
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Improving scient
Department of Chemistry, Hokkaido Univers

Japan. E-mail: keisuke.takahashi@sci.hoku

ac.jp

Cite this:Digital Discovery, 2023, 2, 775

Received 5th April 2023
Accepted 20th April 2023

DOI: 10.1039/d3dd00061c

rsc.li/digitaldiscovery

© 2023 The Author(s). Published by
ific image processing accessibility
through development of graphical user interfaces
for scikit-image

Mikael Kuwahara, Jun Fujima, Keisuke Takahashi * and Lauren Takahashi *

Catalyst informatics has garnered a lot of attention within the research community as it is a very powerful

method for discovering and understanding catalysts from the data perspective. However, while the

availability of image data such as microscopy data is also growing exponentially, image analysis has not

enjoyed the same degree of success as cases that deal with textual or numerical data. Not only are there

not many tools available for image processing, but also the tools that do exist require a large degree of

experience with programming and computer science, limiting the number of people who are able to

conduct image processing. Thus, there is a growing need for accessible tools geared towards image

processing and segmentation. Graphical user interfaces (GUIs) for image processing tools offered by

Python library scikit-image are developed and implemented in previously developed catalyst informatics

platform CADS (https://cads.eng.hokudai.ac.jp/). Architecture and development of the GUIs are

investigated and several cases of image processing are explored.
1 Introduction

Image data has grown exponentially and become readily
accessible due to advances in technology, leading to the estab-
lishment of data science and informatics.1–5 Furthermore,
image data obtained by microscopy such as scanning electron
microscopy (SEM) and transmission electron microscopy (TEM)
has dramatically increased. However, despite the growing
accessibility, there are various issues faced when attempting to
apply data science to image processing. Typically, data-centered
research involves textual and numerical data, which are then
analyzed using data science techniques in order to uncover
underlying information, trends, and patterns that may be
present.6–8 However, with image processing it is oentimes
difficult to capture key features using only one's eyes, making
image processing tools necessary for proper image analysis. In
response to this need, a variety of tools have appeared where
tools and programming libraries such as OpenCV, Tensorow,
and scikit-learn have become popular for research that requires
data science techniques.9–11 However, while being very useful,
use of such libraries and tools requires heavy programming and
knowledge of computer science. This prevents researchers, who
are likely unfamiliar with programming or computer science,
from adopting data science for their own research. It is, there-
fore, necessary to make these tools more accessible for people
ity, North 10, West 8, Sapporo 060-0810,

dai.ac.jp; lauren.takahashi@sci.hokudai.

the Royal Society of Chemistry
who wish to take advantage of these tools but struggle with the
high learning curve.

In an effort to improve accessibility to data science tools,
a data platform, Catalyst Acquisition by Data Science (CADS),
has been previously developed and can be found at https://
cads.eng.hokudai.ac.jp/.12 In summary, CADS is a data
platform designed to assist in catalyst design by making data
science techniques accessible through graphical user
interfaces (GUIs). Through the development of GUIs, it has
become possible for researchers unfamiliar with
programming to utilize data science techniques when
conducting research. Given its initial success, further
developments have been pursued in order to also incorporate
image processing by incorporating the Python scikit-image
library.13 By developing GUIs for image processing tools, it
should therefore be possible for researchers unskilled in image
processing programming to utilize the image processing tools,
thereby improving accessibility to the image processing
community. Here, graphical user interfaces for the scikit-image
library are designed and developed within the CADS platform.
2 CADS analysis and visualization
components
2.1 General architecture overview

Within the CADS platform, GUIs are implemented as View
Components. In order to access the View Components, one
would enter the “Analysis” section and either start a “New
analysis” or open an existing workspace. In the Analysis section
Digital Discovery, 2023, 2, 775–780 | 775

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00061c&domain=pdf&date_stamp=2023-06-10
http://orcid.org/0000-0002-9328-1694
http://orcid.org/0000-0001-9922-8889
https://cads.eng.hokudai.ac.jp/
https://cads.eng.hokudai.ac.jp/
https://cads.eng.hokudai.ac.jp/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002003


Fig. 1 The underlying structure of the View Component.

