
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 3
:1

1:
43

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Towards a comp
aDepartment of Chemistry, University of Ke

E-mail: chad.risko@uky.edu
bCenter for Applied Energy Research, Univ

40511, USA

† Electronic supplementary information
details about molecular generation, com
details, more information about t
https://doi.org/10.1039/d3dd00081h

Cite this: Digital Discovery, 2023, 2,
1152

Received 2nd May 2023
Accepted 30th June 2023

DOI: 10.1039/d3dd00081h

rsc.li/digitaldiscovery

1152 | Digital Discovery, 2023, 2, 1152
rehensive data infrastructure for
redox-active organic molecules targeting non-
aqueous redox flow batteries†
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and Chad Risko *ab

The shift of energy production towards renewable, yet at times inconsistent, resources like solar and wind

have increased the need for better energy storage solutions. An emerging energy storage technology that is

highly scalable and cost-effective is the redox flow battery comprised of redox-active organic materials.

Designing optimum materials for redox flow batteries involves balancing key properties such as the

redox potential, stability, and solubility of the redox-active molecules. Here, we present the data-enabled

discovery and design to transform liquid-based energy storage (D3TaLES) database, a curated data

collection of more than 43 000 redox-active organic molecules that are of potential interest as the

redox-active species for redox flow batteries with the aim to offer readily accessible and uniform data

for big data metanalyses. D3TaLES raw data and derived properties are organized into a molecule-centric

schema, and the database ontology contributes to the establishment of community reporting standards

for electrochemical data. Data are readily accessed and analyzed through an easy-to-use web interface.

The data infrastructure is coupled with data upload and processing tools that extract, transform, and load

relevant data from raw computation or experimental data files, all of which are available to the public via

a D3TaLES API. These processing tools along with an embedded high-throughput computational

workflow enable community contributions and versatile data sharing and analyses, not only in redox-

flow battery research but also in any field that applies redox-active organic molecules.
Introduction

Increasing use of renewable yet inconsistent energy sources like
solar and wind demands better energy storage solutions. An
emerging energy storage technology that is highly scalable and
cost-effective is the redox ow battery (RFB).1–3 The RFB
decouples energy capacity and power by separating the elec-
trochemical reactions from stored electrochemical energy,
allowing the battery to store large quantities of energy cheaply
and safely.1 The battery consists of two tanks of solvated redox-
active molecules—the catholyte in one tank and the anolyte in
the other. During charge, the catholyte and anolyte are pumped
through a reaction cell where a membrane separates them. The
catholyte is comprised of redox-active molecules that are
oxidized at a porous electrode, while the anolyte contains redox-
ntucky, Lexington, Kentucky 40506, USA.
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putational methods, funnel workow
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–1162
active molecules that are reduced at another porous electrode.
At discharge, the oxidized catholyte and reduced anolyte are
pumped back through the reaction cell, where the reverse
reaction occurs, releasing stored electrochemical energy.

While current commercially available RFB use vanadium,
organic-based RFB show promise as organic molecules can be
more widely available and cheaper than mined and/or rare
metals.4–6 Additionally, redox-active organic molecules are
highly tunable and can be synthesized from sustainable
materials.3,7–9 While commercial and other promising RFB
materials are comprised of aqueous solvents, nonaqueous
solvents afford large potential windows, increasing the battery's
voltage and thus its potential energy storage.10 Even so, there is
limited research targeting redox-active molecules for
nonaqueous solvents in RFB, so-called nonaqueous RFB
(NARFB).

Both experimental and computational methods exist for
deciphering fundamental material properties for NARFB
materials (Fig. 1), and the computational/simulation-based
approaches have been vital in identifying candidates for
NARFB by simulating redox potential, stability, and revers-
ibility, to name a few.11–13 However, while there have been efforts
to identify redox-active molecules suitable for NARFB catholyte
and anolyte materials, there remains a lack of fundamental
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Fundamental redox-active material properties that must be balanced for use as the catholyte or anolyte in an RFB. Each fundamental
property can be estimated experimentally via techniques like cyclic voltammetry (CV) or computationally via density functional theory (DFT) and/
or molecular dynamics (MD) simulations.
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chemical understanding for these systems, especially consid-
erations as to how to appropriately balance critical properties
such as redox potential, stability, and solubility.3,9,14,15

