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Data-driven models are central to scientific discovery. In efforts to achieve state-of-the-art model

accuracy, researchers are employing increasingly complex machine learning algorithms that often

outperform simple regressions in interpolative settings (e.g. random k-fold cross-validation) but suffer

from poor extrapolation performance, portability, and human interpretability, which limits their potential

for facilitating novel scientific insight. Here we examine the trade-off between model performance and

interpretability across a broad range of science and engineering problems with an emphasis on materials

science datasets. We compare the performance of black box random forest and neural network machine

learning algorithms to that of single-feature linear regressions which are fitted using interpretable input

features discovered by a simple random search algorithm. For interpolation problems, the average

prediction errors of linear regressions were twice as high as those of black box models. Remarkably,

when prediction tasks required extrapolation, linear models yielded average error only 5% higher than

that of black box models, and outperformed black box models in roughly 40% of the tested prediction

tasks, which suggests that they may be desirable over complex algorithms in many extrapolation

problems because of their superior interpretability, computational overhead, and ease of use. The results

challenge the common assumption that extrapolative models for scientific machine learning are

constrained by an inherent trade-off between performance and interpretability.
Introduction

Machine learning has become a principal catalyst for scientic
discovery, particularly in the design of novel functional mate-
rials.1,2 In efforts to build predictive models with state-of-the-art
performance, researchers are employing increasingly complex
black box algorithms, including large-scale ensembles and deep
neural networks, because of their ability to approximate high-
dimensional response surfaces with arbitrary precision.3

Recent availability of low-cost data storage and computing
resources has unlocked model architectures capable of
handling large numbers (105–107) of input features,4,5 enabling
the development of deep learning models such as Elemnet6 and
SchNet7 which can learn feature encodings directly from the
elemental compositions of input materials. While the
complexity of these models oen leads them to outperform
traditional regression techniques by standard cross-validation
scoring metrics, they also suffer from notable disadvantages.8,9

Increases in model complexity are generally accompanied by
corresponding decreases in model portability and usability by
63, USA. E-mail: jsaal@citrine.io

tion (ESI) available. See DOI:

the Royal Society of Chemistry
non-experts. Many state-of-the-art black box algorithms require
signicant computational resources and hyperparameter opti-
mization during training, which limits their usefulness in edge
computing environments and necessitates experienced practi-
tioners for managing model serialization, programming envi-
ronments and version control systems, and input data
compatibility.10,11 Growing complexity also inherently limits
model interpretability by humans,12,13 which increases the
likelihood of model overtting, reduces researcher trust in
predictions, and creates difficulty in troubleshooting.14 Perhaps
most importantly, poor model interpretability impedes domain
expert intuition by obscuring natural underlying patterns that
oen guide researchers toward novel insights and new
physics.1,15,16

The use of simple interpretable models has garnered
renewed attention amid mounting evidence that the trade-off
between model performance and interpretability is oen over-
stated.1,14 Interpretability aids in diagnosis of model biases,
management of multi-objective trade-offs, and mitigation of
unexpected results,8,17–20 which are essential considerations in
the design of materials and chemicals for novel drugs, elec-
tronics, catalysts, and alloys.2,21 The primary challenge of
materials informatics, accurate prediction of the physical
properties of a material from its chemistry or other known
characteristics, relies on the discovery of interpretable physics-
Digital Discovery, 2023, 2, 1425–1435 | 1425
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informed input features: empirically or theoretically derived
vectors of known quantities which can be used to predict the
value of a target property using simple mappings, such as
a linear transformations.6,22 Ideal input features are (i) general:
they maintain predictive performance across a broad range of
materials, (ii) extensible: they can be constructed from readily
available data sources or simple calculations, and (iii) inter-
pretable: they can provide insights into underlying physics or
correlations which aid in predicting the material property of
interest.23

The discovery of features meeting the aforementioned three
criteria remains one of the primary challenges of scientic
machine learning (SciML) and represents a principal roadblock
on the path toward interpretable physics-informed models.24,25