Fig. 2 The Image View Component.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
of the CADS website the user can load various View Components
of their own choice and need. Fig. 1 illustrates the underlying
structures found within various parts of a View Component that
deal with conguration, data manipulation, and rendering.
Inside each of these components one will nd three parts:
a window that houses an interactive display/rendering/
visualization; a data management interface where user input
and built-in controllers can recongure data and provide input
for the view window; and a server-side data manipulation
component where more advanced data processing can be
carried out before being returned to the client for rendering.
With this design, users can congure data through an interac-
tive visualized form. The congurations are then passed to the
server, where the appropriate algorithms and manipulated data
are applied and the resulting output of the applied congura-
tions and settings is returned as visualization.

This architecture is designed and developed so that creating
the frame of a new View Component is a fairly easy and quick task
that makes it viewable and intractable almost at once. The
conguration of each component is done via ReactJS driven
forms with easy-to-use dropdown boxes, switches, and text-inputs
that allows the user to interact with all availably made settings for
the particular component, all stored and communicated in JSON-
format under the hood. The raw data from the data management
section is also stored as JSON and is included in the package as
different parts of the components communicate. In the interface
the user cannotmanipulate the content of the data, but can select
which parts of it that should be used and how.

The server side is mainly driven by Python and Django where
multiple tools and libraries are installed for various sorts of data
manipulation. As a developer, one creates a dedicated function
to handle the JSON-package being delivered, manipulate it with
the help of tools such as scikit-learn, and then return the result
to the client in JSON-format. When the data and user-selected
settings are returned, they are validated and polished if
776 | Digital Discovery, 2023, 2, 775–780
necessary and then sent to the rendering part of the component,
which starts drawing the data visualization according to the
design of the particular component and in accordance to the
user's instructions from the component settings form. Although
most current components use the Bokeh library to display
charts and different types of graphs, it is not a requirement. Any
possible rendering is available based on the goals of the
developer and of the nal module.
2.2 All view-components' shared features

No matter what a component may contain and what makes it
unique, there are a few things that all components share. First it
is the View Component container that holds at least three
buttons to control the view: the delete-button, which destroys
and removes the view; the conguration-button, which opens
up the settings-form; and the duplicate-button, which dupli-
cates the current view with its current settings. At the top of the
Analysis page, if component-mobility is enabled, a fourth
button (alternatively, handle) is made available that allows
a user to drag the component in a grid-like manner inside the
window in order to place the component in the order of one's
choice. Inside the form, one may nd different options for
different components, but they are all displayed in the same
manner in order to make the user feel at home, even with new
and unfamiliar components. The form also contains various
help instructions to guide the user in the conguration process.
All loaded components in their current order and their current
settings can be saved as a workspace, using a button found in
the top right corner, for easy retrieval and reusability.
2.3 The Image View component

This work mainly focuses on our latest component, the Image
View component, with its image processing capabilities. Fig. 2
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
illustrates the workow taken when processing information
from the renderer. The workow starts from the renderer,
which displays the designated image. The visual/rendering side
is simple: an image is communicated as a base64 string in the
JSON-package, displayed in an <img> tag on the client side.
Here, the image is just shown as-is where any CSS lter, which
can also be managed here, can be selected through the cong-
uration form and applied. The bulk of the interaction with this
component is most likely done within the conguration form,
where the user can load any web-approved image (jpeg, png and
so forth) either locally or by link if domain-protections do not
prevent it. Note that the Image View component does not
currently interact with any pre-loaded data since it currently
works with images and not statistics; however, future upgraded
versions may incorporate this feature. Aer loading (selecting)
an image, the user can improve the image display with features
such as borders and custom titles in addition to applying
various available types of image-manipulations to it.

The simplest interactive image manipulation is through
enabling basic CSS lters, which allows the user to carry out
classic, minor image alterations and see the end results in real-
time. These CSS-lters can be applied in combination. The
interface makes it very easy with sliders that change the
manipulated value in question with direct visual response.
These settings can be reset to the original image through the
use of the reset button. The other, more powerful option of
available image-processing is to enable the scikit-image library,
which opens up the ways the Image View component allows the
user to interact with that tool. Note that the images used in
Fig. 3, 4 and 5 are found within the scikit-image library. As seen
in Fig. 3, the interface is very simple with a single switch to turn
a feature on or off, which then provide additional parameters
(as few as possible for easy usage) when relevant to adjust for
optimal results. Given that scikit-image is Python-driven and
Fig. 3 Interface example 01.