Fortunately, when data are amassed from both computa-
tional and experimental sources, big-data analyses can inform
structure–property relationships. Previous data-enabled
insights have been achieved in similar elds. For example, big
data analyses elucidated a “stability cliff” in quinones, a preva-
lent molecular class in aqueous RFB, encouraging researchers
to explore other chemical spaces.16 Efforts are already underway
to develop data-driven pipelines and apply big-data analyses for
vanadium RFB17,18 and aqueous organic RFB19–21 materials.
Some big data approaches have been applied to the search for
NARFB materials; for example, data-enabled high-throughput
screening of redox-active molecules for NARFB has been
demonstrated in a small-scale proof-of-concept study where
several theoretically viable molecules for NARFB anolytes were
selected from ∼1400 quinoxaline-based systems a with funnel-
based screening approach focusing on reduction potential,
solvation energy, and structural changes with oxidation.22

Unfortunately, the few studies that examine systems for
NARFB are smaller scale and (like those in the eld of aqueous
RFB) oen focus on quinone-based systems alone. Additionally,
elucidating structure–property relationships for properties such
as solubility in nonaqueous environments for NARFB can be
much more challenging than in aqueous environments.23 Thus,
in the eld of NARFB, the metanalyses necessary to elucidate
structure–property relationships are oen prohibited by the
lack of large-scale, broad, accessible, and uniform data.

Here we present a curated database of redox-active organic
molecules as a part of a multidisciplinary, collaborative
© 2023 The Author(s). Published by the Royal Society of Chemistry
platform entitled data-enabled discovery and design to trans-
form liquid energy storage (D3TaLES).24 We collect and curate
data from various sources, including computational analyses
and original experimentation, and we build the infrastructure
to accept data submissions from the community. The data
infrastructure includes data upload and processing tools that
extract, transform, and load (ETL) relevant data from raw
computation or experimental data les and organize it into
a molecule-centric schema. Here the data are easily accessed
and analyzed, and a layered, redundant database structure
provides critical opportunities for manual and automated data
curation. A high-throughput computational workow begins
populating the database with DFT computational data. Similar
data structures involving high-throughput computation for p-
conjugated organic molecules exist,25–30 and there also exist
databases targeting batteries.19,31,32 But unlike these existing
databases, D3TaLES provides a data infrastructure and frame-
work for multiple data types targeting NARFB. The database
enables deeper physiochemical understanding and opportuni-
ties for meta-analysis. Though the focus presented here is on
identifying systems that hold potential for NARFB, the platform
has a broad scope and can be used or expanded to search for
characteristics of redox-active organic molecules in other elds
of application.
D3TaLES database
Design

The schema, or organizational data structure, provides the
foundation for the database. A No-SQL schema was chosen
because of its exibility and scalability.33 D3TaLES data is
Digital Discovery, 2023, 2, 1152–1162 | 1153
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segmented into two databases to accommodate the complexity
and breadth of the data collected—one for raw data (backend)
and the other for processed data (frontend).

The backend database contains data parsed directly from
experiment data les. It uses computation- and/or experiment-
centric schema where each data instance is a calculation or
experiment with associated attributes (Fig. 2). Attributes
Fig. 2 (Top) Depiction of the backend D3TaLES schema and collection t
that exist in the backend database; to view the full D3TaLES database sche
also shown. (Bottom) Schematic showing the first property level for the m
example attributes in the “molecular characteristics” attribute group.

1154 | Digital Discovery, 2023, 2, 1152–1162
include calculation/experiment identier, submission infor-
mation, and a collection of raw data values, including
computational/experimental conditions. For example, the
backend database might hold raw data values like the
computed energies for a molecule's ground and oxidized or
reduced states. The backend database can also hold cyclic vol-
tammetry (CV) data extracted from a potentiostat output le.
ypes. Note that the figure shows a sampling of the types of collections
ma, visit the documentation.36 Tables with example “data” attributes are
olecule-centric, frontend D3TaLES schema along with a table showing

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Thus, the backend schema relates directly to the les that
supply data and oen incorporates features from existing
community schema.34,35 Because D3TaLES contains many types
of data, the backend schema has several sub-schemas—one for
each data type. The sub-schemas share common elds such as
“mol_id”, “submission_info”, and “data”. The backend
schemas are broad and accommodate different types of data
including but not limited to computations at different levels of
theory (e.g., molecular dynamics simulations), experiments with
various processing or data collection conditions, and literature-
extracted data from various learning models (see ESI Section
1†); efforts are ongoing to add more schema.

