
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
12

/2
02

5 
10

:0
4:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Formalizing chem
aDepartment of Chemical, Biochemical, and

Maryland Baltimore County, 1000 Hilltop C

tjo@umbc.edu
bDepartment of Computer Science and Elect

Baltimore County, 1000 Hilltop Circle, Balt

† Electronic supplementary information (E
how Lean works (Section 5.1) and all the a
an improved version of Langmuir adsorpti
of BET adsorption model (5.2.2), and th
used for kinematic equations. All code an
our GitHub repository (https://atom
See DOI: https://doi.org/10.1039/d3dd00077

Cite this: Digital Discovery, 2024, 3,
264

Received 26th April 2023
Accepted 8th November 2023

DOI: 10.1039/d3dd00077j

rsc.li/digitaldiscovery

264 | Digital Discovery, 2024, 3, 264
ical physics using the Lean
theorem prover†

Maxwell P. Bobbin,a Samiha Sharlin,a Parivash Feyzishendi,a An Hong Dang,a

Catherine M. Wrabacka and Tyler R. Josephson *ab

Interactive theorem provers are computer programs that check whether mathematical statements are

correct. We show how the mathematics of theories in chemical physics can be written in the language

of the Lean theorem prover, allowing chemical theory to be made even more rigorous and providing

insight into the mathematics behind a theory. We use Lean to precisely define the assumptions and

derivations of the Langmuir and BET theories of adsorption. We can also go further and create a network

of definitions that build off of each other. This allows us to define a common basis for equations of

motion or thermodynamics and derive many statements about them, like the kinematic equations of

motion or gas laws such as Boyle's law. This approach could be extended beyond chemistry, and we

propose the creation of a library of formally-proven theories in all fields of science. Furthermore, the

rigorous logic of theorem provers complements the generative capabilities of AI models that generate

code; we anticipate their integration to be valuable for automating the discovery of new scientific theories.
1 Introduction

Theoretical derivations in the scientic literature are typically
written in a semi-formal fashion, and rely on human peer reviewers
to catch mistakes. When these theories are implemented in so-
ware, the translation from mathematical model to executable code
also requires humans to catch errors. This reects the gap between
mathematical equations describing models in science and the
sowarewritten to encode these.1This occurs because the computer
doesn't understand relationships among the scientic concepts and
mathematical objects under study, it simply executes the code given
it. Here, we recommend an alternative: interactive theorem provers
that enable the mathematics and programming of science to be
expressed in a rigorousway, with the logic checked by the computer.
1.1 Theorem provers for chemical theory

Interactive theorem provers are a type of computer program used
for the creation of formal proofs or derivations, which are
Environmental Engineering, University of
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e antiderivative proofs (5.2.3) that was
d proofs for this project are available in
slab.github.io/LeanChemicalTheories/).
j

–280
a sequence of logical deductions used to prove a theorem‡ is
correct.2 They provide a way to write a proof step by step, while the
computer veries each step is logically correct.3–8 Formal proofs are
used extensively in mathematics to prove various theories. On the
other hand, scientic theory tends to use informal proofs when
deriving its theories, since they are easier to write and understand
(see Table 1).

Scientists are generally familiar with computer algebra
systems (CAS) that can symbolically manipulate mathematical
expressions (see Table 3). These systems include SymPy9 and
Mathematica.12 These systems are used frequently for scientic
applications but come at the cost of being unsound, meaning
they can have false conclusions.

Theorem provers are more rigorous than computer algebra
systems, because they require computer-checked proofs before
permitting operations, thereby preventing false statements from
being proven. For example, a× b= b× a is true when a and b are
scalars, but A× Bs B× Awhen A and B are matrices. CAS impose
special conditions to disallow A × B = B × A,9 whereas theorem
provers only allow changes that are proven to be valid. Theorem
provers construct all of their math from a small, base kernel of
mathematical axioms, requiring computer-checked proofs for
objects constructed from the axioms. Even the most complicated
math can be reduced back to that kernel. Since this kernel is
small, verifying it by human experts or with other tools is
manageable. Then, all higher-level math built and proved from
the kernel is just as trustworthy. This contrasts with how CAS
‡ Mathematical terms that may be unfamiliar to the reader, like theorem, are
dened in the glossary, cross-reference to Table 3.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of hand-written and formalized proofs

Hand-written proofs Formal proofs

Informal syntax Strict, computer language syntax
Only for human readers Machine-readable and executable
Might exclude information Cannot miss assumptions or

steps
Might contain mistakes Rigorously veried by computer
Requires human to proofread Automated proof checking
Easy to write Challenging to write
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represent and introduce mathematics; because proofs are not
required when high-level math is introduced, mistakes could
enter at any level, and would require humans to catch and debug
them10 (see Table 2).

Historically, interactive theorem provers have been used to
logically connect advanced math theorems to the foundational
axioms of mathematics.14–19 Before computers, this “axiomat-
ization” of mathematics was developed by hand, in works like
Principia Mathematica by Alfred North Whitehead and Bertrand
Russell20 – the aim is to write down a minimal list of funda-
mental assumptions (axioms), and then systematically derive all
of mathematics from those axioms. Computers play a key role in
modern formalization efforts because they can store and verify
massive libraries of interconnected theorems collaboratively
written by hundreds of mathematicians.21

An analogous program to “axiomatize” physics was famously
articulated as Hilbert's sixth problem.22 Recent reviews have
discussed progress and unsolved questions on this “endless
road” to describe how all of physics can be derived from
a minimal set of axioms.23,24 Our vision is somewhat distinct
from this – we are inspired by Paleo's ideas for formalizing
physics theories25 as a collection of proofs, instead of aiming to
represent science as a single edice emerging from one set of
axioms (though this structure may emerge in the future). In
particular, we ask “How can we formally represent a collection
of proofs/derivations using an interactive theorem prover?”

Theorem provers have previously been used to formalize
derivations in physics: theorems from Newton's Principia,26,27

versions of relativity theory,28,29 electromagnetic optics,30 and
geometrical optics31 have been described and proved using proof
Table 2 Interactive theorem provers4,11 vs. computer algebra systems9,12

Interactive theorem provers

Symbolically transform formulae
Only permit correct transformations
Verication tool
Explicit assumptions
Built off a small, trusted, kernel

© 2024 The Author(s). Published by the Royal Society of Chemistry
assistants. Articial intelligence tools for scientic discovery have
also used theorem provers in designing optical quantum experi-
ments,32 as well as for rediscovering and deriving scientic
equations from data and background theory.33

Here we focus on formalizing fundamental theories in the
chemical sciences. Progress toward axiomatizing thermody-
namics began with Carathéodory in 1909,34 with recent develop-
ments by Lieb and Yngvason.35 But broadly, these questions have
not been addressed using theorem provers to check the mathe-
matics, which have seen limited use in the chemical sciences.
One notable application by Bohrer36 uses a proof assistant that
reasons about differential equations and control algorithms37 to
describe and prove properties of chemical reactors.
1.2 The Lean theorem prover