© 2023 The Author(s). Published by the Royal Society of Chemistry
server-side, the changes made in the form are not visible until
aer the form settings are submitted and the server applies the
selections. Each switch or parameter is accompanied by
a popup-info marker that briey explains or demonstrates what
it does. For cases that require further explanation, additional
links to off-site resources are included. This is done to help
improve usability for users that may be new to or otherwise
unfamiliar with the processing tools provided.

If the user applies multiple effects, those effects will be
applied in order of the list of switches, which sometimes may
not lead to the intended result. To circumvent this, it is rec-
ommended to apply a few effects to start, submit the work-order
to the server, and allow the server to prepare the output. Length
of time is quick, yet dependent on the effects themselves, the
number of effects selected, the size of the image, and settings of
the specic parameters. When the server returns the image, the
effects will be applied while storing the original image, allowing
the user to reset the image if necessary. Aer the image returns,
the user may once again open the conguration form to apply
new effects but on the manipulated image rather than the
original. This is easily instructed by a single switch in the form.
The user can then turn off previously applied effects if desired
and start adding new ones.

It is possible to duplicate image components and work with
several components within the same workspace, as seen in
Fig. 4. This is useful as it is possible to explore several different
aspects of image processing and easily compare the results
within the same workspace. It is important to note that when
a workspace of components is saved, only the most current
settings are saving. If one were to use the approach of manip-
ulating images in steps, one should save the image (and/or its
mediate versions) themselves onto a local machine for future
easy retrieval; else, the changes and steps may be lost. Saving an
image is easy and can be done through clicking the custom
yellow save button uniquely available on the Image View
component's interface.

One should be aware that effects applied may sometimes
vary in results depending on the source image, and it is there-
fore recommended to prepare an image beforehand should the
result not mirror one's expectations. The most common pre-
manipulation of an image before loading it into the Image
View component is to convert it into a jpeg le in order to strip it
of the alpha channel. This is just a suggestion, and not
a necessity should one wish to adopt CADS architecture for their
own use. CADS works with all image types, but the result
Fig. 4 Interface example 02.

Digital Discovery, 2023, 2, 775–780 | 777

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c


Fig. 6 Original images used for Case 01 and Case 02.

Fig. 5 Interface example 03.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
depends on what scikit-image sees in the source picture, which
does not always reect what a person may see. Another custom
button for this component is the ‘Annotation’-button, found
next to the save button, also yellow in color, which denotes
component specic custom buttons. The Annotation feature
allows the user to draw using the mouse on top of the image, as
seen in Fig. 5, in order to annotate or highlight things that the
image shows. The annotations are saved within the workspace,
but it is still recommended to save the images on their own, now
and then, for safekeeping and usage outside of CADS.
Fig. 7 Options available when applying scikit image processing.
3 Case studies

Image analysis is an important part of many scientic disci-
plines that require image analysis and segmentation.14,15 In
particular, areas such as material design rely on image analysis
in order to, for example, detect structural defects or detect
nanoparticles, and with developments in data science tech-
niques, it is becoming possible to enlist machines to help detect
anomalies or other such factors within images.16–18 However,
there are large learning barriers in place where many
researchers who traditionally analyze images manually are
unfamiliar with programming or data science approaches.
Thus, the CADS View Components are designed in an effort to
bridge this gap.

In order to test how these View Components can be used for
image analysis, several different types of images are chosen for
analysis. In particular, several transmission electron micros-
copy (TEM) images are selected in order to determine whether
image analysis can be improved using the scikit-image library.
The TEM images used to test the usability of the GUIs have been
previously published.19 These images were initially used as part
of a study focused on using neural networks to determine the
778 | Digital Discovery, 2023, 2, 775–780
average size of particles. In this instance, the TEM images are
manipulated via the View Components in order to gain new
insights. Two images are selected, as visualized in Fig. 6, in
order to better understand how image analysis can be improved
through the new View Components.

