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tion learning determines drug
mechanism of action from cell painting images†

Daniel R. Wong, *a David J. Logan, b Santosh Hariharan,c Robert Stanton,a

Djork-Arné Clevert a and Andrew Kirulutaa

Fluorescent-based microscopy screens carry a broad range of phenotypic information about how

compounds affect cellular biology. From changes in cellular morphology observed in these screens, one

key area of medicinal interest is determining a compound's mechanism of action. However, much of this

phenotypic information is subtle and difficult to quantify. Hence, creating quantitative embeddings that

can measure cellular response to compound perturbation has been a key area of research. Here we

present a deep learning enabled encoder called MOAProfiler that captures phenotypic features for

determining mechanism of action from Cell Painting images. We compared our method with both the

traditional gold-standard means of feature encoding via CellProfiler and a deep learning encoder called

DeepProfiler. The results, on two independent and biologically different datasets, indicated that

MOAProfiler encoded MOA-specific features that allowed for more accurate clustering and classification

of compounds over hundreds of different MOAs.
Introduction

High-content screening (HCS) produces diverse phenotypic
information that is of great interest to the drug discovery
process.1,2 One such procedure known as Cell Painting3 allows
for broad proling of cellular phenotypes in response to
different compounds. Much effort has gone into quantitatively
characterizing these phenotypes,4–6 with the goal of creating
representations for describing how different compounds affect
biology. Quantitatively proling cellular response to compound
perturbation has many use cases, such as target identication,
concentration optimization, and mechanism of action (MOA)
determination (e.g. heat shock protein inhibitor, CDK inhibitor,
histamine receptor antagonist).7,8

Traditional computer vision methods such as CellProler
(CP),9 which is the gold standard in cellular proling, rely on
extracting preset human-selected features from image data.
Methods like this have proven useful for encoding subtle
changes in cellular phenotype to derive biological insight, with
a variety of applications such as object detection,10 cell viability
assessment,11 transcriptomic querying,12 and MOA
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determination.7 Although traditional computer vision tech-
niques have also been used, they oen need substantial ne-
tuning and require human intelligence and intuition for
deciding which phenotypic features and parameters are
important to measure. In contrast, deep learning has emerged
as a tool for learning and encoding meaningful representations4

(i.e. embeddings) without requiring humans to know before-
hand what features may be useful for the task of interest.
Indeed, deep representation learning13,14 has facilitated
improved understanding in both biology14–16 and medicine.17–19

One goal of phenotypic HCS is to determine the MOAs of
compounds.20 Ascertaining MOA is a challenging endeavor,
especially given its multi-faceted and complex nature.21 But the
task is worthwhile and can provide insight into drug efficacy,
side effects, dosing, and possible success in clinical trials.22,23

Some success has been seen outside of phenotypic screening
endeavors, such as through analyzing a compound's structure
and effect on transcriptomic proles.24–26 For phenotypic
screening, deep learning has performed better than traditional
techniques for MOA determination.27–33 However, these studies
only served as a proof-of-concept, encompassing a small set of
about a dozen MOAs.

Here, we present a MOA determination method spanning
hundreds of MOAs that showed efficacy on two independent
datasets: (1) the Joint Undertaking in Morphological Proling
(JUMP1) pilot dataset34 (2) the Library of Integrated Network-
Based Cellular Signatures (LINCS) dataset.35,36 We compared
our method called MOAProler (MP) with CP as well as a deep
learning based method called DeepProler (DP).37,38 We present
© 2023 The Author(s). Published by the Royal Society of Chemistry
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MP as an open-source and readily available tool for deep
phenotypic proling of Cell Painting images.