Features for materials informatics models are oen engineered
to encode one or more material properties, including those
derived from chemical composition, topology, electronic
behavior, or structural ngerprints.18 The most commonly used
features are composition-based vectors constructed from
properties of the constituent elements of the material12,26 such
as those included in the Magpie feature set,27 which provides
descriptive statistics such as minimum, maximum, mean, and
range of a set of tabulated element properties for a given
chemical composition. Magpie has been used for building
Fig. 1 (a) Schematic of experimental workflow in which each test datase
testing interpolation. The validation set (purple) was used for engineering
the test set (orange) was used for evaluating model performance. For LOC
of the dataset. For random CV, 80% of the dataset was using for trainin
performance. (b) Schematic of feature engineering process in which
combined multiplicatively with other features, and sorted by their Pearso

1426 | Digital Discovery, 2023, 2, 1425–1435
successful models across a broad range of materials
classes22,28,29 and serves as the foundation for the widely-used
Matminer suite of open-source materials informatics tools.30

While the standard Magpie library enables simple human-
interpretable featurization of chemical composition, its strong
reliance on elemental composition generally leads to a lack of
robust encoding of underlying interactions beyond those of the
material's constituent elements. Featurization based on
elemental composition is increasingly being augmented with
geometric and topological information such as crystal structure,
lattice constants, bond types, and graph-based molecular
representations,5,25,31–34 complex spatial descriptors such as the
many-body tensor representation,35 and string-based molecular
encodings such as SMILES,36 BigSMILES,37 and SELFIES.38

Structure-based encodings are widely utilized for featurization
in academic studies,39–41 but obtaining details about crystal-
linity or molecular structure for large sets of candidate mate-
rials can be infeasible in practice if the structure of materials in
the design space is not well known. Moreover, graph-based
topological featurization methods are inherently difficult to
implement for materials with poorly-dened structures such as
glasses and multi-principal element alloys.

Recent research efforts suggest that simple composition-
based features may be used to build predictive SciML models
t was split using LOCO CV for testing extrapolation and random CV for
of new features, the training set (green) was used for model fitting, and
O CV, each of the train, test, and validation sets contained at least 10%
g, 10% for validation (feature engineering), and 10% for testing model
additional features were created from existing features (top panel),
n r2 correlation to the target values in the validation set (bottom panel).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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without sacricing human interpretability or relying on prior
knowledge about material structure.25,42,43 Oen this is accom-
plished through the use of feature engineering, the renement of
model inputs by pruning of existing features or construction of
new features from simpler base features, which enables physics-
based mapping of model inputs to target properties through the
use of symbolic regression.23,24 Similar methods have been
demonstrated for building interpretable classication models in
health care and criminal justice,44–46 but quantitative compari-
sons between the performance of black box models and inter-
pretable models enabled by symbolic regression have not been
widely documented for SciML applications.20,24

In this study we investigate the use of empirically-derived
feature vectors for constructing interpretable predictive
models. We screen models by their ability to extrapolate to new
clusters in the input design space using leave-one-cluster-out
(LOCO)47 cross-validation (CV), a specic implementation of
leave-group-out (LOG)48 and other extrapolation-based CV
techniques49 (Fig. 1). We compare the extrapolation perfor-
mance of linear models which rely on a single interpretable
feature to that of black box random forest and neural network
models which utilize up to 102–103 different input features. As
a case study, we examine model extrapolation on a set of 9 open
datasets: (i) 3 materials datasets with Magpie featurization, (ii) 3
materials datasets without Magpie featurization, and (iii) 3 non-
materials datasets in the physical sciences which are used to
test generality of the results. The study highlights important
considerations for balancing model performance and inter-
pretability and demonstrates the potential for building inter-
pretable single-feature linear models with extrapolation
performance that is comparable to that of black box algorithms
in many SciML problems.
Table 1 Details of test datasets, including the target variable, target desc
dataset shape before feature engineering (number of samples, number

Target Description Inputs

Melting temp Melting temperature of AxBy

compounds in K
Magpie chem
numbers, ato

Bulk modulus Bulk modulus of M2AX
compounds in GPa

Magpie chem
constants, at

Band gap Electronic band gap of double
perovskites in eV

Magpie chem
numbers, ato

Heat capacity Heat capacity of organic
molecules at 298.15 K in cal mol−1

K−1

Non-magpie
constants, H

Compressive
strength

Compressive strength of concrete
formulations in MPa

Non-magpie
y ash, ceme

Formation energy Formation energy of transparent
conductors in eV per atom

Non-magpie
vector angles
aluminum)