We have selected the Lean theorem prover38 for its power as an
interactive theorem prover, the coverage of its mathematics
library, mathlib,39 and the supportive online community of Lean
enthusiasts40 with an aim to formalize the entire undergraduate
math curriculum.21,41 Interesting projects in modern mathe-
matics have emerged from its foundations, including Perfectoid
Spaces,42 Cap Set Problem43 and Liquid Tensor44 have garnered
attention in the media.45 A web-based game, the Natural Number
Game,46 has been widely successful in introducing newcomers to
Lean. As executable code, Lean proofs can be read by language
modeling algorithms that nd patterns in math proof databases,
enabling automated proofs of formal proof statements, including
International Math Olympiad problems.47,48

We anticipate that Lean is expressive enough to formalize
diverse and complex theories across quantum mechanics, uid
mechanics, reaction rate theory, statistical thermodynamics, and
more. Lean gets its power from its ability to dene mathematical
objects and prove their properties, rather than just assuming
premises for the sake of individual proofs. Lean is based on Type
theory49,50 where both mathematical objects and the relation
between them are modeled with types (see Fig. S1 in the ESI†).
Everything in Lean is a term of a Type, and Lean checks to make
sure that the Types match. Natural numbers, real numbers,
functions, Booleans, and even proofs are types; examples of terms
with these types include the number 1, Euler's number, f(x) = x2,
TRUE, and the proof of BET theory, respectively. Lean is also
,13

Computer algebra systems

Symbolically transform formulae
Human-checked correctness
Computational tool
Hidden assumptions
Large program with many algorithms

Digital Discovery, 2024, 3, 264–280 | 265
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expressive enough to allow us to dene new types, just like
mathematicians do,38 which allows us to dene specic scientic
theories and prove statements about them.

In this paper, we show how formalizing chemical theories
may look, by demonstrating the tools of Lean through illustra-
tive proofs in the chemical sciences. First, we introduce vari-
ables, types, premises, conjectures, and proof steps through
a simple derivation of the Langmuir adsorption model. Next, we
show how functions and denitions can be used to prove
properties of mathematical objects by revising the Langmuir
adsorption model through denitions and showing it has zero
loading at zero pressure. Finally, we turn to more advanced
topics, such as using geometric series to formalize the deriva-
tion of the BET equation and using structures to dene and
prove relationships in thermodynamics and motion.
2 Methods

Lean has a small kernel, based on dependent type theory,49,50 with
just over 6000 lines of code that allows it to instantialize a version
of the Calculus of Inductive Constructions (CoIC).51,52 The strong
normalizing characteristic of the CoIC53 creates a robust
programming language that is consistent. The CoIC creates
a constructive foundation for mathematics allowing the entire
eld of mathematics to be built off of just 6000 lines of code.

In Section 3 we outline the proofs formalized using Lean
version 3.51.1. We host proofs on a website that provides a semi-
interactive platform connecting to the Lean codes in our GitHub
repository (https://atomslab.github.io/
LeanChemicalTheories/). An extended methods section
introducing Lean is in the ESI† Section 5.1.
§ The manuscript we rst submitted for peer review included a typo in eqn (5),
with [S0] appearing as [S]. Neither the authors nor the peer reviewers detected
this; it was identied by a community member who accessed the paper on
arXiv. Of course, Lean catches such typos immediately.
3 Formalized proofs
3.1 Langmuir adsorption: introducing Lean syntax and
proofs

We begin with an easy proof to introduce Lean and the concept of
formalization. The Langmuir adsorption model describes the
loading of adsorbates onto a surface under isothermal condi-
tions.54 Several derivations have been developed;54–57 here we
consider the original kinetic derivation.54 First, we present a deri-
vation of the Langmuir model given by the eqn (6), as LaTeX
equations, then transfer this into Lean and rigorously prove it. We
also discuss how these proofs can be improved to be more robust.

The Langmuir model assumes that all sites are thermody-
namically equivalent, the system is at equilibrium, and that
adsorption and desorption rates are rst order. The adsorption
and desorption rates are given by eqn (1) and eqn (2), respectively.

rad = kadpA[S] (1)

The symbols rad, kad, pA, and [S] represent the rate of adsorption,
the adsorption rate constant, the pressure of the adsorbate gas,
and the concentration of available sites on the surface,
respectively.

rd = kd[Aad] (2)
266 | Digital Discovery, 2024, 3, 264–280
In the desorption equation, rd stands for the rate of desorption,
kd signies the desorption rate constant, and [Aad] represents
the concentration of adsorbed molecules. Aer assuming equ-
lilbrium, eqn (2), rad = rd, and with some rearrangement, we get
eqn (3).

½S� ¼ kd½Aad�
kadpA

(3)

Using the site balance [S0] = [S] + [Aad], where [S0] represents
the total concentration of available sites, we arrive at eqn (4).

½S0� ¼ ½Aad�
kad

kd
pA

þ ½Aad� (4)

We can rearrange eqn (4) into, eqn (5).§

½Aad�
½S0� ¼

kad

kd
pA

1þ kad

kd
pA

(5)

Using the denition of the fraction of adsorption, q ¼ ½Aad�
½S0� ,

and the denition of the equilibrium constant, KA
eq ¼ kad

kd
, we

arrive at the familiar Langmuir absorption equation, eqn (6).

qA ¼ KeqpA

1þ KeqpA
(6)

This informal proof is done in natural language, and it
doesn't explicitly make clear which equations are premises to
the proof and which are intermediate steps. While the key steps
from the premises to the conclusion are shown, the ne details
of the algebra are excluded. In contrast, Lean requires premises
and conjecture to be precisely dened and requires that each
rearrangement and cancellation is shown or performed
computationally using a tactic. The next part shows how this
proof is translated into Lean.

As shown in Fig. 1, every premise must be explicitly stated in
Lean, along with the nal conjecture and proof tactics used to
show that the conjecture follows from the premises. Lean is an
interactive theorem prover, meaning that the user is primarily
responsible for setting up the theorem and writing the proof
steps, while Lean continuously checks the work and provides
feedback to the user. The central premises of the proof are
expressions of adsorption rate (hrad), desorption rate (hrd), the
equilibrium relation (hreaction), and the adsorption site balance
(hS0). Additional premises include the denition of adsorption
constant (hK) and surface coverage (hq) from the rst four
premises, as well as mathematical constraints (hc1, hc2, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A formalization of Langmuir's adsorptionmodel, shown as screenshots from Lean operating in VSCode. The left side of the figure shows the “Code
Window,” while the right side shows variables and goals at each step in the “Tactic State”. When the user places the cursor at one of the numbered
locations in the “CodeWindow,” VSCode displays the “Tactic State” of the proof. Lean allows the use of Unicode symbols, so we use “S0” to represent the
total concentration of adsorption sites without needing underscores. The turnstile symbol represents the state of the goal after each step. As each tactic is
applied, hypotheses and/or goals are updated in the tactic state as the proof proceeds. For clarity, we only show the hypothesis that changes after a tactic
is applied and how that changes the goal. As an example, the goal state is the same in steps 1 and 2 since the first tactic rewrites (rw) the equation of
adsorption (hrad) and desorption (hrd) into the premise that equilibrium (hreaction) exists. Next, we rewrite (rw), simplify (field_simp), and otherwise
rearrange the variables to exactly equal the goal state (steps 3–5). When the proof is finished, a celebratory message and party emoji appears (6).