Results
JUMP1 performance

To assess whether we could determine a broad range of MOAs
from phenotypic information alone, we developed a deep
learning method across two datasets differing in cell type,
concentration, and time-points (Methods). For the rst, we
turned to the JUMP1 pilot dataset which had MOA metadata
information provided by the Clue Connectivity Map.39 To
simplify the compound space and limit the intricacies associ-
ated with polypharmacology,40 we took a subset of the
compounds that had at most one known MOA. The resulting
dataset spanned 266 compounds, with 176 MOAs used for
training and a subset of 59 (multi-compound MOAs) used for
testing (Fig. 1a). Most compounds were plated at 23 replicate
wells (Fig. 2a) and most MOAs were represented by one
compound (Fig. 2b). There were either 9 or 16 image elds per
well (Fig. 2c). Cell Painting images consisted of ve channels
capturing different areas of cellular morphology (Fig. 1b).

To develop a model capable of creating MOA-specic
embeddings from cellular phenotypes, we trained an Effi-
cientNet model41 to classify an image eld's MOA, with the
motivation of directly learning which features are important for
segregation. We chose EfficientNet because of its high perfor-
mance on the ImageNet dataset and relatively few number of
parameters. Only images were provided as input to the model,
with no information on compound, concentration, or any other
form of metadata (Methods). To minimize the model learning
confounding experimental features like well-artifacts, we split
the dataset such that each well was randomly assigned to only
one of three sets: training, validation, or test (Fig. 1c). We
divided the dataset such that 60% of the wells were assigned to
training, 10% to validation, and 30% to test (Methods). We also
ensured each MOA's test wells spanned multiple plates (at least
seven for JUMP1, Fig. 2d, le) to assess the model's perfor-
mance across potential variation of plate-specic conditions.
Since the MOA-replicate count was imbalanced (Fig. 2e, le), we
measured the model's precision recall characteristics.

Since most MOAs were only represented by one compound
each (Fig. 2b), we ltered the held-out test set to only include
MOAs that were each represented by multiple compounds,
resulting in 59 MOAs. This way we could assess whether the
model had simply learned to group compound replicates, which
could be the case if the dataset was heavily over-represented by
single-compound MOAs. In this well-holdout scheme, the
compounds present in the test set were also present in the
training set.

On the held-out test set, the model achieved an area under
the precision recall curve (AUPRC) of 0.46 (random AUPRC =

0.006) for image eld classication (Fig. 3a). This equated to an
accuracy of 0.51 (random accuracy = 0.017). To assess the
inuence of well-location confounders common in micros-
copy,42,43 we compared the model's performance on edge wells
versus non-edge wells. We found minor differences in
© 2023 The Author(s). Published by the Royal Society of Chemistry
classication accuracy (0.54 vs. 0.50) suggesting that the model
was not leveraging much confounding edge-specic features for
its learning (ESI Fig. 1A†). We also found differences in classi-
cation accuracy stratied by timepoint (ESI Fig. 1B†) and cell
type (ESI Fig. 1C†).

With the trained classication model, we measured how well
the model created embeddings13 that were meaningful for MOA
classication. Hence, we extracted image embeddings from an
intermediate layer in the network,14 median-aggregated them by
well, standardized them with respect to DMSO control, and
assessed how valuable these well-level embeddings were for the
task of MOA classication compared to CP and DP (Methods).
We performed all analyses on the held-out test set which
spanned 59 MOAs.

Ideally, embeddings with the same MOA (intra-MOA) should
be more similar than embeddings with different MOAs (inter-
MOA). Hence, we measured how likely it was to observe intra-
MOA embeddings in strongly correlated versus weakly corre-
lated embedding pairs (pairs of well-level embeddings). We
used different thresholds of correlation for dening strong and
weak correlation (Methods). Through a Fisher's exact test, we
found that intra-MOA embedding pairs were more likely to be
found in strongly correlated (by Pearson correlation coefficient
(PCC), Methods) versus weakly correlated embedding pairs, with
greater enrichment of MP-derived embeddings vs. CP-derived
and DP-derived embeddings (enrichment at the 99th percen-
tile = 12.1 CP, 14.2 DP, 75.2 MP, Fig. 3b). Similarly, we asked
which of the methods could better generate embeddings that
captured phenotypic differences between the MOAs. There was
greater difference between intra-MOA embeddings and inter-
MOA embeddings when constructed by MP instead of CP or
DP (delta = 0.30 for MP, Fig. 3c). For both CP and DP, the
difference was smaller (delta = 0.20 for CP, 0.18 for DP). This
indicates that MP encoded different MOAs in different and
distinguishable phenotypic spaces, which may be advantageous
if a new compound were to be queried for its MOA.