Fish weight Weight of sh in g Physical mea
height, width

Airfoil sound Intensity of sound in decibels
created by airfoil ight

Physical mea
angle, veloci

Abalone rings Number of rings (corresponding
to age) in an abalone shell

Physical mea
diameter, we

© 2023 The Author(s). Published by the Royal Society of Chemistry
Methods

Benchmark datasets were selected to span a broad range of
materials informatics problems, using both Magpie- and non-
Magpie-featurized materials, as well as non-materials scien-
tic datasets to test generality of the results beyond materials.
One variable in each dataset was selected as the regression
target to simulate a real-world scientic modeling problem.
Target variables were selected to sample a broad range of
material properties, including electronic, mechanical, and
thermodynamic properties, and to ensure diversity in target
value distributions across each dataset. Future work may be
necessary to consider additional dataset types not considered
here (e.g., those with discrete and/or categorical values or those
with complex underlying functions).

Prior to partitioning into cross-validation (CV) sets, datasets
were cleaned by removal of rows which contained at least one
value which was greater than 3 interdecile ranges away from the
median value of the column, removal of duplicate rows and
columns, removal of non-numeric columns, removal of rows
containing null values, and removal of columns with less than 5
unique values. The 9 cleaned benchmark datasets, along with
a description of each target variable, dataset size, and data source,
are shown in Table 1. Histograms of each target value are shown
in Fig. S1† where each panel corresponds to one test dataset and
is labeled by the name of the target variable in the dataset. Three
materials datasets (colored green in Fig. S1†) were featurized
based on chemical formula using the element_property, Band-
Center, and AtomicOrbitals featurization methods in Matminer.
Features generated fromMatminer which contained non-numeric
values or constant values across all rows were removed, resulting
in slightly different sets of Matminer features in each dataset.
ription, regression inputs, type of data (experimental or computational),
of columns), and dataset source

Type Shape Source

istry (e.g. atomic
mic weights, valences)

Exp. (243, 101) Ref. 26

istry (e.g. lattice
omic numbers, valences)

Comp. (223, 74) Matminer50

istry (e.g. atomic
mic weights, valences)

Comp. (1306, 69) Matminer51

chemistry (e.g. rotational
OMO, LUMO, ZPVE)

Comp. (1331, 11) DeepChem52

formulations (e.g. water,
nt content)

Exp. (985, 9) UCI53

chemistry (e.g. lattice
, bandgap, percent

Comp. (2137, 13) Kaggle54

surements (e.g. length,
)

Exp. (158, 6) Kaggle55

surements (e.g. airfoil
ty, chord length)

Exp. (1497, 5) UCI56

surements (e.g. length,
ight)

Exp. (4175, 8) UCI57

Digital Discovery, 2023, 2, 1425–1435 | 1427
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To prevent data leakage during feature engineering and
model testing, each dataset was partitioned into 3 splits: train
(for training predictive models), test (for evaluating model
performance), and validation (for assessing the quality of
engineered features), as shown in Fig. 1a. For each dataset, data
partitioning was repeated 10 times for each of 2 CV strategies:
leave-one-cluster-out (LOCO CV), to simulate model extrapola-
tion (Fig. S2†), and random CV, to simulate model interpolation
(Fig. S3†), resulting in 20 total unique train-test-validation splits
per dataset. For LOCO CV, splits were generated following the
method of Meredig et al.47 Standard normalization of input
features was performed, the data was shuffled, k-means clus-
tering with random initialization was performed where the
number of clusters was selected randomly between 3 (the
minimum number of clusters required for train, test, and vali-
dation sets) and 10 (the largest traditional choice for clusters in
cross-validation), and each cluster was randomly assigned to
a train, test, or validation set such that no set contained less
than 10% of the entire dataset. For random CV, the dataset was
divided randomly so that 80% was used for training, 10% was
used for testing, and 10% was used for validation. The
uniqueness of each CV split was veried to ensure that no two
splits contained identical partitioning of samples.