Case 01 (Fig. 6) is used to explore how the View Components
can be used to analyze TEM images. In particular, the TEM
image used with Case 01 is chosen to investigate how infor-
mation such as atom density can be claried. To start, we are
presented with a range of options as seen in Fig. 7. Here, one is
given 25 different options to select from, which will then be
applied to the given image once conrmed. Users can select the
options they wish to activate, whether it be a single option or
several options at once.

When relevant, users can also clarify specics that pertain to
a particular option. This is possible in cases like Fig. 8 where
users can choose Meijering or Hessian ridge detection. Once
selected, the effects are immediately applied to the original
image.

Multiple options can be selected and applied simulta-
neously. An example of this is illustrated in Fig. 9. Here, the
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c


Fig. 8 Case 01: applying ridge detection to the image with ‘Hessian’
selected.

Fig. 9 Case 01: applying multiple options across different iterations of
the original image.

Fig. 10 Case 02: various applications of different options.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
original image is edited where options “Invert Colors” and
“Erosion” are selected. In doing so, atom placement from an
alternative perspective can be analyzed. In the case of Fig. 9, one
can better see areas where atoms may be layered on each other.
Additional adjustments can be applied to improve visibility. For
instance, by sharpening the altered image in Fig. 9, it becomes
easier to see the individual atoms as well as better understand
the degree of atom density in areas with strong overlap. By also
enhancing the contrast, the topography of where the atoms are
dense becomes more obvious. Thus, new insights into TEM
images can be gained through creative use of the View
Component options.

Case 02 (Fig. 6) explores various ways that the View
Components can be used when imagery is dark or has visibility
© 2023 The Author(s). Published by the Royal Society of Chemistry
issues. This is seen in Fig. 10 which illustrates the various ways
TEM images that are dark or otherwise are hard to discern can
be investigated.

To start, through the View Components, topography
becomes visible aer the following options are selected: Invert
Colors, Erosion, Sharpen, and Enhance Contrast. By applying
these factors within the same window, it becomes possible to
more clearly understand where atoms congregate and how the
surface is shaped. Additionally, Chan–Vese segmentation can
be applied, which is useful for cases when one wishes to carry
out segmentation without relying on edges.20 Similarly, options
are available when one wishes to process an image as a region
adjacency graph (RAG).21 Thus, we can see from these cases that
image analysis can be carried out efficiently, within the same
workspace, and without extensive previously held knowledge
regarding programming, image processing, and data science.
4 Conclusion

Increasingly, researchers look to employ data science tech-
niques for research endeavors, yet are oen unfamiliar with
programming, data science, or image processing. A data plat-
form, CADS, has been previously developed in an effort to
address these difficulties. In particular, View Components are
developed in order to incorporate image processing tools on the
data platform. The goal of all CADS View Components, in
particular Image View Components, is to allow users to interact
with data and resources without requiring skills in program-
ming and advanced scripting, while also allowing one to
manipulate and interact with complex data in highly advanced
ways. Developing View Components in this manner allows
researchers that wish to approach research from new perspec-
tives to utilize Python script and libraries such as scikit-learn
and scikit-image without prior extensive knowledge, thereby
reducing potential learning curves that may be encountered.
Several microscopy images have been investigated using the
developed View Components and are able to successfully apply
Digital Discovery, 2023, 2, 775–780 | 779

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/1
7/

20
26

 1
:3

1:
55

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the image processing tools found within scikit-image to the
images within the developed View Components where factors
such as topography and atom density are claried. Thus, a web-
based image process tool is developed in order to help address
the difficulties many researchers face when attempting to use
programming or data science techniques for their research and
can be continually developed to reect the developments in the
programming community as well as reect the evolving needs
of the research community.

Data availability

All codes and data are shared at github (https://github.com/
Material-MADS/mads-app).

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work is funded by the Japan Science and Technology
Agency (JST) with CREST grant number JPMJCR17P2 and
ERATO grant number JPMJER1903.