To simulate this situation of predicting the MOA of a query
compound using its phenotypic embedding, we performed two
analyses using the embeddings of the held-out test set: k-
nearest-neighbors (k-NN) and an analysis we constructed called
the “class latent assignment” (Fig. 1a for a pictorial visualiza-
tion, Methods). We used each well in the test set as a held-out
query. For k-NN, we predicted the query well's MOA as the
majority MOA of its k-nearest neighbors (Methods). For all
values of k, we calculated F1, precision, and recall values. We
found that for all metrics, MP outperformed CP (percent
improvement: 60.8% F1, 60.9% precision, and 57.5% recall).
MP also outperformed DP (percent improvement: 54.1% F1,
58.8% precision, and 49% recall, Fig. 3d).

The “class latent assignment” method was a parallel way to
classify a query compound's MOA by instead using similarity to
aggregated MOA-level embeddings (MLEs) rather than to well-
level embeddings for predicting a query well's class
(Methods). This metric has the advantage of being less sensitive
to single-well outliers and reduces the impact of the immediate
closest neighbors so that embeddings can be queried against
more representative class-wide embeddings. We computed an
Digital Discovery, 2023, 2, 1354–1367 | 1355
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Fig. 1 Study overview. (a) Study overview for well-holdout scheme. We applied the same method to two datasets independently: the JUMP1
pilot dataset as well as the LINCS dataset. Training and analyses were performed independently for each study. Below: pictorial visualizations of
the various metrics assessing embedding viability and clustering. (b) Example cell painting images from the JUMP1 dataset. Color added for
visualization. DNA = deoxyribonucleic acid, ER = endoplasmic reticulum, RNA = ribonucleic acid, AGP = actin cytoskeleton, Golgi, plasma
membrane, Mito = mitochondria. (c) Schematic of training (blue), validation (orange), test (green) split. M1 indicates MOA class one and M2
indicates MOA class two. Each circle is a well. The schematic is illustrative and not the actual location splits used in the study.

1356 | Digital Discovery, 2023, 2, 1354–1367 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Distributions of study metadata. All panels exclude the negative
control DMSO condition. JUMP1 (left), LINCS (right). (a) Distribution of
replicate well count per compound. E.g. left panel: Most compounds
were each plated in 23 wells. (b) Distribution of compounds for each
MOA. E.g. left panel: 66% of JUMP1 MOAs were represented by one
compound each. (c) Distribution of images per well. Most wells had 9
non-overlapping image fields. (d) Distribution of number of plates in
the test set for each MOA. Example from left figure leftmost bar: 24%
of MOAs were each represented on 7 plates in the held-out test set.
Purple dots show the cumulative frequencies at each plate count. (e)
Distribution of MOA-replicate counts. “MOA-replicates” is defined as
any wells with any compounds with the sameMOA. E.g. left panel: 62%
of MOAs were each represented by 23 different wells in the entire
dataset.
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aggregated MLE for each MOA by taking the median of all the
same-MOA well embeddings in the test set with the query well's
embedding le out. We then predicted the query well's MOA as
© 2023 The Author(s). Published by the Royal Society of Chemistry
the MOA of the most similar MLE. We calculated F1, precision,
and recall scores for the resulting predictions. By this metric,
MP was more performant than CP (percent improvement: 179%
F1, 157% precision, and 151% recall). MP also exceeded DP's
metrics (percent improvement: 192% F1, 186% precision, and
170% recall, Fig. 3e).

As an additional metric to assess the viability of each
methods' embeddings for MOA prediction, we also trained
a logistic regression model on the training set embeddings and
assessed the model's MOA-prediction performance on the test
set embeddings (ESI Fig. 2†). We found the same trends, with
MP-derived embeddings being the most informative for MOA
classication.