Aer datasets were partitioned into train, test, and validation
sets, feature engineering was performed with the goal of
creating interpretable input features built from the set of
existing base features, as described in Fig. 1b. To enable
a variety of interpretable functional forms for engineered
features, base input features were raised to varying powers:
from feature x, the features x−1, x±1/2, x±1/3, x±1/4, x±2, x±3, x±4,
and ln x were generated when possible (for example, x−1 was
not generated for feature x when feature x contained values
equal to 0). Next, between 2 and 5 of the newly-constructed
features were selected at random. The selected features were
multiplied together to generate a new feature. This process was
repeated 5 × 105 times at each CV split for each dataset, and
each resulting feature was ranked by its Pearson r2 correlation
to the target values in the validation set. The engineered feature
which exhibited the highest r2 correlation to the target values of
the validation set at a given CV split was selected as the best
engineered feature (BE) for that CV split. While recent efforts
have demonstrated more advanced feature engineering
methods for materials informatics,20,24 the random search
approach described here was used to demonstrate how feature
engineering can be performed using a simple procedure
without the need for dedicated soware packages or
computationally-expensive genetic algorithms. No constraints
were applied to enforce dimensionality of the resultant features.
The number of generated features scales linearly as O(n) with
the number of distinct random combinations of input features.
The 5× 105 cap in iterations is intended to ensure linear scaling
when adding new datasets and input features.

Aer the BE feature was selected for each CV split, it was
used for tting single-feature linear regressions which were
compared to black box models in both interpolative and
extrapolative regimes. At each CV split, 3 regression models
were compared: a random forest, a neural network with
1428 | Digital Discovery, 2023, 2, 1425–1435
stochastic gradient-descent optimizer, and a linear regression,
all implemented using default Scikit-learn methods (Random-
ForestRegressor, MLPRegressor, and LinearRegression, respec-
tively) with default hyperparameters (100 estimators and no
maximum tree depth for the random forest, and 1 hidden layer
with 100 neurons, ReLU activation, Adam solver, and 200
maximum iterations for the neural network).58 Default hyper-
parameters were used to investigate the performance of models
with standard architectures for both interpolation and extrap-
olation tasks, as optimization of hyperparameters oen yields
improvements in model interpolation at the potential expense
of performance in extrapolative settings, which may lead
researchers to overestimate model utility for real-world prob-
lems.47 Stochastic processes in the training of the neural
network and random forest models were avoided by the use of
xed seeds in the published results.

Before tting the models, each dataset was scaled using the
Scikit-learn RobustScaler method. Model performance was
quantied using non-dimensional model error (NDME),59

calculated as the ratio between root-mean-square error (RMSE)
between predicted values and ground truth values in the test
set, and the standard deviation in the ground-truth values of the
test set. NDME was used as a performance metric to ensure that
model performance could be compared across datasets and
target properties with varying units and magnitudes, where
NDME of 0 corresponds to a perfect model, and NDME of 1
corresponds to a model with average prediction error which is
equal to standard deviation in the ground truth values. Models
were evaluated on their ability to predict target values in the test
set of each CV split for 3 different featurization strategies: (1)
best engineered (BE), where the single best engineered feature
at the given CV split was used as the only model input, (2) BE +
original, where all the original dataset input columns, in addi-
tion to the single best engineered feature at the given CV split,
were used as input features, and (3) original, where the original
dataset input columns were used as input features. Covariance
condence intervals of model NDMEs were calculated by
excluding extreme model outliers with NDME > 5.