{ These types are easily extended to functionals, which are central to density
functional theory. A function that takes a function as an input can be dened
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hc3) that appear during the formalization. The model assumes
the system is in equilibrium, so the adsorption rate, rad = k_ad
× P × S and desorption rate, rd = k_d × A are equal to each
other, where kad and kd are the adsorption and desorption rate
constant respectively, S is concentration of empty sites, and A is
the concentration of sites occupied by A. Aer begin, a sequence
of tactics rearranges the goal state until the conjecture is
proved. Note when performing division, Lean is particular to
require that the denominator terms are nonzero.

An interesting part of the proof is that only certain variables or
their combinations are required to be not zero. When building
this proof, Lean imports the real numbers and the formalized
theorems and tactics for them in mathlib. Lean does not permit
division by zero, and it will ag issues when a number is divided
by another number that could be zero. Consequently, we must
include additional hypotheses hc1–hc3 in order to complete the
proof. These provide the minimum mathematical requirements
for the proof; more strict constraints requiring rate constants and
concentrations to be positive would also suffice. These ambigui-
ties are better addressed by using denitions and structures, which
enable us to prove properties about the object. Nonetheless, this
version of the Langmuir proof is still a machine-readable,
executable, formalized proof.

Though this is a natural way to write the proof, we can
condense the premises by using local denitions. For instance,
© 2024 The Author(s). Published by the Royal Society of Chemistry
the rst two premises hrad and hrd can be written into hreaction
to yield k_ad × P × S = k_d × A and we can also write expres-
sions of hq and hK in the goal statement. While hrad, hrd, hq,
and hK each have scientic signicance, in this proof, they are
just combinations of real numbers. Alternative versions of this
proof are described in ESI Section 5.2.1.†
3.2 Langmuir revisited: introducing functions and
denitions in Lean

Functions in Lean are similar to functions in imperative
programming languages like Python and C, in that they take in
arguments and map them to outputs. However, functions in
Lean (like everything in Lean) are also objects with properties
that can be formally proved.

Formally, a function is dened as a mapping of one set (the
domain) to another set (the co-domain). The notation for
a function is given by the arrow “/”. For instance, the function,
conventionally written as Y = f(X) or Y(X), maps from set X to set
Y is written as X / Y in arrow notion.{

Importantly, the arrow “/” is also used to represent the
conditional statement (if-then) in logic, but this is not
by ðℝ/ℝÞ/ℝ.

Digital Discovery, 2024, 3, 264–280 | 267
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a duplication of syntax. Because everything is a term of Type in
Lean, functions map type X to type Y; when each type is
a proposition, the resulting function is an if-then statement.

As stated in the introduction, Lean's power comes from the
ability to dene objects globally, not just postulate them for the
purpose of local proof. When a mathematical object is formally
dened in Lean, multiple theorems can be written about it with
certainty that all proofs pertain to the same object. In Lean, we
use def to dene new objects and then prove statements about
these objects. The def command has three parts: the arguments
it takes in (the properties of the object), the type of the output,
and the proof that the object has such a type. In Lean:

For instance, we can dene a function that doubles a natural
number:

The l symbol comes from lambda calculus and is how an
explicit function is dened. Aer the lambda symbol is the
variable of the function, n with type ℕ. Aer the comma is the
actual function. By hand, we would write this as f(n) = n + n.
This function doubles any natural number, as the name
suggests. We could use it, for example, to show:

In the previous section, we showed an easy-to-read derivation
of Langmuir adsorption, and in ESI Section 5.2.1,† we improved
the proof using local denitions. Here, we improve it further by
dening the Langmuir model as an object in Lean and then
showing the kinetic derivation of that object. This way, the object
dening the single-site Langmuir model can be reused in
subsequent proofs, and all are certain to refer to the same object.

We dene the model as a function that takes in pressure as
a variable. Given a pressure value, the function will compute the
fractional occupancy of the adsorption sites. In Lean, this looks
like (https://atomslab.github.io/LeanChemicalTheories/
adsorption/langmuir_kinetics.html#langmuir_single_site_model):

The l symbol comes from l-calculus58 and is one way to
construct functions. It declares that P is a real number that can
be specied. When the real number is specied, it will take the
place of P in the equation. The denition also requires the
equilibrium constant to be specied.k

With this, the kinetic derivation of Langmuir can be set up in
Lean like this (https://atomslab.github.io/LeanChemical
k This denition can be specied in multiple ways. The pressure could be
required as an input like the equilibrium constant, or the equilibrium constant
can be specied as a variable in the function like pressure. Any of these
denitions work, and it is possible to prove congruence between them. We
chose this way to purposefully show both denitions and functions in Lean.

268 | Digital Discovery, 2024, 3, 264–280
Theories/adsorption/langmuir_kinetics.html#langmuir_single_
site_kinetic_derivation):

This derivation is almost exactly like the proof in ESI Section
5.2.1; the only difference is the use of the Langmuir model as an
object. Aer the langmuir_single_site_model simplies to the
Langmuir equation, the proof steps are the same.

Using the denition makes it possible to write multiple
theorems about the same Langmuir object. We can also prove
that the Langmuir expression has zero loading at zero pressure,
and in the future we can show that it has a nite loading in the
limit of innite pressure, and converges to Henry's Law in the
limit of zero pressure (https://atomslab.github.io/
LeanChemicalTheories/adsorption/langmuir_kinetics.html#
langmuir_zero_loading_at_zero_pressure). Denitions and
structures, as we will see in later sections, are crucial to
building a web of interconnected scientic objects and
theorems.
3.3 BET adsorption: formalizing a complex proof

Brunauer, Emmett, and Teller introduced the BET theory of
multilayer adsorption (see Fig. 2) in 1938.59 We formalize this
derivation, beginning with eqn (26) from the paper, which is
shown here in eqn (7):

V

A� V0

¼ Cx

ð1� xÞð1� xþ CxÞ (7)

Here A is the total area adsorbed by all (innite) layers expressed
as a sum of innite series:

A ¼
XN
i¼0

si ¼ s0

 
1þ C

XN
i¼1

xi

!
(8)

and V is the total volume adsorbed is given by:

V ¼ V0

XN
i¼0

isi ¼ Cs0V0

XN
i¼1

ixi (9)

The variables y, x and C are expressed in the original paper as
shown through eqn (10)–(12):

y = PC1, where C1 = (a1/b1)e
E1/RT (10)

x = PCL, where CL = eEL/RT/g (11)

C = y/x = C1/CL (12)

where a1, b1, and g are tted constants, E1 is the heat of adsorption
of the rst layer, EL is for the second (and higher) layers (also the
same as heat of liquefaction of the adsorbate at constant temper-
ature), R is the universal gas constant, and T is temperature. In eqn
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Langmuirmodel vs. BETmodel. The BETmodel, unlike Langmuir, allows particles to create infinite layers on top of previously adsorbed particles.
Here q is fraction of the surface adsorbed, V is total volume adsorbed, V0 is the volume of a complete unimolecular layer adsorbed in unit area, si is the
surface area of the ith layer, s0 is the surface area of the zeroth layer, and x andC are constants that relates heats of adsorption of themolecule in layers.
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(10) and (11), everything besides the pressure term is constant,
since we are dealing with an isotherm, so we group the constants
together into one term.