Since different compounds shared the same MOA, we wan-
ted to know whether the model was learning MOA-specic
phenotypes consistent through different compounds with the
same MOA as opposed to simply learning each compound's
phenotypic effect. Hence, we calculated the average PCC of
three groups of well pairs with: (1) the same compound (and
hence same MOA) (2) different compounds with the same MOA
and (3) different compounds with different MOAs. We found
that of the embedding pairs with different compounds, the
pairs with the same MOA class were more similar than those
with different MOA classes (average PCC = 0.23 vs. 0.02, Fig. 3f).
The three populations' PCC averages were all signicantly
different (p � 0.0001 for all two-sided z-tests). This suggests
that the phenotypic embeddings that the model encoded were
MOA-specic rather than compound-specic. From a low-
dimensional t-distributed stochastic neighbor embedding
(TSNE) visualization of embeddings from three example MOAs,
we could see that different compounds with the sameMOA were
clustered together with different MOAs inhabiting different
areas in latent space (Fig. 3g). CP and DP did not display the
same degree of clustering for these MOAs (ESI Fig. 3†). Addi-
tionally, when we compared baseline MP to heavily optimized
CP embeddings, which underwent many post-processing steps
such as normalization by plate, feature selection, and spheri-
zation to DMSO31 (Methods), MP was still more performant than
CP, but performance gains were smaller (ESI Fig. 4†).

To simulate the real-world use case of identifying MOAs of
unknown held-out compounds, we performed an analysis
where we split the dataset by compound instead of by wells
(Fig. 4a, Methods). In this scheme, we randomly selected and
held out one compound for each of the MOA classes that were
represented by at least two distinct compounds. We chose
a threshold of two compounds so that each held-out compound
would have at least one other same-MOA compound in the
training set to facilitate learning. This resulted in 59
compounds that we used as a test set, with the remaining 207
compounds (plus negative control DMSO) used for training and
validating a new model (Methods). Despite the model never
being exposed to these held-out compounds during training, it
was able to correctly predict MOAs for 20.3–22% of the
compounds in a space of 59 possible MOAs (Fig. 4b and c).
Compared to a random baseline of 1/59 and an expected value
of (1/59) × 59 = 1 compound discovered, this was a 12–13×
improvement. Performance varied depending upon whether we
Digital Discovery, 2023, 2, 1354–1367 | 1357
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Fig. 3 Performance ofmodel trained and evaluated on the JUMP1 dataset. All evaluation was over the held-out test set filtered formultiple-compound
MOAs. (a) Left: PRC of the classifier, random baseline = positive prevalence of binarized labels. Right: classification accuracy, random baseline = 1/59.
Classification was over image fields (not embeddings as in panels d and e). (b) Enrichment scores for the three methods from the 98th percentile to the
99.8th percentile with step sizes of 0.2. Enrichment at the 99th percentile (rounded to the nearest tenth) is shown in the figure legend. (c) Average of
pairwise PCCs for two groups of well-level embeddings: intra-MOA (embeddings with the sameMOA class), inter-MOA (different MOA classes). Delta=
intra-MOA average − inter-MOA average. Error bars span one standard deviation in each direction. (d) k-NN metrics for embedding classification
calculated for all values of k. F1 (left), precision (middle), and recall (right). The highest score for each method and corresponding k are shown in the
legend (rounded to the nearest hundredth). (e) F1, precision, and recall values for the class latent assignment metric. Scores rounded to the nearest
hundredth. (f) Average of pairwise PCCs for three groups of embeddings. For each group,we calculated PCCs for each possible pair of wells. Significance
(*) indicates p � 0.0001 for a two-sided z test. Error bars span one standard deviation in each direction. (g) TSNE visualization of well embeddings of
three example MOAs (chosen because theywere each represented by four ormore compounds). Circles=CDK inhibitor, stars=HSP inhibitor, x marks
= HDAC inhibitor. Different compounds with the same MOA were given similar but different colors.

