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The shift of energy production towards renewable, yet at times inconsistent, resources like solar and wind
have increased the need for better energy storage solutions. An emerging energy storage technology that is
highly scalable and cost-effective is the redox flow battery comprised of redox-active organic materials.
Designing optimum materials for redox flow batteries involves balancing key properties such as the
redox potential, stability, and solubility of the redox-active molecules. Here, we present the data-enabled
discovery and design to transform liquid-based energy storage (D°TaLES) database, a curated data
collection of more than 43000 redox-active organic molecules that are of potential interest as the
redox-active species for redox flow batteries with the aim to offer readily accessible and uniform data
for big data metanalyses. D3TaLES raw data and derived properties are organized into a molecule-centric
schema, and the database ontology contributes to the establishment of community reporting standards
for electrochemical data. Data are readily accessed and analyzed through an easy-to-use web interface.

The data infrastructure is coupled with data upload and processing tools that extract, transform, and load
Received 2nd May 2023 levant data f tati imental data files, all of which ilable to the public vi
Accepted 30th June 2023 relevant data from raw computation or experimental data files, all of which are available to the public via
a D®TaLES API. These processing tools along with an embedded high-throughput computational

DOI: 10.1035/d3dd00081h workflow enable community contributions and versatile data sharing and analyses, not only in redox-
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Introduction

Increasing use of renewable yet inconsistent energy sources like
solar and wind demands better energy storage solutions. An
emerging energy storage technology that is highly scalable and
cost-effective is the redox flow battery (RFB).'* The RFB
decouples energy capacity and power by separating the elec-
trochemical reactions from stored electrochemical energy,
allowing the battery to store large quantities of energy cheaply
and safely." The battery consists of two tanks of solvated redox-
active molecules—the catholyte in one tank and the anolyte in
the other. During charge, the catholyte and anolyte are pumped
through a reaction cell where a membrane separates them. The
catholyte is comprised of redox-active molecules that are
oxidized at a porous electrode, while the anolyte contains redox-
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flow battery research but also in any field that applies redox-active organic molecules.

active molecules that are reduced at another porous electrode.
At discharge, the oxidized catholyte and reduced anolyte are
pumped back through the reaction cell, where the reverse
reaction occurs, releasing stored electrochemical energy.
While current commercially available RFB use vanadium,
organic-based RFB show promise as organic molecules can be
more widely available and cheaper than mined and/or rare
metals.*® Additionally, redox-active organic molecules are
highly tunable and can be synthesized from sustainable
materials.>”® While commercial and other promising RFB
materials are comprised of aqueous solvents, nonaqueous
solvents afford large potential windows, increasing the battery's
voltage and thus its potential energy storage.'® Even so, there is

limited research targeting redox-active molecules for
nonaqueous solvents in RFB, so-called nonaqueous RFB
(NARFB).

Both experimental and computational methods exist for
deciphering fundamental material properties for NARFB
materials (Fig. 1), and the computational/simulation-based
approaches have been vital in identifying candidates for
NARFB by simulating redox potential, stability, and revers-
ibility, to name a few."** However, while there have been efforts
to identify redox-active molecules suitable for NARFB catholyte
and anolyte materials, there remains a lack of fundamental

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Fundamental redox-active material properties that must be balanced for use as the catholyte or anolyte in an RFB. Each fundamental
property can be estimated experimentally via techniques like cyclic voltammetry (CV) or computationally via density functional theory (DFT) and/

or molecular dynamics (MD) simulations.

chemical understanding for these systems, especially consid-
erations as to how to appropriately balance critical properties
such as redox potential, stability, and solubility.>****>

Fortunately, when data are amassed from both computa-
tional and experimental sources, big-data analyses can inform
structure-property  relationships. Previous data-enabled
insights have been achieved in similar fields. For example, big
data analyses elucidated a “stability cliff” in quinones, a preva-
lent molecular class in aqueous RFB, encouraging researchers
to explore other chemical spaces.'® Efforts are already underway
to develop data-driven pipelines and apply big-data analyses for
vanadium RFB'** and aqueous organic RFB'7?' materials.
Some big data approaches have been applied to the search for
NARFB materials; for example, data-enabled high-throughput
screening of redox-active molecules for NARFB has been
demonstrated in a small-scale proof-of-concept study where
several theoretically viable molecules for NARFB anolytes were
selected from ~1400 quinoxaline-based systems a with funnel-
based screening approach focusing on reduction potential,
solvation energy, and structural changes with oxidation.*?