Results and discussion

The primary challenge of creating interpretable physics-
informed models lies in the discovery of features which
provide a linear mapping between input values and target
values. We performed feature engineering with the goal of
nding new features which were linearly correlated with the
target variable of each test dataset (Fig. S4†). Fig. 2 summarizes
the input features associated with each test dataset before and
aer the feature engineering process. Each panel corresponds
to one dataset and is labeled by the target variable name. Each
scatter point corresponds to a single input feature, where the
original features of each dataset are shown in black, the top 100
features engineered using LOCO CV (top 10 features for each of
10 CV splits) are shown in red, and the top 100 features engi-
neered using random CV are shown in blue. Each feature is
plotted by its Pearson r2 correlation with the target variable on
the vertical axis, for quantifying linearity with the target, and its
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Pearson r2 (vertical axes) and Spearman r2 (horizontal axes) correlations between input features and all target values in each dataset (only
the validation set was used for feature engineering). Each original input feature for a given dataset is shown as a single black point, while the top
100 engineered features discovered using LOCO CV random CV are shown by red and blue points respectively. Large cross symbols denote the
median location of discovered features in the LOCO and random groups (red and blue), and the location of the best feature (feature with the
highest r2 value) in the original input feature set (black). Confidence ellipses (1 standard deviation from themedian) are shown for Original, LOCO,
and random feature sets. Feature engineering was performed with the goal of discovering novel features with high r2 correlation to the target
variable in each dataset.
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and its Spearman r2 correlation on the horizontal axis, for
quantifying monotonicity with the target. Large cross symbols
show the median location of engineered points in the LOCO
and random groups, and the single feature with the highest r2

value in the original feature set. While top features were
selected during the feature engineering process based on their
r2 correlation to the validation set, the correlations shown in
Fig. 2 represent correlations between input features and the
target value of the entire dataset. Points which lie near the
origin (0, 0) represent features which are generally non-
informative for linear models, as they lack linearity and
monotonicity with the target variable. Features near the coor-
dinate (0, 1) exhibit high linearity but poor monotonicity, which
suggests that high degeneracy in target values may be predicted
for a single value of the input feature. Features near coordinate
(1, 0) exhibit high monotonicity but poor linearity, which makes
them informative inputs for nonlinear regression models.
Features near coordinates (1, 1) exhibit both high linearity and
monotonicity with the target values, whichmakes them suitable
for use in simple linear regression models.

In every dataset, the feature engineering process uncovered
new features with r2 correlation to the target variable which was
© 2023 The Author(s). Published by the Royal Society of Chemistry
higher than that of any of the original features. In 4 of 9 datasets
(heat capacity compressive strength, formation energy, airfoil
sound), feature engineering resulted in discovery of new features
which achieved signicant (>100%) increases in r2 correlation to
the target, which suggests that simple algebraic manipulation
and combination of existing features may be used for creating
highly informative input features in many SciML problems. A
noteworthy result is that higher correlations between original
features and the target variable do not necessarily enable engi-
neering of new features with proportionally higher correlations.
For example, the best original input feature for abalone rings
exhibits r2 correlation of ∼0.45, while that of compressive
strength exhibits r2 of ∼0.2. However, feature engineering for
compressive strength results in new features with median r2 of
∼0.7, whereas r2 for engineered abalone rings features reaches
a maximum value at ∼0.6. The results demonstrate that the
return on investment in feature engineering is highly dependent
on characteristics of the specic dataset and may be difficult to
predict from correlations between the original input features and
the target variable alone.

A sample of the best engineered feature discovered per
dataset (that which exhibited the highest r2 correlation to the
Digital Discovery, 2023, 2, 1425–1435 | 1429
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Table 2 Sample of the best engineered features for each dataset. Each row contains the target variable name, the functional form of the best
engineered feature, the Pearson r2 correlation between the best engineered feature (BE max r2) and target values in the full dataset, and the
highest r2 correlation between any of the original input features and target values in the full dataset before feature engineering (Orig. max r2)

Target Engineered feature
BE max
r2

Orig. max
r2

Melting temp lnðmodeColumnÞ$rangeMeltingT1=2

modeNValence2$modeSpaceGroupNum1=4

0.47 0.25

Bulk modulus ðminMendeleevNumber$modeMeltingTÞ1=2$d_mx2$lnðmaxCovalentRadiusÞ
c3

0.82 0.55

Band gap  
rangeNUnfilled$meanNsValence4$meanNpValence

meanElectronegativity$meanColumn

!3 0.39 0.27

Heat capacity zpve1=2$r23=4

A1=3

0.87 0.55

Compressive strength cement1=2$day1=4

fineAggregate1=2$water3=2
0.67 0.24

Formation energy  
percent_atom_al1=2$percent_atom_in1=4$lattice_vector_3_ang

bandgap_energy_ev$lattice_angle_beta

!1=3 0.55 0.21

Fish weight
lnðwidthÞ$length22$

�
height
length3

�1=2 0.98 0.85

Airfoil sound (chordlength_m$displacentthickness_m)1/2 $frequency_hz2/3 0.58 0.16
Abalone rings whole_weight$shell_weight1=3