These constants, along with the surface area of the zeroth layer,
given by s0, saturation pressure, and the three constraints are
dened using the constant declaration in Lean. Mathematical
objects can also be dened in other ways such as def, class or
structure38 but for this proof we will use constant which is conve-
nient for such simple objects. We will illustrate later in our ther-
modynamics proof how constants can be merged into a Lean
structure for reusability.

In Lean, this is (https://atomslab.github.io/
LeanChemicalTheories/adsorption/BETInnite.html#C_L):

With these constant declarations, we can now dene y, x, and
C in Lean as (https://atomslab.github.io/LeanChemical
Theories/adsorption/BETInnite.html#BET_rst_layer_
adsoprtion_rate):

Since y and x are both functions of pressure, their denitions
require pressure as an input. Alternatively, the input can be
omitted if we want to deal with x as a function rather than as
a number. Notice that the symbols we declared using constant
do not need to be supplied in the inputs as they already exist in
the global workspace.

We formalize eqn (7) by recognizing that the main math
behind the BET expression is an innite sequence that
describes the surface area of adsorbed particles for each layer.
The series is dened as a function that maps the natural
© 2024 The Author(s). Published by the Royal Society of Chemistry
numbers to the real numbers; the natural numbers represent
the indexing. It is dened in two cases: if the index is zero, it
outputs the surface area of the zeroth layer, and if the index is
the n + 1, it outputs xn+1s0C.

si = Cxis0 for i: [1,N) (13)

In Lean, we dene this sequence as (https://
atomslab.github.io/LeanChemicalTheories/adsorption/
BETInnite.html#seq):

Where si is the surface area of the i
th layer, C and x are given by

eqn (12) and eqn (11), respectively, and s0 is the surface area of the
zeroth layer. The zeroth layer is the base surface and is constant.

We now have the area and volume equations both in terms of
geometric series with well-dened solutions. The BET equation
is dened as the ratio of volume absorbed to the volume of
a complete unimolecular layer, given by eqn (14).

V

A� V0

¼
Cs0

PN
i¼1

ixi

s0

�
1þ C

PN
i¼1

xi

� (14)

Themain transformation in BET is simplifying this sequence
into a simple fraction which involves solving the geometric
series. The main math goal is given by eqn (15).

C
PN
i¼1

ixi

�
1þ C

PN
i¼1

ixi

� ¼ Cx

ð1� xÞð1� xþ CxÞ (15)

Before doing the full derivation, we prove eqn (15), which we
call sequence_math. In Lean, this is (https://
atomslab.github.io/LeanChemicalTheories/adsorption/
BETInnite.html#sequence_math):
Digital Discovery, 2024, 3, 264–280 | 269
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In Lean, the apostrophe aer the sum symbol denotes an
innite sum, which is dened to start at zero since it is indexed by
the natural numbers, which start at zero. Since the innite sum of
eqn (15) starts at one, we add one to all the indexes, k, so that
when k is zero, we get one, etc. We also dene two new theorems
that derive the solution to these geometric series with an index
starting at one. Aer expanding seq, we use those two theorems,
and then rearrange the goal to get two sides that are equal. We
also use the tag lemma instead of theorem, just to communicate
that it is a lower-priority theorem, intended to prove other theo-
rems. The tag lemma has no functional difference from theorem in
Lean, it's purpose is for mathematicians to label proofs.

With this we can formalize the derivation of eqn (7). First we
dene eqn (7) as a new object and then prove a theorem
showing we can derive this object from the sequence. In Lean,
the denition looks like this (https://atomslab.github.io/
LeanChemicalTheories/adsorption/
BETInnite.html#brunauer_26):

Here, we explicitly dene this as a function, because we want
to deal with eqn (7) normally as a function of pressure, rather
then just a number. Now we can prove a theorem that formal-
izes the derivation of this equation (https://
atomslab.github.io/LeanChemicalTheories/adsorption/
BETInnite.html#brunauer_26_from_seq):

Unlike the Langmuir proof introduced earlier in Fig. 1, the
BET uses denitions that allow reusability of those denitions
across the proof structure. The proof starts by showing that seq
is summable. This means the sequence has some innite sum
and the

P′ symbol is used to get the value of that innite series.
We show in the proof that both seq and k*seq is summable,
where the rst is needed for the area sum and the second is
needed for the volume sum. Aer that, we simplify our deni-
tions, move the index of the sum from zero to one so we can
simplify the sequence, and apply the BET.sequence_math lemma
we proved above. Finally, we use the eld_simp tactic to rear-
range and close the goal. With that, we formalized the deriva-
tion of eqn (7), just as Brunauer, et al. did in 1938.

In the ESI,† we continue formalizing BET theory by deriving
eqn (28) from Brunauer et al.'s paper, given by eqn (16)
270 | Digital Discovery, 2024, 3, 264–280
V

A� V0

¼ CP

ðP0 � PÞð1þ ðC � 1ÞðP=P0ÞÞ (16)

This follows from recognizing that 1/CL = P0. While Bru-
nauer, et al. attempt to show this in the paper, we discuss the
trouble with implementing the logic they present. Instead, we
show a similar proof that eqn (7) approaches innity as pressure
approaches 1/CL, and assume as a premise in the derivation of
eqn (16) that 1/CL h P0.

3.4 Classical thermodynamics and gas laws: introducing
Lean structures

Lean is so expressive because it enables relationships between
mathematical objects. We can use this functionality to precisely
dene and relate scientic concepts with mathematical certainty.
We illustrate this by formalizing proofs of gas laws in classical
thermodynamics.

We can prove that the ideal gas law, PV = nRT follows Boyle's
Law, P1V1 = P2V2, following the style of our derivation of Lang-
muir's theory: demonstrating that a conjecture follows from the
premises (https://atomslab.github.io/LeanChemicalTheories/
thermodynamics/boyles_law.html). However, this proof style
doesn't facilitate interoperability among proofs and limits the
mathematics that can be expressed. z in contrast, we can prove
the same, more systematically, by rst formalizing the concepts
of thermodynamic systems and states, extending that system to
a specic ideal gas system, dening Boyle's Law in light of these
thermodynamic states, and then proving that the ideal gas obeys
Boyle's Law (see Fig. 3).