Unfortunately, the few studies that examine systems for
NARFB are smaller scale and (like those in the field of aqueous
RFB) often focus on quinone-based systems alone. Additionally,
elucidating structure-property relationships for properties such
as solubility in nonaqueous environments for NARFB can be
much more challenging than in aqueous environments.* Thus,
in the field of NARFB, the metanalyses necessary to elucidate
structure-property relationships are often prohibited by the
lack of large-scale, broad, accessible, and uniform data.

Here we present a curated database of redox-active organic
molecules as a part of a multidisciplinary, collaborative

© 2023 The Author(s). Published by the Royal Society of Chemistry

platform entitled data-enabled discovery and design to trans-
form liquid energy storage (D*TaLES).>* We collect and curate
data from various sources, including computational analyses
and original experimentation, and we build the infrastructure
to accept data submissions from the community. The data
infrastructure includes data upload and processing tools that
extract, transform, and load (ETL) relevant data from raw
computation or experimental data files and organize it into
a molecule-centric schema. Here the data are easily accessed
and analyzed, and a layered, redundant database structure
provides critical opportunities for manual and automated data
curation. A high-throughput computational workflow begins
populating the database with DFT computational data. Similar
data structures involving high-throughput computation for -
conjugated organic molecules exist,”>** and there also exist
databases targeting batteries.”®***> But unlike these existing
databases, D*TaLES provides a data infrastructure and frame-
work for multiple data types targeting NARFB. The database
enables deeper physiochemical understanding and opportuni-
ties for meta-analysis. Though the focus presented here is on
identifying systems that hold potential for NARFB, the platform
has a broad scope and can be used or expanded to search for
characteristics of redox-active organic molecules in other fields
of application.

D3TaLES database

Design

The schema, or organizational data structure, provides the
foundation for the database. A No-SQL schema was chosen
because of its flexibility and scalability.®® D’TaLES data is
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segmented into two databases to accommodate the complexity
and breadth of the data collected—one for raw data (backend)
and the other for processed data (frontend).

The backend database contains data parsed directly from
experiment data files. It uses computation- and/or experiment-
centric schema where each data instance is a calculation or
experiment with associated attributes (Fig. 2). Attributes
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include calculation/experiment identifier, submission infor-
mation, and a collection of raw data values, including
computational/experimental conditions. For example, the
backend database might hold raw data values like the
computed energies for a molecule's ground and oxidized or
reduced states. The backend database can also hold cyclic vol-
tammetry (CV) data extracted from a potentiostat output file.
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Fig. 2 (Top) Depiction of the backend D®TaLES schema and collection types. Note that the figure shows a sampling of the types of collections
that exist in the backend database; to view the full D®TaLES database schema, visit the documentation. Tables with example “data” attributes are
also shown. (Bottom) Schematic showing the first property level for the molecule-centric, frontend D3TaLES schema along with a table showing

example attributes in the “molecular characteristics” attribute group.
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Thus, the backend schema relates directly to the files that
supply data and often incorporates features from existing
community schema.?*** Because D*TaLES contains many types
of data, the backend schema has several sub-schemas—one for
each data type. The sub-schemas share common fields such as
“mol_id”, “submission_info”, and “data”. The backend
schemas are broad and accommodate different types of data
including but not limited to computations at different levels of
theory (e.g., molecular dynamics simulations), experiments with
various processing or data collection conditions, and literature-
extracted data from various learning models (see ESI Section
11); efforts are ongoing to add more schema.