shucked_weight

0.56 0.39
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full dataset, aer being evaluated only on its correlation with
the validation set during feature engineering) is shown in
Table 2. The variable names present in each feature represent
the corresponding column names in the original datasets
(including the feature names created fromMagpie featurization
in the rst 3 test datasets). Variable names follow the standard
Matminer naming convention: minimum (min), maximum
(max), range, mean, mode, and average deviation (avgdev). The
Pearson r2 correlation between the engineered feature and the
target variable is shown in the BE r2 column, while the highest r2

correlation between the target variable and any original input
features is shown in the Orig. r2 column. Both r2 values were
calculated using the full dataset, even though features were
engineered based on their correlation to the validation set only.

The human-readability of each engineered feature enables
rapid identication of the input variables which are predictive
of the given target variable, in addition to whether input vari-
ables are directly or inversely proportional to the target variable,
and whether they exhibit higher correlation to the target vari-
able when raised to a specic power or aer taking the natural
logarithm. For example, heat capacity is highly correlated (r2 =
0.87) with the square root of zero-point vibrational energy (zpve)
divided by the cube root of A, a rotational constant. This is
consistent with general thermodynamic considerations, as
vibrational and rotational degrees of freedom give rise to heat
capacity,60,61 and heat capacity is proportional to a factor with
dependence on zpve.62 Fish weight is strongly predicted (r2 =

0.98) by the square of the length2 property multiplied by factors
related to width and the ratio of height to length3, which differs
from the basic intuition that weight scales linearly with volume,
which in a rst-order approximation is the simple product of
length, width, and height. The feature for predicting the
1430 | Digital Discovery, 2023, 2, 1425–1435
compressive strength of concrete includes roughly half of the
variables available in the original dataset, which suggests that
several ingredients in the concrete formulation (water, cement,
aggregates) are signicantly more important for predicting
compressive strength than others (y ash, furnace slag, and
superplasticizers) which are not present in the engineered
feature. These insights are not easily obtained through the use
of black box models, which encode the relationships between
different input variables using large arrays of coefficients that
are generally not human-readable due to their high
dimensionality.

The results in Table 2 demonstrate how model complexity
may be offloaded from the internal model structure to the input
features. In black box models, the relationships between inputs
are generally represented by complex data structures (tree
ensembles in random forests, hidden layer node interconnec-
tions in neural networks), which are difficult to interpret by
human domain experts. Using symbolic regression for feature
engineering, these relationships can be represented in human-
readable form.46 The human-readable features exhibit higher
correlations with the target variable than any of the original
features in the dataset, which unlocks the potential for using
simple linear regression models instead of black box algorithms
to achieve the same predictive power. Transfer of the model
complexity to the input features signicantly enhances model
portability, as the resulting linear models can be fully repre-
sented by just 2 coefficients: slope and intercept, which makes
them easy to deploy in a broad range of settings without the
need for specialized machine learning experts.