Classical thermodynamics describes the macroscopic prop-
erties of thermodynamic states and relationships between
them.60,61 We formalize the concept of “thermodynamic system”

by dening a Lean structure called thermo_system over the real
numbers, with thermodynamic properties (e.g., pressure,
volume, etc.) dened as functions from a type to the real
numbers a/ℝ. Here, a is meant to represent a general indexing
type. It could be the natural numbers if we wanted to use those to
represent states of the system, real numbers to represent time, or
anything else. The only requirement is that a is nontrivial,
meaning it has at least two different elements. In Lean, this is
(https://atomslab.github.io/LeanChemicalTheories/
thermodynamics/basic.html#thermo_system):
We dene six descriptions of the system: isobaric (constant
pressure); isochoric (constant volume); isothermal (constant
temperature); adiabatic (constant energy); closed (constant mass);
and isolated (constant mass and energy). Each of these conditions
has the type Prop, or proposition, considering them to be asser-
tions about the system. We formally dene these by stating that,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Thermodynamic system in Lean. Here the thermo_system and ideal_gas are Lean structures that describe different kinds of thermo-
dynamic systems like isobaric, isochoric, isothermal etc. using Lean definitions to proof theorems relating to the gas laws.
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for all (c) pairs of states n and m, the property at those states is
equal. We dene these six descriptions to take in a thermo_system
since we need to specify what systemwe are ascribing this property
to. In Lean, this is (https://atomslab.github.io/
LeanChemicalTheories/thermodynamics/basic.html#isobaric):
We dene an isolated system as just a closed system and (^)
adiabatic, rather than using the universal quantier (c), since it
would be redundant.

Now that the basics of a thermodynamic system have been
dened, we can dene models that attempt to describe the system
mathematically. These models can be dened as another
© 2024 The Author(s). Published by the Royal Society of Chemistry
structure, which extends the thermo_system structure. When
a structure extends another structure, it inherits the properties of
the structure it extended. This allows us to create a hierarchy of
structures so we don't have to redene properties repeatedly. The
most well-known model is the ideal gas model, which comes with
the ideal gas law equation of state. We dene the ideal gas model
to have two properties, the universal gas constant, R, and the ideal
gas law. In the future, we plan to add more properties to the
denition, especially as we expand on the idea of energy.We dene
the ideal gas law as an equation relating the products of pressure
and volume to the product of temperature, amount of substance,
and the gas constant. In Lean, this is (https://
atomslab.github.io/LeanChemicalTheories/thermodynamics/
basic.html#ideal_gas):

To dene a system modeled as an ideal gas, we write in Lean:
(M: ideal_gasℝ). Nowwe have a system,M, modeled as an ideal gas.

Boyle's law states that the pressure of an ideal gas is inversely
proportional to the system's volume in an isothermal and
closed system.62 This is mathematically given by eqn (17), where
P is pressure, V is volume, and k is a constant whose value is
dependent on the system.
Digital Discovery, 2024, 3, 264–280 | 271
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** These proofs could also be constructed using partial differential equations, but
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PV = k (17)

In Lean, we dene Boyle's law as (https://
atomslab.github.io/LeanChemicalTheories/thermodynamics/
basic.html#boyles_law):

We use the existential operator (d) on k, which can be read as
there exists a k, because each system has a specic constant. We
also dene the existential before the universal, so it is logically
correct. Right now, it reads, there exists a k, such that for all states,
this relation holds. If we write it the other way, it would say for all
states, there exists a k, such that this relation holds. The second way
means that k is dependent on the state of the system, which isn't
true. The constant is the same for any state of a system. Also, even
though Boyle's law is a statement about an ideal gas, we dene it as
a general system so, in the future, we can look at what assumptions
are needed for other models to obey Boyle's law.

Next, we prove a couple of theorems relating to the relations
that can be derived from Boyle's law. From eqn (17), we can
derive a relation between any two states, given by eqn (18),
where n and m are two states of the system.

PnVn = PmVm (18)

The rst theorem we prove shows how eqn (18) follows from
eqn (17). In Lean this looks like (https://atomslab.github.io/
LeanChemicalTheories/thermodynamics/
basic.html#boyles_law_relation):

The right arrow can be read as implies, so the statement says
that Boyle's law implies Boyle's relation. This is achieved using
modus ponens, introducing two new names for the universal
quantier, then rewriting Boyle's law into the goal by specializing
Boyle's law with n and m. We also want to show that the inverse
relation holds, such that eqn (18) implies eqn (17). In Lean, this is

(https://atomslab.github.io/LeanChemicalTheories/
thermodynamics/basic.html#boyles_law_relation'):

We begin in the same way by using modus ponens and
simplifying Boyle's law in the form of eqn (17). Next, we satisfy
the existential by providing an old name. In our proof, we use
P1V1 as an old name for k, then we specialize the relation with n
and 1 and close the goal.

Finally, with these two theorems, we show that Boyle's law
can be derived from the ideal gas law under the assumption of
an isothermal and closed system. In Lean, this is (https://
272 | Digital Discovery, 2024, 3, 264–280
atomslab.github.io/LeanChemicalTheories/thermodynamics/
basic.html#boyles_from_ideal_gas):

This proof is completed by using the second theorem for
Boyle's relation and simplifying the ideal gas relation using the
two iso constraints.

We have implemented this framework to prove both Charles'
and Avogadro's law (https://atomslab.github.io/
LeanChemicalTheories/thermodynamics/basic.html)
illustrating the interoperability of these proofs. In the future, we
plan to dene energy and prove theorems relating to it,
including the laws of thermodynamics.63
3.5 Kinematic equations: calculus in Lean

Calculus and differential equations are ubiquitous in chemical
theory, and much has been formalized in mathlib. To illus-
trate Lean's calculus capabilities and motivate future formal-
ization efforts, we formally prove that the kinematic equations
follow from calculus-based denitions of motion, assuming
constant acceleration. The analysis of physical equations of
motion, particularly those based on Newtonian mechanics, is
strongly related to the formulation of many theories in
chemical physics, including reaction kinetics,64 diffusion and
transport phenomena65 and molecular dynamics.66 These
concepts are essential for understanding chemical reactions
and how molecules move and interact.

The equations of motion are a set of two coupled differential
equations that relate the position, velocity, and acceleration of an
object in an n-dimensional vector space.67 The differential equa-
tions are given by eqn (19) and (20), where x, v, and a represent
position, velocity, and acceleration, respectively (bold type face
signies a vector quantity). All three variables are parametric
equations, where each dimension of the vector is a function of
time.**

vðtÞ ¼ dðxðtÞÞ
dt

(19)

aðtÞ ¼ dðvðtÞÞ
dt

(20)

As in the thermodynamics section, we can dene a structure,
motion, to encompass these concepts (Fig. 4). This structure
denes three new elements: position, velocity, and acceleration,
which are functions, and two differential equations relating these
three functions. This structure also requires the vector space to
form an inner product space, which is a real or complex vector
space with an operator (the inner product) over the eld. The inner
product is a generalization of the dot product for any vector space.
mathlib doesn't currently have enough theorems for partial derivatives.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Kinematics in Lean. Here we define motion as Lean structure that represents the relation between position, velocity, and acceleration
through differential equations that are proved using definitions of derivative functions.
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By requiring inner_product_space, the motion structure inherits all
of inner_product_space’s properties and allows us to access the
calculus theorems in mathlib. In Lean, this is (https://
atomslab.github.io/LeanChemicalTheories/physics/
kinematic_equations.html#motion):

K represents a eld that we require to be either a real ðℝÞ or
complex ðℂÞ number, and E symbolizes a general vector eld. In
mathematics, a eld is an algebraic structure with addition,
subtraction, multiplication, and division operations. Our vector
space could be an n-dimensional Euclidean vector space, but we
instead use a general vector eld to be as general as possible. This
allows us to describemotion in a Euclidean vector space, as well as
a hyperbolic vector space or a vector space with special properties.