The frontend database holds data that are more useful for
analysis. For example, the frontend database contains ioniza-
tion potentials calculated from the ground- and oxidized-state
energies in the backend database. Likewise, the frontend
database contains estimated redox potentials calculated from
CV data. The frontend database uses a molecule-centric schema
where each data instance is a molecule (Fig. 2). Molecule attri-
butes include a molecule identier and public/private status,
while the remaining attributes are grouped into the following
sub-categories: molecule characteristics, species characteris-
tics, raw experiment data (which connects to the backend
database), and related literature. Molecular characteristics
include properties of the entire molecule (usually involving
multiple species), such as oxidation potential or relaxation
energies. Species characteristics include properties relating to
Fig. 3 Schematic showing D3TaLES data processing. Data flows from
through the D3TaLES website to the backend database. From here, raw
formation to the frontend database. Frontend data is displayed through

© 2023 The Author(s). Published by the Royal Society of Chemistry
a single charge species for the molecule, such as ground-state
species HOMO or oxidized-state solvation energy. The
complete D3TaLES schema is available online.36

Population

A processing workow populates the database when raw data
les and associated metadata are uploaded to the D3TaLES
website (Fig. 3). The raw data les are parsed to extract key
values. Existing parsing packages (such as Pymatgen,35 RDKit,37

and SciPy38) are integrated with original code to parse raw
computational and experimental data les. These processing
tools are packaged in the D3TaLES application programming
interface (API; discussed in the D3TaLES tools section). The raw
data les are then compressed and stored, while extracted key
values are inserted into the backend database. At this stage, an
administrator inspects the backend data to ensure some degree
of delity. Upon administrator approval, the backend data is
transformed into frontend properties. Users may view the
frontend database via interactive molecule viewing webpages on
the D3TaLES website.24 More information about the database
soware can be found in the ESI Section 2.†

Currently, the D3TaLES database contains primarily
computational data generated through a high-throughput
molecular computational workow using density functional
theory (DFT) carried out at the (IP-tuned) LC-uHPBE/Def2SVP
level of theory via the Gaussian16 (rev A.03) soware suite.39–42

The data produced in this workow cover several fundamental
external sources, such as high-throughput computation or robotics,
data is stored while administrator (admin) approval allows data trans-
a user interface on the D3TaLES website.

Digital Discovery, 2023, 2, 1152–1162 | 1155
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properties of redox-active molecules, including oxidation and
reduction potentials, stability, and solubility; see ESI Section 4†
for more details.
Data composition

Molecules in the D3TaLES database are collected from those
appearing in the NARFB literature,23,43,44 scraped from the
Cambridge Structural Database (CSD)45 and ZINC46 datasets
(Fig. S4 and S5†), and combinatorically generated from frag-
ments of molecules commonly used in NARFB; see ESI Section
3† for more details. While these datasets contain inherent bia-
ses (e.g., CSD molecules are crystallizable, ZINC molecules are
already commercially available, combinatorically generated
molecules conform to current conceptions in the eld about
what structures will work in NARFB, etc.), this collection
provides an initial dataset of small organic molecules covering
a relatively diverse chemical space. The scraped data number
over 600 000 molecules, along with a few dozen experimental
molecules from collaborators and a few hundred auto-
generated molecules from common motifs used in NARFB
(Fig. 4). The following criteria were then used to lter this
extensive molecular dataset: A molecule must have at least one
aromatic ring, contain no rings with more than six atoms and
no rings with less than ve atoms, contain no rings with more
than three heteroatoms, and not exist already in the OCELOT26

database (a database of large organic molecules and their cor-
responding crystal properties targeting organic semiconductors
developed by our lab). This narrowed the dataset to approxi-
mately 115 000 molecules. Finally, the dataset was narrowed
further because of limited computational resources. To ensure
diversity of the chemical space, the 33 000 ltered ZINC mole-
cules most different from the rest of the dataset (CSD, generate,
Fig. 4 Molecule screening process for the D3TaLES database.