The frontend database holds data that are more useful for
analysis. For example, the frontend database contains ioniza-
tion potentials calculated from the ground- and oxidized-state
energies in the backend database. Likewise, the frontend
database contains estimated redox potentials calculated from
CV data. The frontend database uses a molecule-centric schema
where each data instance is a molecule (Fig. 2). Molecule attri-
butes include a molecule identifier and public/private status,
while the remaining attributes are grouped into the following
sub-categories: molecule characteristics, species characteris-
tics, raw experiment data (which connects to the backend
database), and related literature. Molecular characteristics
include properties of the entire molecule (usually involving
multiple species), such as oxidation potential or relaxation
energies. Species characteristics include properties relating to
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a single charge species for the molecule, such as ground-state
species HOMO or oxidized-state solvation energy. The
complete D*TaLES schema is available online.*

Population

A processing workflow populates the database when raw data
files and associated metadata are uploaded to the D*TaLES
website (Fig. 3). The raw data files are parsed to extract key
values. Existing parsing packages (such as Pymatgen,*® RDKit,*”
and SciPy*®) are integrated with original code to parse raw
computational and experimental data files. These processing
tools are packaged in the D*TaLES application programming
interface (API; discussed in the D*TaLES tools section). The raw
data files are then compressed and stored, while extracted key
values are inserted into the backend database. At this stage, an
administrator inspects the backend data to ensure some degree
of fidelity. Upon administrator approval, the backend data is
transformed into frontend properties. Users may view the
frontend database via interactive molecule viewing webpages on
the D>TaLES website.>* More information about the database
software can be found in the ESI Section 2.}

Currently, the D°TaLES database contains primarily
computational data generated through a high-throughput
molecular computational workflow using density functional
theory (DFT) carried out at the (IP-tuned) LC-wHPBE/Def2SVP
level of theory via the Gaussian16 (rev A.03) software suite.***>
The data produced in this workflow cover several fundamental
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Fig. 3 Schematic showing D®TaLES data processing. Data flows from external sources, such as high-throughput computation or robotics,
through the D3TaLES website to the backend database. From here, raw data is stored while administrator (admin) approval allows data trans-
formation to the frontend database. Frontend data is displayed through a user interface on the D3TaLES website.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2023, 2, 1152-1162 | 1155


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00081h

Open Access Article. Published on 04 July 2023. Downloaded on 11/21/2025 7:32:52 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

properties of redox-active molecules, including oxidation and
reduction potentials, stability, and solubility; see ESI Section 4
for more details.

Data composition

Molecules in the D*TaLES database are collected from those
appearing in the NARFB literature,”*** scraped from the
Cambridge Structural Database (CSD)* and ZINC* datasets
(Fig. S4 and S57), and combinatorically generated from frag-
ments of molecules commonly used in NARFB; see ESI Section
37 for more details. While these datasets contain inherent bia-
ses (e.g., CSD molecules are crystallizable, ZINC molecules are
already commercially available, combinatorically generated
molecules conform to current conceptions in the field about
what structures will work in NARFB, etc.), this collection
provides an initial dataset of small organic molecules covering
a relatively diverse chemical space. The scraped data number
over 600 000 molecules, along with a few dozen experimental
molecules from collaborators and a few hundred auto-
generated molecules from common motifs used in NARFB
(Fig. 4). The following criteria were then used to filter this
extensive molecular dataset: A molecule must have at least one
aromatic ring, contain no rings with more than six atoms and
no rings with less than five atoms, contain no rings with more
than three heteroatoms, and not exist already in the OCELOT?>*
database (a database of large organic molecules and their cor-
responding crystal properties targeting organic semiconductors
developed by our lab). This narrowed the dataset to approxi-
mately 115000 molecules. Finally, the dataset was narrowed
further because of limited computational resources. To ensure
diversity of the chemical space, the 33 000 filtered ZINC mole-
cules most different from the rest of the dataset (CSD, generate,
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Fig. 4 Molecule screening process for the D>TaLES database.
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and NARFB literature molecules) were chosen. The similarity
determined with the RDKit Tanimoto fingerprint
method.*”*” The final chemical space consists of 43 168 mole-
cules, where approximately 3500 are proprietary and 39 500 are
public. Of these structures, 31 583 have a complete oxidation
profile.