1358 | Digital Discovery, 2023, 2, 1354–1367 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Performance on held-out compounds via two methods. (a) Learning schematic for compound-holdout. JUMP1 is pictured here as an
example, but we also used the same process for the LINCS dataset (1287 compounds total: 1072 for training, 215 for test). Similarity was
determined via PCC (Methods). (b) Individual vote is the scheme in which the held-out compound's MOA is predicted by taking themajority MOA
over each well-level prediction (Methods). Y-axis: different scores for MOA identification. Left: JUMP1, right: LINCS. (c) Aggregated vote is the
scheme in which we aggregated the held-out compound's well-level embeddings into a CLE and predicted its MOA as the MOA of the most
similar MLE derived from the training set (Methods). Y-axis: different scores for MOA identification. Left: JUMP1, right: LINCS.

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 1354–1367 | 1359
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Fig. 5 Performance of model trained and evaluated on the LINCS Dataset. Same analysis as Fig. 3. All evaluation was over the test set filtered for
multiple-compound MOAs. (a) PRC and accuracy of image classification. Random baseline for PRC is 1/215. (b) Enrichment comparison at
different percentiles. (c) Intra-MOA vs. inter-MOA average pairwise PCC similarity. (d) k-NN embedding metrics. (e) Class latent assignment
metrics. (f) Average pairwise PCCs of three different groups stratified by perturbation. (g) TSNE visualization of well embeddings from three
example MOAs. Circles = CDK inhibitor, stars = HSP inhibitor, x marks = HDAC inhibitor. Different compounds with the same MOA were given
similar colors.

1360 | Digital Discovery, 2023, 2, 1354–1367 © 2023 The Author(s). Published by the Royal Society of Chemistry
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predicted MOA by an individual well-level vote (Fig. 4b) or by
similarity of an aggregated compound-level embedding (CLE) to
an aggregated MLE (Fig. 4c, Methods). CP, DP, and MP had
variable performance across the different MOAs (ESI Table 1†).
There was no clear trend between MP performance and number
of available training compounds (ESI Fig. 5A†). Held-out
compound replicate embeddings had greater similarity to
each other than to other embeddings (ESI Fig. 5B and C†).
LINCS performance

To assess the method on a second dataset, we turned to the
LINCS Cell Painting Dataset.36 Like the JUMP1 dataset, we took
a subset of the LINCS data that only had compounds with one
known MOA. Furthermore, we took a subset of the data at
a xed concentration of 10 mM since this dose produced the
strongest phenotype across compounds.43 The resulting dataset
spanned 1287 compounds, with 424 MOAs used for training
and a subset of 215 (multi-compound MOAs) used for testing
(Fig. 1a). Most compounds were plated in ve replicate wells
(Fig. 2a). There were 9 images per well (Fig. 2c).

We trained a separate EfficientNet on this dataset with the
same task of classifyingMOAs from solely image data.We used the
same training-validation-test split scheme by well as we did for
JUMP1 along with the same hyperparameter choices (Methods).
Like the JUMP1 study, most MOAs were only represented by one
compound each (Fig. 2b). Hence, we also assessed the perfor-
mance metrics with a test dataset that only included MOAs that
were each represented by multiple compounds, resulting in 215
MOAs. The model achieved an AUPRC of 0.34 (vs. 0.002 random)
and an accuracy of 0.43 (vs. 0.005 random) for image eld classi-
cation (Fig. 5a). Like the JUMP1 dataset, we did not detect much
edge-location confounders affecting classication performance
(0.47 edge accuracy vs. 0.42 non-edge accuracy, ESI Fig. 1D†).