In Lean, if a function is not differentiable at a point, the
derivative at that point returns zero.†† During our rst formal-
ization attempt, we tried to dene a function to be constant by
setting its derivative to zero. However, df/dx = 0 may also arise if
a function is not differentiable at that point. To avoid this edge
†† Likewise, division by zero is dened to return zero instead of something like
“undened” or “NaN”. In Lean and other theorem provers, the symbol/is not
used for mathematical division but instead points to a function called real.div.
This function returns x/y if y is not zero, and 0 if y equals 0. Another case is the
real square root function (real.sqrt), which outputs a real number for any input,
even negatives since it is dened as ℝ/ℝ. These conventions may be
unfamiliar to scientists and engineers, but they are used for convenience and
won't lead to contradictions in a proof. Any invalid step in a proof involving
these conventions will be caught when invoking a theorem not true for its
denition. We wrestled with this convention for some time before nding
clarity in this blog post archived for ref. 68.

© 2024 The Author(s). Published by the Royal Society of Chemistry
case, we dene another structure to require the equations of
motion to be n-times continuously differentiable everywhere. We
only require the equations to be n-times differentiable instead of
innitely differentiable for generality reasons, however, a theorem
can instantiate this structure and assume innite differentiability.
We also declare this as a separate structure, instead of in the
motion structure, to allow future proofs that require the equations
to be n-times continuously differentiable on a set or an interval
rather than everywhere (e.g., a molecular mechanics force eld
with a non-smoothed cutoff is not differentiable at that point).
That way, depending on the theorem, the user can choose the
appropriate extension. In Lean, this structure looks like
(https://atomslab.github.io/LeanChemicalTheories/physics/
kinematic_equations.html#motion_cont_diff_everywhere):

The eld contdiff states that for all n, dened as a natural
number including positive innity, and for all m, dened as
a natural number, if m is less than n, then the mth derivative of
position is continuously differentiable n-times.

When acceleration is constant, this set of differential equa-
tions has four useful analytical solutions, the kinematic equa-
tions, eqn (21)–(24), where the subscript naught denotes
variables evaluated at t = 0.

v(t) = at + v0 (21)

xðtÞ ¼ at2

2
þ v0tþ x0 (22)
Digital Discovery, 2024, 3, 264–280 | 273

https://atomslab.github.io/LeanChemicalTheories/physics/kinematic_equations.html#motion
https://atomslab.github.io/LeanChemicalTheories/physics/kinematic_equations.html#motion
https://atomslab.github.io/LeanChemicalTheories/physics/kinematic_equations.html#motion
https://atomslab.github.io/LeanChemicalTheories/physics/kinematic_equations.html#motion_cont_diff_everywhere
https://atomslab.github.io/LeanChemicalTheories/physics/kinematic_equations.html#motion_cont_diff_everywhere
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00077j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
12

/2
02

5 
10

:0
4:

11
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
xðtÞ ¼ vðtÞ þ v0
2

tþ x0 (23)

v2(t) = v0
2 + 2a$d (24)

Under the assumption of one-dimensional motion, these
equations simplify to the familiar introductory kinematic
equations. Eqn (24), also known as the Torricelli equation, uses
the shorthand square to represent the dot product, v2(t) h
v(t) × v(t).

With this, we can now begin deriving the four kinematic
equations. The rst three derivations for eqn (21)–(23), all use
the same premises, given below:
The rst line contains four premises to declare the eld and
vector space the motion space is dened on. The next line
denes a motion space, M. The third line contains two prem-
ises, a variable, A, which represents the value of constant
acceleration, and n, the number of times position can be
differentiated. When applying these theorems, the top function,
which means positive innity in Lean, can be used to specify n.
The nal line is a premise that assumes acceleration is
constant. The lambda function is constant because A is not
a function of t, so for any value of t, the function outputs the
same value, A. The three kinematic equations in Lean
(https://atomslab.github.io/LeanChemicalTheories/physics/
kinematic_equations.html#const_accel) are given below (note,
the premises are omitted since they have already been given
above).
The $ symbol indicates scalar multiplication, such as when
a vector is multiplied by a scalar. We normally use the $ symbol
for the dot product, but Lean uses the inner function for the dot
product. Also, “velocity 0”means the velocity function evaluated
at 0. Lean uses parentheses for orders of operations, not for
function inputs, so f(x) in normal notation converts to f x in
Lean. The proofs of the rst two theorems use the two differ-
ential equations from the motion structure and the antideriva-
tive, whose formalization we explain in the ESI† (these theorems
274 | Digital Discovery, 2024, 3, 264–280
weren't available in mathlib at the time of writing, so we proved
them ourselves). The third theorem is proved by rearranging the
previous two theorems.

Because we declared the eld is_R_or_C, the above proofs hold
for both real and complex time. However, we were unable to prove
eqn (24), due to the complex conjugate that arises when simpli-
fying the proof. Eqn (24) uses the inner product, a function that
takes in two vectors from a vector space and outputs a scalar. If the
vector space is a Euclidean vector space, this is just the dot
product. The inner product is semi-linear, linear in its rst argu-
ment, eqn (25), but sesquilinear in its second argument, eqn (26).

hax + by,zi = ahx,zi + bhy,zi (25)

hx,ay + bzi = �ahx,yi + �bhx,zi (26)

The bar denotes the complex conjugate: for a complex
number, g = a + bi, the complex conjugate is: �g = a − bi. If g is
a real number, then g = �g. For the proof of eqn (24), we get to
a form where one of the inner products has an addition in the
second term that we have to break up, and no matter which
way we rewrite the proof line, one of the inner products ends
up with addition in the second term. To proceed, we instead
dened the nal kinematic equation to hold only for real time.
In Lean, this looks like (https://atomslab.github.io/
LeanChemicalTheories/physics/kinematic_equations.html#
real_const_accel'''):
While we haven't proved that eqn (24) doesn't hold for
complex time, we encountered difficulties and contradictions
when attempting to prove the complex case. Thus, eqn (24)
currently only holds for real time.

An imaginary-time framework can be used to derive equa-
tions of motion from non-standard Lagrangians69,70 to examine
hidden properties in classical and quantum dynamical systems
in the future. By exploring these proofs in both real and complex
time, we illustrate how a proof in one case can be adapted for
related cases. Here, four proofs for real numbers can be easily
extended to complex numbers by changing the type declared up
front, and the validity of the proofs in the more general context
is immediately apparent.
4 Conclusions and outlook

In this paper, we demonstrate how interactive theorem proving
can be used to formally verify the mathematics in science and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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engineering. We found that, although formalization is slower
and more challenging than writing hand-written derivations,
our resulting proofs are more rigorous and complete. We
observed that in some cases, translating scientic statements
into formal language revealed hidden assumptions behind the
mathematical derivations. For example, we make explicit
common implicit assumptions, such as the denominator must
not be zero when we deal with division. Furthermore, we reveal,
in a more abstract way, we have attempted to reveal the formal
denitions of equations, such as exactly how pressure is dened
as a function or the assumptions of differentiability needed for
kinematics. All of these are a result of formalizing these theo-
rems. We concur with others who have discussed the limita-
tions of hand-written proofs and their reliability;2,71,72

formalized proofs can provide greater assurance and
robustness.