The 43 168 unique structures in the D*TaLES database have
a mean molecular weight of 329 ¢ mol " (Fig. 5A). All properties
generated for the oxidation profile are listed in the D*TaLES
database documentation,®® but notable properties include
oxidation potential, relaxation energies, vertical and adiabatic
ionization potentials, solvation energies, and a radical-cation
stability score developed by Sowndarya et al.*® Fig. 5B shows
a UMAP* chemical space plot of the calculated oxidation
potentials where groupings of higher and lower potentials are
viable. The plot includes 10-ethylphenothiazine (EPT) and
(2,2,6,6-tetramethylpiperidin-1-yljoxyl (TEMPO), two widely-
reported molecules of interest for organic RFB.” Fig. 5C shows
the database structures plotted by oxidation potential and the
radical-cation stability score.*® The marginal histogram depicts
a normally distributed radical stability score (RSS), with the
highest stability scores observed for larger molecules. In
contrast, there exists little correlation between size and oxida-
tion potential, though most oxidation potentials are concen-
trated just above zero eV (relative to the standard hydrogen
electrode, SHE). The database is now being populated with
reduction profiles for many of the structures. These profiles
contain the reduction analog for each of the oxidation profile
properties. Currently, the database contains over 28 000 reduc-
tion profiles.

was

D3TaLES tools

The D*TaLES database is coupled with several data interaction
and management tools including the D*TaLES website?* and the
D’TaLES APL* The D*TaLES website is integral for many of the
processes described above. Website features include file upload
systems, backend data viewing and approval, database search
functions, and molecule viewing pages. All user data submis-
sions and administrator approval of the processed data occur
through the website. Users may search the database by molecule
name or structure. All data for a given molecule can be viewed on
the molecule property viewing page (Fig. 6). Alternatively, for
those wishing to access large quantities of data through code, the
D’TaLES REST API allows data access through HTML according
to REST (representational state transfer) standards.* Finally, the
site contains links to the D*TaLES database documentation,®®
D*TaLES API documentation,” and the D*TaLES calculators
interactive Python notebooks.**

Several tools for moving, processing, and transforming data
accompany the D*TaLES database. These tools are compiled in
the D*TaLES APL' The D*TaLES API includes three modules:
Processors for data processing, D3database for database access,
and Calculators for property calculations (Fig. 6). The Processors
module contains various parsing classes for extracting useful
data from instrument-produced computational and experi-
mental data files. Among other database access functions, the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The D’TaLES frontend database contains over 43 000 molecules. (A) Histogram showing molecular weight distribution for the D*TaLES
database. (B) The computed values for oxidation potential (a molecular characteristic) are mapped onto a two-dimensional chemical space with
ChemPlot® and UMAP* dimension reduction. (C) Scatter plot with marginal histograms showing D3TaLES molecules plotted by calculated
oxidation potential (versus the standard hydrogen electrode, SHE) and radical stability score, colored by number of atoms.*®

D3database module contains a class for accessing the D*TaLES
database via Python through the REST API. This module also
contains functions for gathering and plotting D*TaLES prop-
erties as one- and two-dimensional histograms. Finally, the
Calculators module, perhaps the most useful module for the
general community, allows users to calculate useful computa-
tional and experimental properties from nested data. All
calculators contain unit conversion features. Useful molecular
DFT calculators include redox potential,
volume,* and radical spin density,*® while useful CV calculators
include diffusion constant using the Randles-Sevcik equation
and charge-transfer rate. The D*TaLES API documentation®
explains basic usage for these calculators, and we also provide
interactive Python notebooks that use the calculators to
perform calculations without the need for the user to know
Python coding.?* For more information about the D*TaLES API,
see ESI Section 6.t

radical buried

D3TaLES database utility

To demonstrate the D*TaLES database utility in identifying
candidates for redox flow batteries, we used the compiled
computational data to perform a proof-of-concept funnel pipe-
line (Fig. 7). The funnel pipeline iteratively narrows the
D’TaLES chemical space through a series of tests to identify
candidates for a NARFB catholyte material. The tests are ordered
from least to most computationally intensive. The first test (~1