We derived well-level embedding metrics for the held-out
test set and determined that MP was advantageous over CP
and DP for MOA determination. MP enabled greater enrich-
ment for intra-MOA pairs among strongly correlated embed-
dings, with 6.4× fold increa se in enrichment over CP and 4.1×
fold increase over DP (Fig. 5b). MP also had greater intra-MOA
and inter-MOA delta compared to CP and DP (delta = 0.10
CP, 0.16 DP, 0.17 MP, Fig. 5c). MP facilitated greater k-NN
metrics than CP (percent improvement: 270% F1, 288% preci-
sion, and 252% recall Fig. 5d). We also observed sizeable
performance gains compared with DP (percent improvement:
135% F1, 133% precision, and 120% recall). For the class latent
assignment metrics, MP outperformed CP (percent improve-
ment: 665% F1, 623% precision, and 516% recall) and DP
(percent improvement: 317% F1, 317% precision, and 259%
recall, Fig. 5e). When we trained a logistic regression model on
the training set embeddings derived from the different models,
we likewise saw sizeable performance gains of a model trained
on MP-derived embeddings instead of CP and DP-derived
embeddings (ESI Fig. 2†). Like the JUMP1 dataset, we also
observed signicantly greater embedding similarity among
different compounds with the same MOA (0.11 average PCC)
versus different compounds with different MOAs (4.8 × 10−3
© 2023 The Author(s). Published by the Royal Society of Chemistry
average PCC) (Fig. 5f). This was a smaller differential than what
we observed in the JUMP1 dataset, with greater PCC prole
variability in the LINCS dataset between different compounds
and lower PCC similarity on average between different
compounds having the same MOA. From a TSNE visualization
of three example MOAs colored by compound, we can see both
MOA separability in latent space and clustering between
different compounds with the same MOA (Fig. 5g). When we
compared baseline MP to heavily optimized and post-processed
CP embeddings, MP was still more performant but performance
gains were smaller (ESI Fig. 6†).

Like the JUMP1 study, we also performed an analysis where
we split the dataset by compound instead of by wells, resulting
in 215 compounds that we used as a held-out test set (Fig. 4a).
Despite the model never being exposed to these compounds
during training, it was able to correctly predict MOAs for 7.9–
8.4% of the compounds in a space of 215 possible MOAs (Fig. 4b
and c). Compared to a random baseline of 1/215 and expected
value of (1/215) × 215 = 1 compounds discovered), this was
a 17–18× improvement. Performance varied depending upon
whether we predicted MOA by an individual well-level vote or by
CLE similarity to a MLE (Methods). Performance differed across
the MOAs (ESI Table 2†), with no clear trend between perfor-
mance and number of training compounds available (ESI
Fig. 5A†). Like JUMP1, held-out compound replicate embed-
dings had greater similarity to each other than to other
embeddings (ESI Fig. 5B and C†).

Discussion

Our ndings are consistent with the growing body of literature
suggesting deep learning can encode broad phenotypic changes
captured by Cell Painting. Two points merit emphasis: (1) We
developed an embedding encoder for MOA identication of
compounds, (2) The approach outperformed both a traditional
(via CP) and a deep learning enabled method (via DP) for this
task on two independent datasets. Higher similarity of intra-
MOA embeddings (even across different compounds) than
inter-MOA embeddings suggests that the model was capturing
MOA-specic phenotypic features vs. simply learning an indi-
vidual compound's phenotypic effect. This specicity towards
MOA is important because in drug discovery campaigns many
compounds could have the same MOA. Furthermore,
a compound's MOA is oen unknown. Hence, when trying to
ascertain an unknown compound's MOA, a reasonable
hypothesis is to predict its MOA as the MOA of its most
phenotypically similar compounds. Since the embedder can
encode similar embeddings for different compounds with the
same MOA (Fig. 3f and 5f), perhaps it can likewise be useful for
MOA discovery across a diverse compound space. Indeed, the
held-out compound analysis (Fig. 4) suggests that the method
can be used to identify the MOAs of new compounds the model
has never used for training, which is an important use case for
HCS.