Fig. 3 shows the 5 variable functional forms which were most
frequently included in the top 10 engineered features per CV
split of a given dataset. The horizontal axis is scaled by the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Prominence of variables in top-performing engineered features for a given dataset. Each panel corresponds to a single dataset and shows
the frequency of CV splits in which each variable appeared in the top 10 engineered features for that dataset, divided by the expectation value of
the frequency if engineered features had been selected at random. Purple variable labels correspond to variables which occur more than once in
the top 5 variables.
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expectation value of the frequency of each variable in the top 10
engineered features if it had been selected randomly. The
functional form of each variable, i.e. whether they were raised to
powers or a natural logarithm was taken, is shown in each
variable label. On average, ∼3.7 of the top 5 variables appeared
in the top 5 variables more than once in different functional
forms (shown by an average of 3.7 purple variable labels per
panel), which suggests that a small number of informative
features were used frequently during the feature engineering
process due to their high correlation to the target value
compared to other variables in the dataset. The results enable
key diagnostics about which input variables, and which func-
tional forms of those input variables, contributed to informative
inputs for feature engineering. Unlike standard feature impor-
tance rankings which are commonly reported for ensemble
regression methods58 or make use of game-theoretic formula-
tions such as Shapley,63 the methodology demonstrated here
enables ranking of the important input features while addi-
tionally highlighting the corresponding functional forms (i.e.
power, logarithm) which yield highest correlations to target
values, and highlights the resiliency of certain input variables to
remain informative over different regions (CV splits) of the
dataset.

It is worth noting that variables in the rst 3 datasets in Fig. 3
generally appear in higher frequency than those in subsequent
datasets. The large number of Magpie columns in the rst 3
datasets (see dataset size in Table 1) lowers the expectation
value that a single variable will appear in high-performing
engineered features across multiple CV splits, which increases
the value of frequency/expectation plotted on the horizontal
axis. The occurrence of some properties in multiple functional
forms, particularly NValence in the melting temp dataset and
© 2023 The Author(s). Published by the Royal Society of Chemistry
range NUnlled in the band gap dataset, attests to the powerful
utility of those properties for predicting the given target variable
across a broad range of extrapolative CV splits.

To investigate the trade-off between model performance and
interpretability, we compared the prediction error of single-
feature linear models to that of black box models in both
interpolation and extrapolation problems. The BE feature at
each CV split was used as the input for a single-feature linear
regression. The prediction accuracy of the linear regression was
compared to that of two black box algorithms: one random
forest (RF) and one feed-forward back-propagating neural
network (NN). Both black box algorithms were tted using all
original input features as inputs. Results from the model
comparison are shown in Fig. 4.

For interpolation problems (random CV, le panel), the
median NDME across all CV splits was ∼0.67 for single feature
linear models and ∼0.33 for black box models, and black box
models outperformed linear regressions in 87% of CV splits.
This is consistent with the understanding that complex algo-
rithms can effectively capture subtleties of the response surface
in the immediate neighborhood of training data with arbitrary
precision.3 In three datasets (sh weight, heat capacity, and
abalone rings), the linear models performed comparably to the
black box models (median NDME for linear models was similar
to that of black box models). In the band gap, formation energy,
and melting temp datasets, linear models exhibited NDME
which was roughly twice as high as that of corresponding black
box models. These datasets exhibited some of the lowest BE r2

values of any datasets in Table 2, which supports the intuition
that higher r2 correlations between engineered features and
target variables enable the construction of higher-performing
linear models.
Digital Discovery, 2023, 2, 1425–1435 | 1431
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Fig. 4 Model performance during interpolation (random CV, left panel) and extrapolation (LOCO CV, right panel). NDME of single-feature linear
models (a linear regression fitted using the best engineered feature discovered at the given CV split as its only input feature) is plotted on the
vertical axis against NDME of black-box models using all original input features as inputs on the horizontal axis. Each point corresponds to the
NDME at one CV split and is colored by dataset. Square points correspond to RF models and circular points correspond to NNmodels. The large
cross symbol denotes the median location of all points. The covariance confidence ellipse denotes the location 1 standard deviation away from
the median value. The solid line at y = x represents the point at which a single-feature linear model and a black box model exhibit equal
performance at a given CV split and given dataset. Dotted lines showNDME= 1, the point at whichmodel prediction error is equal to the standard
deviation in ground truth values.
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In extrapolation problems (LOCO CV, right panel), the
performance difference between single-feature linear regres-
sions and black box models was much less pronounced. The
median NDME for linear models, ∼0.81, was an average of∼5%
higher than that of the NDME for black box models (∼0.77).
Black box models outperformed linear regressions in 60% of CV
splits, with roughly ∼40% of the area of the covariance con-
dence ellipse, shown by the gray curve, lying inside the region
below the y = x line, which suggests that the performance
difference between linear models and black box models is
highly dependent on the particular dataset and extrapolation
region (CV split), and difficult to predict and generalize across
different datasets. For extrapolation in the sh weight and heat
capacity datasets, single-feature linear regressions almost
always outperformed black box models. The engineered
features discovered for those datasets exhibited very high
median correlations to the target values (r2 > 0.85, Fig. 2), which
indicates that the r2 correlation between input features and
target variables may serve as a rough guide for predicting
whether single feature linear models will outperform black box
models in extrapolation problems.