1156 | Digital Discovery, 2023, 2, 1152–1162
and NARFB literature molecules) were chosen. The similarity
was determined with the RDKit Tanimoto ngerprint
method.37,47 The nal chemical space consists of 43 168 mole-
cules, where approximately 3500 are proprietary and 39 500 are
public. Of these structures, 31 583 have a complete oxidation
prole.

The 43 168 unique structures in the D3TaLES database have
a mean molecular weight of 329 g mol−1 (Fig. 5A). All properties
generated for the oxidation prole are listed in the D3TaLES
database documentation,36 but notable properties include
oxidation potential, relaxation energies, vertical and adiabatic
ionization potentials, solvation energies, and a radical-cation
stability score developed by Sowndarya et al.48 Fig. 5B shows
a UMAP49 chemical space plot of the calculated oxidation
potentials where groupings of higher and lower potentials are
viable. The plot includes 10-ethylphenothiazine (EPT) and
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), two widely-
reported molecules of interest for organic RFB.7 Fig. 5C shows
the database structures plotted by oxidation potential and the
radical-cation stability score.48 The marginal histogram depicts
a normally distributed radical stability score (RSS), with the
highest stability scores observed for larger molecules. In
contrast, there exists little correlation between size and oxida-
tion potential, though most oxidation potentials are concen-
trated just above zero eV (relative to the standard hydrogen
electrode, SHE). The database is now being populated with
reduction proles for many of the structures. These proles
contain the reduction analog for each of the oxidation prole
properties. Currently, the database contains over 28 000 reduc-
tion proles.

D3TaLES tools

The D3TaLES database is coupled with several data interaction
and management tools including the D3TaLES website24 and the
D3TaLES API.51 The D3TaLES website is integral for many of the
processes described above. Website features include le upload
systems, backend data viewing and approval, database search
functions, and molecule viewing pages. All user data submis-
sions and administrator approval of the processed data occur
through the website. Users may search the database by molecule
name or structure. All data for a given molecule can be viewed on
the molecule property viewing page (Fig. 6). Alternatively, for
those wishing to access large quantities of data through code, the
D3TaLES REST API allows data access through HTML according
to REST (representational state transfer) standards.52 Finally, the
site contains links to the D3TaLES database documentation,36

D3TaLES API documentation,51 and the D3TaLES calculators
interactive Python notebooks.53

Several tools for moving, processing, and transforming data
accompany the D3TaLES database. These tools are compiled in
the D3TaLES API.51 The D3TaLES API includes three modules:
Processors for data processing, D3database for database access,
and Calculators for property calculations (Fig. 6). The Processors
module contains various parsing classes for extracting useful
data from instrument-produced computational and experi-
mental data les. Among other database access functions, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The D3TaLES frontend database contains over 43 000 molecules. (A) Histogram showing molecular weight distribution for the D3TaLES
database. (B) The computed values for oxidation potential (a molecular characteristic) are mapped onto a two-dimensional chemical space with
ChemPlot50 and UMAP49 dimension reduction. (C) Scatter plot with marginal histograms showing D3TaLES molecules plotted by calculated
oxidation potential (versus the standard hydrogen electrode, SHE) and radical stability score, colored by number of atoms.48
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D3database module contains a class for accessing the D3TaLES
database via Python through the REST API. This module also
contains functions for gathering and plotting D3TaLES prop-
erties as one- and two-dimensional histograms. Finally, the
Calculators module, perhaps the most useful module for the
general community, allows users to calculate useful computa-
tional and experimental properties from nested data. All
calculators contain unit conversion features. Useful molecular
DFT calculators include redox potential, radical buried
volume,55 and radical spin density,56 while useful CV calculators
include diffusion constant using the Randles–Ševč́ık equation
and charge-transfer rate. The D3TaLES API documentation51

explains basic usage for these calculators, and we also provide
interactive Python notebooks that use the calculators to
perform calculations without the need for the user to know
Python coding.53 For more information about the D3TaLES API,
see ESI Section 6.†
D3TaLES database utility