© 2023 The Author(s). Published by the Royal Society of Chemistry

ms) selects molecules with less than 30 atoms. Redox-active
systems with fewer atoms per charge event increase the atom
economy,” and thus the capacity for a RFB. Subsequently, the
second test (~1 s) filters out molecules that would be difficult to
synthesize by selecting systems with a synthetic accessibility
score below 4.1.°*°> The next two tests filter by stability and
solvation energy, respectively, relative to the properties of
a known candidate for NARFB: N-(2-(2-methoxyethoxy)ethyl)
phenothiazine (MEEPT).”** MEEPT is known to be soluble,
especially in its ground state, and it shows stable cycling of one
oxidation event. The third test (~21 core hours) filters out
molecules with an RSS greater than MEEPT's score of 81, while
the fourth test (~21 core hours) identifies molecules with solva-
tion energy lower than MEEPT's —0.19 eV. The final test (~43
core hours) finds molecules with an oxidation potential of 1.96 V
or higher, as higher oxidation potentials are most desirable for
catholyte materials. (To view structures from the funnel pipeline
and for more information about the core-hour estimations, see
ESI Section 5.f) The funnel pipeline down-selects the 43168
D’TaLES structures to 364 potential systems for NARFB. While all
calculations were performed for all molecules used here, this
approach could be employed to explore a large chemical space
without performing all resource-intensive calculations for all
systems. Additionally, the existing D*TaLES data can be used to
train machine learning (ML) models that quickly estimate
resource-intensive properties such as oxidation potential; these
models could be added as an upper level of the funnel pipeline.**

Digital Discovery, 2023, 2, 152-1162 | 1157
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Conclusion

We demonstrate a comprehensive data infrastructure for redox-
active small molecules for use in NARFBs. For the over 43 000
molecules currently in the D’TaLES database, a high-
throughput computational workflow has determined over 31
000 oxidation profiles and other properties of interest to date.
While the database currently consists almost exclusively of DFT
computational data, the schema and processing infrastructure
exist for incorporating experimental and literature-reported
data. Future work will focus on exploiting the data processing
tools and data storage infrastructure to continue populating the
D’TaLES database, especially in areas outside of molecular DFT,
such as periodic DFT, molecular dynamics simulations, and
cyclic voltammetry and UV-Vis spectroscopy experiments.

We demonstrate the utility of the D’*TaLES infrastructure by
screening the over 43 000 molecules in the database for NARFB
application. This preliminary screening predicts 364 candidates
with characteristics superior to the current standard MEEPT.
We note that a thorough analysis is warranted to confirm these
predictions. The D*TaLES database and data infrastructure will
enable integrated meta-analytical and machine-learning-based
evaluation in the NARFB field, with the aim to expedite mate-
rials discovery and pave the way for predictive models for
properties such as redox potentials and radical cation stability.
The uniform and accessible D°TaLES data will enable machine
learning and robotic experimentation towards better exploring

© 2023 The Author(s). Published by the Royal Society of Chemistry

relevant chemical for redox

molecules.

space application-suitable

Data availability

The data presented here are accessible via the D*TaLES website
(https://d3tales.as.uky.edu/), and the public portion of the
dataset (~39500 molecules) can be downloaded at https://
d3tales.as.uky.edu/datasets. The D’TaLES website also
includes documentation for the database structure and more
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d3tales.as.uky.edu/docs/). The processing tools associated
with the D®TaLES API exist in an open-access Python package
documented at https://d3tales.github.io/d3tales_api/. The
Fireworks-based®® code wused for the high-throughput
quantum chemical calculations is available publicly at https://
github.com/D3TaLES/d3tales_fw. Additional details and
information can be found in the accompanying ESL{
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