Notes and references

1 K. Takahashi, L. Takahashi, I. Miyazato, J. Fujima,
Y. Tanaka, T. Uno, et al., The rise of catalyst informatics:
towards catalyst genomics, ChemCatChem, 2019, 11(4),
1146–1152.

2 A. Agrawal and A. Choudhary, Perspective: Materials
informatics and big data: Realization of the “fourth
paradigm” of science in materials science, APL Mater.,
2016, 4(5), 053208.

3 K. Takahashi and Y. Tanaka, Materials informatics:
a journey towards material design and synthesis, Dalton
Trans., 2016, 45(26), 10497–10499.

4 J. B. Hagen, The origins of bioinformatics, Nat. Rev. Genet.,
2000, 1(3), 231–236.

5 T. Engel, Basic overview of chemoinformatics, J. Chem. Inf.
Model., 2006, 46(6), 2267–2277.

6 L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl and
M. Scheffler, Big data of materials science: critical role of
the descriptor, Phys. Rev. Lett., 2015, 114(10), 105503.

7 L. Himanen, A. Geurts, A. S. Foster and P. Rinke, Data-driven
materials science: status, challenges, and perspectives, Adv.
Sci., 2019, 6(21), 1900808.
780 | Digital Discovery, 2023, 2, 775–780
8 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Machine learning for molecular and materials
science, Nature, 2018, 559(7715), 547–555.

9 G. Bradski, The OpenCV Library, Dr. Dobb’s J. Sow. Tools,
2000, 25(11), 120–123.

10 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, et al., Tensorow: Large-scale machine learning
on heterogeneous distributed systems, arXiv, 2016,
preprint, arXiv:160304467, DOI: 10.48550/arXiv.1603.04467.

11 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, et al., Scikit-learn: Machine Learning
in Python, J. Mach. Learn. Res., 2011, 12, 2825–2830.

12 J. Fujima, Y. Tanaka, I. Miyazato, L. Takahashi and
K. Takahashi, Catalyst Acquisition by Data Science (CADS):
a web-based catalyst informatics platform for discovering
catalysts, React. Chem. Eng., 2020, 5(5), 903–911.

13 S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias,
F. Boulogne, J. D. Warner, N. Yager, et al., scikit-image:
image processing in Python, PeerJ, 2014, 2, e453.

14 J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig,
M. Longair, T. Pietzsch, et al., Fiji: an open-source
platform for biological-image analysis, Nat. Methods, 2012,
9(7), 676–682.

15 H. Wieslander, C. Wählby and I. M. Sintorn, TEM image
restoration from fast image streams, PLoS One, 2021, 16(2),
e0246336.

16 C. Park and Y. Ding, Automating material image analysis for
material discovery, MRS Commun., 2019, 9(2), 545–555.

17 N. Laanait, M. Ziatdinov, Q. He and A. Borisevich,
Identifying local structural states in atomic imaging by
computer vision, Adv. Struct. Chem. Imaging, 2016, 2(1), 1–11.

18 A. G. Okunev, M. Y. Mashukov, A. V. Nartova and
A. V. Matveev, Nanoparticle Recognition on Scanning
Probe Microscopy Images Using Computer Vision and
Deep Learning, Nanomaterials, 2020, 10(7), 1285.

19 A. V. Nartova, M. Y. Mashukov, R. R. Astakhov, V. Y. Kudinov,
A. V. Matveev and A. G. Okunev, Particle Recognition on
Transmission Electron Microscopy Images Using
Computer Vision and Deep Learning for Catalytic
Applications, Catalysts, 2022, 12(2), 135.

20 P. Getreuer, Chan-vese segmentation, Image Process. Line,
2012, 2, 214–224.

21 A. Trémeau and P. Colantoni, Regions adjacency graph
applied to color image segmentation, IEEE Trans. Image
Process, 2000, 9(4), 735–744.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/Material-MADS/mads-app
https://github.com/Material-MADS/mads-app
https://doi.org/10.48550/arXiv.1603.04467
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00061c

	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image

	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image
	Improving scientific image processing accessibility through development of graphical user interfaces for scikit-image