The ranking of PCC similarity for the three pairwise-
embedding groups (Fig. 3f and 5f) t with our expectation:
Same-compound same-MOA > different-compound same-MOA
Digital Discovery, 2023, 2, 1354–1367 | 1361
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> different-compound different-MOA. However, the average
pairwise PCC for the same-compound same-MOA group was
lower than expected (average PCC = 0.53 for JUMP1, 0.51 for
LINCS), indicating embedding variation even between
compound replicates. This could be due to several factors, such
as natural experimental variation within compound replicates,
or the presence of features that are not important for discrim-
inating MOAs (and hence room for model improvement). The
average pairwise PCC score of 0.23 (and 0.11 for LINCS) for the
different-compound same-MOA pairings was also similar to
other recent ndings.43 This indicated that although the model
correctly grouped different compounds that had the same MOA
into the same class, same-MOA embeddings had diversity.
Perhaps this is because different compounds in the same MOA
class may have differing degrees to which they induce pheno-
typic changes, with some compounds exerting more evident
changes while others were perhaps more modest, which would
then lead to phenotypic embeddings with higher variance. Still,
the fact that the average PCC for the different-compound same-
MOA group was 12 times higher (and 26 times higher for LINCS)
than the different-compound different-MOA average PCC indi-
cates that the embeddings were capturing MOA-specic
phenotypes despite the diversity within same-MOA groupings.
This reinforces the notion that the model had indeed learned
shared MOA phenotypes that persisted across different
compounds.

Accurate performance on test wells never seen during the
model's training suggests that the model was not leveraging intra-
well specic features for its learning, which can be a confounder
in microscopy.38 Furthermore, we ensured that each MOA's test
set wells were spread across multiple plates (Fig. 2d). MP-derived
embeddings for JUMP1 data did not seem to encode large batch
effects44 (difference in average PCC of same-MOA embeddings was
0.01 between different plates, ESI Fig. 7†). However, this effect was
more prevalent for the LINCS data (average PCC difference was
0.10). As a future avenue to explore, perhaps preprocessing images
to remediate batch effects in the LINCS dataset prior to learning
would enhance performance.

The model encoded MOA-associated phenotypes for two
independent Cell Painting datasets and exceeded performance
of two other methods in generating MOA-specic embeddings.
As an alternative to hand-engineered feature extraction, deep
learning did not require biological expertise for deciding which
features to extract, yet both DP and MP consistently yielded
better results than CP. In comparison to CP, MP was more
performant for both class latent assignment and k-NN (Fig. 3d, e
and 5d, e). Since we demonstrated that features specic to the
biological domain of interest can be learned, we advocate for
deep representation learning over traditional feature engi-
neering for phenotypic MOA determination.

Although DP is another deep learning approach to pheno-
typic proling that also uses an EfficientNet backbone archi-
tecture, we observed larger performance gains with MP. This
indicates that architecture alone is not sufficient for better MOA
proling, but rather attention to parameters such as learning
objective and image scale is necessary (ESI Fig. 8A†). It is also
interesting to see MP's advantage even when compared to
1362 | Digital Discovery, 2023, 2, 1354–1367
a separate DP model that was trained directly on the LINCS
dataset instead of on ImageNet (ESI Fig. 8B–E†). This DP model
was trained with the objective of classifying compounds as an
auxiliary task for the primary task of MOA classication (i.e.
weak supervision). When both models were allowed to train on
Cell Painting images, MP still yielded improvement in enrich-
ment (2.6× improvement over DP), k-NN metrics (percent
improvement: 194% F1, 188% precision, 182% recall), and the
class latent assignment metric (percent improvement: 256% F1,
300% precision, 212% recall). DP trained on LINCS had higher
performance in enrichment and class latent assignment than
DP trained on ImageNet, indicating that feature extraction is
most performant when the model is trained on the same data
types. Other than the quantitative advantages in performance,
MP has a practical advantage over DP of not requiring single cell
locations as input, extraction of which can be cumbersome.45,46

MP's standing as compared to DP for biological areas of interest
other than MOA have not been determined. Indeed DP (or CP)
may be a better choice for other biological domains or other
datasets.