To demonstrate the D3TaLES database utility in identifying
candidates for redox ow batteries, we used the compiled
computational data to perform a proof-of-concept funnel pipe-
line (Fig. 7).57–60 The funnel pipeline iteratively narrows the
D3TaLES chemical space through a series of tests to identify
candidates for a NARFB catholyte material. The tests are ordered
from least to most computationally intensive. The rst test (∼1
© 2023 The Author(s). Published by the Royal Society of Chemistry
ms) selects molecules with less than 30 atoms. Redox-active
systems with fewer atoms per charge event increase the atom
economy,61 and thus the capacity for a RFB. Subsequently, the
second test (∼1 s) lters out molecules that would be difficult to
synthesize by selecting systems with a synthetic accessibility
score below 4.1.56,62 The next two tests lter by stability and
solvation energy, respectively, relative to the properties of
a known candidate for NARFB: N-(2-(2-methoxyethoxy)ethyl)
phenothiazine (MEEPT).7,63 MEEPT is known to be soluble,
especially in its ground state, and it shows stable cycling of one
oxidation event. The third test (∼21 core hours) lters out
molecules with an RSS greater than MEEPT's score of 81, while
the fourth test (∼21 core hours) identies molecules with solva-
tion energy lower than MEEPT's −0.19 eV. The nal test (∼43
core hours) nds molecules with an oxidation potential of 1.96 V
or higher, as higher oxidation potentials are most desirable for
catholyte materials. (To view structures from the funnel pipeline
and for more information about the core-hour estimations, see
ESI Section 5.†) The funnel pipeline down-selects the 43 168
D3TaLES structures to 364 potential systems for NARFB.While all
calculations were performed for all molecules used here, this
approach could be employed to explore a large chemical space
without performing all resource-intensive calculations for all
systems. Additionally, the existing D3TaLES data can be used to
train machine learning (ML) models that quickly estimate
resource-intensive properties such as oxidation potential; these
models could be added as an upper level of the funnel pipeline.64
Digital Discovery, 2023, 2, 1152–1162 | 1157
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Fig. 6 (Top) D3TaLES molecule viewing page.54 (Bottom) The organizational structure of the D3TaLES API. Full documentation for the D3TaLES
API is available.51

1158 | Digital Discovery, 2023, 2, 1152–1162 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (Left) Schematic demonstrating the proof-of-concept funnel pipeline using D3TaLES computational data. The five tests narrow the
chemical space by number of atoms, synthetic accessibility score, radical stability score (RSS), solvation energy, and oxidation potential,
respectively. (Right) Twelve randomly selected structures from the final 364 structures that emerged from the funnel pipeline.
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Conclusion

We demonstrate a comprehensive data infrastructure for redox-
active small molecules for use in NARFBs. For the over 43 000
molecules currently in the D3TaLES database, a high-
throughput computational workow has determined over 31
000 oxidation proles and other properties of interest to date.
While the database currently consists almost exclusively of DFT
computational data, the schema and processing infrastructure
exist for incorporating experimental and literature-reported
data. Future work will focus on exploiting the data processing
tools and data storage infrastructure to continue populating the
D3TaLES database, especially in areas outside of molecular DFT,
such as periodic DFT, molecular dynamics simulations, and
cyclic voltammetry and UV-Vis spectroscopy experiments.

We demonstrate the utility of the D3TaLES infrastructure by
screening the over 43 000 molecules in the database for NARFB
application. This preliminary screening predicts 364 candidates
with characteristics superior to the current standard MEEPT.
We note that a thorough analysis is warranted to conrm these
predictions. The D3TaLES database and data infrastructure will
enable integrated meta-analytical and machine-learning-based
evaluation in the NARFB eld, with the aim to expedite mate-
rials discovery and pave the way for predictive models for
properties such as redox potentials and radical cation stability.
The uniform and accessible D3TaLES data will enable machine
learning and robotic experimentation towards better exploring
© 2023 The Author(s). Published by the Royal Society of Chemistry
relevant chemical space for application-suitable redox
molecules.
Data availability

The data presented here are accessible via the D3TaLES website
(https://d3tales.as.uky.edu/), and the public portion of the
dataset (∼39 500 molecules) can be downloaded at https://
d3tales.as.uky.edu/datasets. The D3TaLES website also
includes documentation for the database structure and more
information about the data composition (https://
d3tales.as.uky.edu/docs/). The processing tools associated
with the D3TaLES API exist in an open-access Python package
documented at https://d3tales.github.io/d3tales_api/. The
Fireworks-based65 code used for the high-throughput
quantum chemical calculations is available publicly at https://
github.com/D3TaLES/d3tales_fw. Additional details and
information can be found in the accompanying ESI.†
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