We also examined the effect of including BE features as
inputs to the black box models. For each dataset, the perfor-
mance of linear regression models was compared to that of RF
and NN models using 3 different featurization strategies: (1)
original: the model was trained using only the original input
features in the dataset, including those calculated using
Magpie, (2) best engineered (BE): the model was trained using
the single best engineered input feature for the given CV split as
ranked by its r2 correlation to the validation set, and (3) BE +
original: the model was trained using all original input features
1432 | Digital Discovery, 2023, 2, 1425–1435
in addition to the single best engineered feature. Model
performance was quantied by the median NDME across all
train-test splits for a given dataset and extrapolation or inter-
polation task (Fig. S5†).

In all cases, the best performing model conguration for
a given dataset exhibited lower NDME when performing inter-
polation than when performing extrapolation, which is consis-
tent with the common understanding that extrapolation outside
of the range of training data is more difficult than interpolation
of data which was used during the training process.47 Model
extrapolation performance either improved or stayed
unchanged upon addition of the single best engineered feature
in the majority of all test cases, which indicates that the feature
engineering process for addition of input variables generally
provides performance benets without risk of decreasing the
prediction accuracy. This result suggests that when time and
computational resources allow it, the feature engineering
process should almost always be used prior to model training.
In 4 of 9 test datasets (bulk modulus, heat capacity, sh weight,
and abalone rings), single-feature linear models achieved
extrapolation performance which was comparable (within error
bars, which represent the standard deviation in NDME values
cross the CV splits) to that of the best-performing black box
models.

The results are noteworthy because they demonstrate that
the generally-assumed trade-off between model interpretability
and performance is oen overstated, especially in extrapolation
contexts. Linear regressions which utilize a single input feature
in human-readable functional form can oen extrapolate just as
well as black box models which utilize 102–103 inputs. The
linear models exhibit superior portability, decreased
© 2023 The Author(s). Published by the Royal Society of Chemistry
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computational overhead, and improved ease of use by non-
experts over black box models, which highlights their poten-
tial for deployment in edge computing applications and other
resource-constrained environments without the need for expert
operators.

Conclusions

Selection of predictive models for SciML problems is oen
driven by the assumption that an implicit trade-off exists
between model performance and complexity. We investigated
this trade-off by engineering human-readable input features for
a set of 9 open datasets using a simple random search algo-
rithm, and then compared the performance of single-feature
linear regressions to that of black box random forest and
neural network machine learning models in interpolative and
extrapolative settings across different SciML tasks. For inter-
polation tasks, the linear models exhibited average prediction
error roughly twice as high as that of the black box models, and
outperformed black box models in just 13% of cross-validation
splits. However, when extrapolating to new regions of the
dataset which were not present in the training set, linearmodels
exhibited average prediction error ∼5% higher than that of
black boxmodels, and outperformed black boxmodels in∼40%
of cross-validation splits, while enabling faster model training
times and improved model portability. Our results suggest that
a possible indicator for extrapolation performance of these
linear models is the r2 correlation between the engineered
feature and the target variable. Further analysis of this effect
may warrant further investigation. The use of human-readable
input features provided insight into the functional forms of
underlying variables which weremost predictive of a given set of
target values. The results suggest that extrapolation in many
SciML problems may be performed using simple linear models
which maintain human interpretability without sacricing
performance. When to utilize different models across interpo-
lation and extrapolation regimes is a worthy topic for future
work. Increased use of simple interpretable models may help
unlock the full potential of machine learning for light-weight
edge computing, rapid model portability, and generation of
data-driven insights which augment existing human domain
knowledge.
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