −0.464 VSHE. Depending on the pH of the
solution, ET or PT may occur in the following step. If pH # 5,
the reduction reaction is followed by a PT reaction for an
applied potential between −0.464 and −0.762 VSHE. In contrast,
a PET reaction (2,2PEAQ to 2,2PEAQ-H) is even more likely to
occur under strongly acidic conditions, as indicated by the E0

value of−0.159 VSHE. According to the Nernst equation,86 which
will be covered in more detail in the text that follows, this value
drops by−0.059 VSHE per pH at room temperature which makes
a step-wise reaction (ET/PT) more likely around pH = 5. It is,
1572 | Digital Discovery, 2023, 2, 1565–1576
then, thermodynamically favorable to convert 2,2PEAQ-H to
2,2PEAQ-H2 through a PET reaction. When 2,2PEAQ-H2 is in
a reverse reaction towards 2,2PEAQ, two PET reactions are more
likely to occur around pH = 5: despite the second PET always
being favorable, the rst PET (e.g. occurring at −0.352 VSHE at
pH = 0) becomes more favorable with an increment of +0.059 V
per pH.

At 5 < pH < 8, the reduction reaction still takes place by
incorporating 2 electrons and 2 protons along the ET-PET-PT
path. The maximum applied potential required for the PET
reduction reaction is −0.52 VSHE occurring at pH of 8 (i.e., the
reduction potential at pH = 0, −0.048 V, lowers by −0.059/pH).
To oxidize 2,2PEAQ-H2 to 2,2PEAQ, the same 2PET reaction is
anticipated to occur in the reversible pathway.

There are two electrons and one proton engaged through the
ET-PET route for the reduction reaction at a pH range of 8 to 13.
Eventually, there are only two electron steps in the very basic
medium (pH > 13) and when applied potential is less than
−0.763 VSHE.

The reduction potential E0 under nonstandard conditions
depends on the activity of the reduced and oxidized species,
whichmay differ from unity. The Nernst equation describes this
deviation from the standard one as pH dependence

E0ðpHÞ ¼ E0 þ 0:059
np

ne

�
log

�
aox

ared

�
� pH

�
; (8)

where aox and ared indicate the activity of oxidized and reduced
compounds, respectively. Additionally, np and ne are the
numbers of transferred protons and electrons in a reaction.
Indeed, E0 indicates reduction potential at pH = 0. For this
example, it is computed through

E0 = E0
PET04 + E0

PET48. (9)

Fig. 5 shows the Pourbaix diagram of the 2,2PEAQ
compound. When compared to the experimental data, both
DFT and ML have excellent predictability. Small discrepancy
relates to pKa differences between different schemes. Despite
calculations showing that two-proton two-electron dominates
up to a pKa of 8, the experiment suggests a similar reaction up to
a pKa of 10. A variation of this magnitude coincides with
computational and predictive accuracy.
Conclusion

To predict ET and PT processes a combined DFT-ML technique
was used. We looked at a wide range of quinone type
compounds at different charge and protonation states. For all
these systems the redox potential and acidity constant were
computed. We presented a dataset consisting of about 8200
compounds made up of 15 backbones decorated with 1–2
functional groups taken from a list of 9 groups. The data were
extensively examined from a chemical and statistical perspec-
tive. As a result, we were able to train random forest models
according to the structures and attributes. The molecular space
can be described by chemical properties and/or structural
characteristics. The most crucial features for the predictions of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the acidity constant and redox potential, respectively, are the
HOMO and LUMO energy levels. Strong predictability is
demonstrated on the external test sets by models created using
SMILES strings. While on the internal test sets, great accuracy
was reached by all trained models. Although we tested the
method on quinone derivatives, it applies to other types of redox
compounds as well.

Data availability

The Zenodo database contains the data for this paper, which
can be downloaded at https://doi.org/10.5281/zenodo.7952777.

Author contributions

Arsalan Hashemi: conceptualization, data curation, formal
analysis, investigation, methodology, soware, validation,
writing – original dra. Reza Khakpour: methodology, soware,
review & editing. Amir Mahdian: writing – review & editing.
Michael Busch: methodology, review & editing. Pekka Peljo:
writing – review & editing. Kari Laasonen: conceptualization,
resources, funding acquisition, project administration, super-
vision, writing – review & editing.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

We acknowledge the Digipower project, supported by Tekno-
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