Importantly, we emphasize that while our proofs are veried
to bemathematically correct, this verication does not extend to
the external world. This distinction between syntax (logical
relationships among words and arguments in a language) and
semantics (whether words are meaningful or arguments are true,
according to external reality) in scientic reasoning has been
emphasized by logicians such as Alfred Tarski73 and Rudolf
Carnap.74,75 For scientists and engineers, whether a theory is
true or meaningful is rst and foremost about whether obser-
vational data support it – logical correctness of the derivation is
required, of course, but this is typically assumed. Indeed, when
one of us described our BET proof to an experimentalist in
adsorption, their reply was, “but BET isn't accurate.” They knew
that BET theory does not semantically match experiments in
many contexts (in fact, much literature has discussed when BET
analysis should not be applied, for instance76). BET theory has
been a useful conceptual model for the eld, but nonetheless
relies on approximations that oen dri far from reality. In this
work, we only claim to rigorously establish the syntax of the
theories we describe. Nonetheless, Lean operating with input/
output functions can receive data from the external world,
which may open possibilities for semantically grounding its
logical conclusions in certain contexts, as well.

The Lean theorem prover is especially powerful, as it facilitates
the re-use of theorems and the construction of higher-level
mathematical objects from lower-level ones. We showed how
this feature can be leveraged in science proofs; aer a funda-
mental theory is formally veried, it can then be used in the
development of other theories. This can be approached in two
ways: denitions can be directly reused in subsequent proofs, and
structures can enable hierarchies of related concepts, from
general to more specic. Thus we have not just proved a few
theorems about scientic objects but have begun to create an
interconnected structure of formally veried proofs relating elds
of science.

While learning Lean andwriting the proofs appearing here, we
routinely asked ourselves, “How do I close this goal? I wish there
was a way to automate this.” In fact, the rst vision for computer-
assisted proofs in the 1950s and 60s was to automate the process
fully;77 interactive theorem provers that “merely” check human-
written proofs didn't appear until later. But historically,
© 2024 The Author(s). Published by the Royal Society of Chemistry
automated theorem provers (ATPs) made progress on narrow
classes of problems (e.g., problems in rst-order logic78) but
couldn't address proofs in advancedmath (except when problems
are described in such simple terms, like the Robbins Conjec-
ture79). In short, theorem proving is like searching for a path from
premises to conjecture, but in a realm with an “innite action
space48 – traditional algorithms have been inadequate. For
complex proofs, interactive theorem provers (ITPs) have been
more successful, because they facilitate human creativity in
writing proofs, while leveraging the rigor of the computer for
checking them and providing feedback to the user. Modern ITPs
also use the computer for small-scale automation via tactics; the
human provides strategy while the computer executes tactics.
Complex tactics sometimes blur the line between automated and
interactive theorem proving. For example, Isabelle (an ITP) has
the Sledgehammer tactic,80 which takes the current proof state
and attempts to transform it into an equivalent problem in rst-
order logic, which can then be efficiently solved using an ATP.

Recent approaches have leveraged machine learning to
expand the capabilities of automated theorem proving. Theorem
proving can be framed as a reinforcement learning problem,81,82

in which an agent is to learn an effective theorem proving policy
via rewards from successfully proving theorems. “Autoformali-
zation” refers to the translation of informal proofs into formal
proofs, akin to translating text from one language to another (but
with extremely strict requirements on the formal side).83 Theorem
proving can also be framed as a next-word-prediction problem
(“auto-complete” for math proofs) in which a database of formal
math proofs is used to train a language model to predict the next
word in the proof. Large language models (LLMs) like
ChatGPT84,85 have some emergent reasoning abilities86 but oen
make mistakes and cannot be trusted. By connecting language
models with ITPs to provide feedback, training them on proof
databases like mathlib, and deploying them as part of traditional
search algorithms, progress has been made toward automating
proofs in Lean,47,87,88 even to the point of generating correct
solutions to International Math Olympiad problems.89

This interplay between creative but unreliable generative
algorithms and the strict logic of a proof-checking systemmay be
a model for future AI-driven discovery in science, especially for
discovering new theories. An early example of this is AI-Descartes,
in which a symbolic regression algorithm generates equations to
match experimental data, which is then combined with an
automated theorem prover to establish the equations' “deriv-
ability”with respect to a scientic theory.33 However, in this work,
each theory required human expertise to be expressed in formal
language, and reliance on an automated theorem prover limited
the scope of theories to those expressible in rst-order logic. AI
tools that can autoformalize the informal scientic literature,
generate novel theories, and auto-complete complex proofs could
open new avenues for automating theory discovery. LLMs have
demonstrated capabilities in solving chemistry problems,90,91 as
well as answering scientic question-and-answer problems
invoking quantitative reasoning.92 However, LLMs are unreliable
– they famously “hallucinate” (generate falsehoods) and are
biased or unreliable evaluators of their own outputs.93,94 Pairing
them with external tools95–97 improves their capabilities; theorem
Digital Discovery, 2024, 3, 264–280 | 275
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Table 3 Glossary of mathematical terms and symbols

Term Denition Example

Axiom A self-evident truth which is assumed to be true and doesn't
require proof

Two sets are equal if they have the same
elements; this is not proved, it is assumed

Theorem A theorem is a proposition or statement in math that can be
demonstrated to be true by accepted mathematical operations
and arguments

The Pythagorean theorem, a2 + b2 = c2 for all
right triangles

Lemma A true statement which is used as a stepping stone to prove
other true statements. A lemma is a smaller, less important
result than a theorem

All numbers multiplied by 2 are even. Proving
this could be an intermediate result used for
other proofs

Proposition A true or false statement Socrates is mortal, all swans are white, and 3 < 4
are propositions

Hypothesis (premise) A statement assumed to be true that the proof follows from. It
can also be thought of as the conditions or prerequisites for
the theorem to hold. We emphasize that the math community
uses “hypothesis” somewhat differently than the scientic
community

If all four sides of a rectangle have the same
length, it is a square. The hypotheses would be
“the shape is a rectangle (has four sides and four
equal, right angles)” and “all sides have the
same length”

Conjecture A statement which is proposed to be true, but no proof has
been found yet

Goldbach's conjecture: every even number
greater than 2 is the sum of two prime numbers.
This hasn't been proven true or false yet

Proof A sequence of logical steps which conclude that a statement is
true from its hypotheses

The proof of the Pythagorean theorem using
geometry

Function An expression that denes a relation between a set of inputs
and a set of outputs

f(x) = x2 relates (or maps) the set of real
numbers x to their square

Tactic A command used to construct ormanipulate proofs. Tactics in
Lean provide a way to automate certain proof steps or apply
predened proof strategies to make the process of
constructing formal proofs more efficient and convenient

rw is “rewrite”, a simple tactic that performs
substitution for equalities. Ring is a more
complex tactic for automatically closing goals
requiring numerous algebraic operations,
without the user specifying all the steps

Type A type can be thought of as a set, or category, that contains
terms. In other programming languages, types dene the
category of data certain objects have (e.g. oats, strings,
integers). Types in Lean work this way, too, and have more
features: they can depend on values, as well as be the subject
of proofs

The natural numbers are a type. The booleans
(true and false) are also a type. Functions from
integers to reals are also a type

Term Terms are members of a type Considering the type of natural numbers, then
numbers like 1, 2, 3, and 8 are terms of that type

ℕ Symbol for the set of natural numbers The numbers 0, 1, 2, 3, 4, .
ℤ Symbol for the set of integers The numbers, ., −3, −2, −1, 0, 1, 2, .
ℚ Symbol for the set of rational numbers

Numbers that include,
1

2
;
3

4
;
5

9
, etc.

ℝ Symbol for the set of real numbers −1, 3.6, Euler's number, p,
ffiffiffi
2

p
, etc.

ℂ Symbol for the set of complex numbers −1, 5 + 2i,
ffiffiffi
2

p þ 5i, etc.
c Logical symbol for “for all”
d Logical symbol for “there exists”
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provers could play a role like that. How will these models be
trained? We suggest two avenues: training on human-written
databases of formal proofs in science and engineering (which
are yet to be written) and leveraging interactive feedback from
Lean through tools like LeanDojo.88 Beyond being formally
grounded in axiomatic mathematics, formal proofs in science
and engineering are machine-readable instances of correct
mathematical logic that could serve as a foundation for articial
intelligences aiming to learn, reason, and discover in science.98–100

Our next goals are to continue building out classical ther-
modynamics, formalize statistical mechanics, and eventually
construct proofs relating the two elds. We are also interested
in laying the foundations for classical mechanics in Lean and
formalizing more difficult proofs like Noether's theorem101 (a
276 | Digital Discovery, 2024, 3, 264–280
basis for deriving conservation laws) or establishing the 2nd law
of thermodynamics axiomatically.35

The proofs in this paper were written in Lean 3,72 because the
extensive mathlib library was only available in Lean 3 when we
began. While Lean 3 was designed for theorem proving and
management of large-scale proof libraries, the new version, Lean
4,102 is a functional programming language for writing proofs and
programs, as well as proofs about programs.102,103 The Lean
community nished porting mathlib to Lean 4 and Lean 3 is now
deprecated; we recommend future proofs should be written in
Lean 4, which is more capable, versatile, and easy to use compared
to Lean 3. With Lean 4, we are bridging formally-correct proofs
with executable functions for bug-free scientic computing; we will
be elaborating on that in future work.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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We hope these expository proofs in adsorption, thermody-
namics, and kinematics will inspire others to consider what
proofs and derivations could be formalized in their elds of
expertise. Virtually all mathematical concepts can be estab-
lished using dependent type theory; the density functionals,
partial derivatives, N-dimensional integrals, and random vari-
ables appearing in our favorite theories should be expressible in
Lean. Just as an ever-growing online community of mathema-
ticians and computer scientists is building mathlib,40 we
anticipate a similar group of scientists building a library of
formally-veried scientic theories and engineering mathe-
matics. To join, start learning Lean, join the online community,
and see what we can prove!
Data availability

The Lean soware used for this work is open source. All proofs
are publicly available, and hosted on our GitHub repository:
https://atomslab.github.io/LeanChemicalTheories/
Author contributions

We summarize author contributions using the CRediT system.
Conceptualization: TRJ; data curation: MPB, PF, SS; formal
analysis: MPB, SS, PF, AHD, CMW, TRJ; funding acquisition:
TRJ; methodology: MPB, TRJ; project administration: MPB, SS,
TRJ; soware: MPB, SS, TRJ; supervision: TRJ; validation: Lean;
visualization: MPB, SS, PF, TRJ; writing, original dra: MPB, SS,
PF, TRJ; writing, review and editing: MPB, SS, PF, TRJ.
Conflicts of interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.
Acknowledgements

We are grateful to the Lean prover community and contributors
of mathlib on whose work this project is built. We especially
thank Kevin Buzzard, Patrick Massot, Tomas Skrivan, Eric
Wieser, and Andrew Yang for helpful comments and discussions
around our proof structure and suggestions for improvement.We
thank Charles Fox, Mauricio Collares, and Ruben Van de Velde
for helping with the website. We thank two anonymous peer
reviewers, as well as Rose Bohrer, John Keith, and Ben Payne for
reading the manuscript and providing helpful feedback. This
material is based upon work supported by the National Science
Foundation under Grant No. (NSF #2138938), as well as startup
funds from the University of Maryland, Baltimore County.
References

1 K. Hinsen, Computational science: shiing the focus from
tools to models [version 2; peer review: 2 approved],
F1000Research, 2014, 3(101), 1–10.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2 T. C. Hales, Formal proof, Not. Am. Math. Soc., 2008, 55(11),
1370–1380.

3 P. Rudnicki, An overview of the Mizar project, in Proceedings
of the 1992 Workshop on Types for Proofs and Programs, 1992,
pp. 311–330.

4 M. M. Wenzel, Isabelle/Isar - A versatile environment for
human-readable formal proof documents, Technische
Universität München, 2002.

5 B. Barras, S. Boutin, C. Cornes, J. Courant, J. C. Filliatre,
E. Gimenez, et al., The Coq proof assistant reference
manual: Version 6.1, Inria, 1997.

6 M. J. Gordon and T. F. Melham, Introduction to HOL: A
theorem proving environment for higher order logic,
Cambridge University Press, 1993.

7 T. Nipkow, M. Wenzel and L. C. Paulson, Isabelle/HOL: A
proof assistant for higher-order logic, Springer, 2002.

8 S. Owre, J. M. Rushby and N. Shankar, PVS: A prototype
verication system, in International Conference on
Automated Deduction, Springer, 1992. pp. 748–752.

9 A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık,
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28 M. Stannett and I. Németi, Using Isabelle/HOL to verify
rst-order relativity theory, J. Autom. Reason., 2014, 52(4),
361–378.

29 E. H. Lu. A formalization of elements of special relativity in
Coq. Harvard University; 2017.

30 S. Khan-Afshar, U. Siddique, M. Y. Mahmoud, V. Aravantinos,
O. Seddiki, O. Hasan, et al., Formal analysis of optical
systems, Math. Comput. Sci., 2014, 8(1), 39–70.

31 M. U. Siddique, Formal analysis of geometrical optics using
theorem proving, Concordia University, 2015.

32 A. Cervera-Lierta, M. Krenn and A. Aspuru-Guzik, Design of
quantum optical experiments with logic articial
intelligence, Quantum, 2022, 6, 836.

33 C. Cornelio, S. Dash, V. Austel, T. R. Josephson,
J. Goncalves, K. L. Clarkson, et al., Combining data and
theory for derivable scientic discovery with AI-Descartes,
Nat. Commun., 2023, 14(1), 1777. Available from: https://
www.nature.com/articles/s41467-023-37236-y.
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