It is important to note that metrics of success were conned
mainly to the task of identifying MOAs from learned represen-
tations. The reason we emphasize embedding generation as
opposed to accurate image classication is because a classi-
cation model is constrained to the single task of MOA classi-
cation, and because the classier will be of little value if
a compound's MOA is not part of the training set. In contrast,
an embedder can generate embeddings for any Cell Painting
images regardless of MOA (even MOAs not included in the
training set). These feature embeddings can then be used for
a variety of exploratory downstream tasks other than simply
identifying MOAs (e.g. understanding relationships between
perturbed MOAs and toxicity, or training additional classiers
on these embeddings for other biological tasks related to MOA).
Tests for other biological areas of interest, such as cellular
viability, drug toxicity, or protein target identication, have yet
to be studied. In such cases, deep learning can provide the
advantage of learning features that are directly relevant to the
biological area of interest (vs. undirected and unsupervised
feature extraction such as CP). We trained themodel specically
to identify MOA, but the feature-extraction method can apply
directly to any other discrete biological label of interest.
However, since we used strong supervision for MOA determi-
nation, our trained models are likely not viable for other
domains outside of studying MOA-related questions.

Certain considerations focus the scope of this study.
Although valuable as a proof-of-concept for assessing MP's
ability to embed unseen data in the right MOA spaces (Fig. 3f
and g), the well-holdout scheme cannot assess proling of
unseen compounds, which is themore pressing pharmaceutical
need. In contrast, the more rigorous compound holdout (Fig. 4)
is closer to a real-world use case. Although performance
differentials with CP and DP are overall lower for the
compound-holdout case than the well-holdout, we demonstrate
that MP-derived embeddings can be used to determine MOAs of
unseen compounds at a higher rate than CP and DP. For the
compound-holdout scheme, our study encompassed relatively
© 2023 The Author(s). Published by the Royal Society of Chemistry
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few compounds (and only one held-out compound per MOA).
Therefore, greater generalizability and application to a larger
compound space has yet to be determined. Furthermore, MP
performed poorly on certain MOAs (ESI Fig. 9†). This could be
due to many reasons such as non-optimal experimental setups
(e.g. with plate maps, drug concentration, cell type) or ineffec-
tive model architecture and training. Or, since Cell Painting
only captured ve channels, perhaps certain MOAs do not affect
any of the biological markers used in the Cell Painting assay,
and hence were phenotypically indistinguishable from control.
Or perhaps the limited dataset size for both JUMP and LINCS
did not provide adequate sample sizes for robust learning.
Additionally, all the analyses were performed on compounds
with just one known MOA. Understanding drugs that are
associated with multiple MOAs is an important task, but our
study did not address this question. Moreover, our study
spanned just two concentrations: 5 mM (for JUMP1) and 10 mM
(for LINCS). Generalizability to other concentrations, particu-
larly more clinically relevant lower concentrations, has yet to be
explored. It is also possible that these concentrations were too
low for certain drugs to affect the designated MOA—under-
standing of a drug's mechanistic effect at specic concentra-
tions remains an open question. Moreover, some MOA labels
were at a broad pathway level (e.g. DNA synthesis inhibitor)
rather than specic to a target (e.g. CDK inhibitor). Additionally,
when we evaluated the method on completely held-out
compounds (Fig. 4a), a minority of compounds had their
MOAs correctly identied (at most 22% for JUMP1 and 8.4% for
LINCS depending on the prediction method). Perhaps this is
a limitation of Cell Painting's ability to have distinguishable
phenotypes for certain MOAs. Or perhaps compounds even
within the same MOA class exerted unique phenotypic changes.
For certain compounds, these changes may have been too
different from what the model was exposed to during training.
Despite identifying a minority of held-out compounds, perfor-
mance was still higher on average than both CP and DP (and
multiple folds above a random classication). MOA identica-
tion is an innately difficult problem, but since MP performed
above the industry gold-standard (CP) for phenotypic proling,
we advocate for MP as a means of directed hypothesis genera-
tion. Furthermore, as with most deep representation learning
approaches, interpretability is lacking and falls behind tradi-
tional computer vision approaches like CP, which is more
interpretable. The latent feature embeddings that MP creates,
although more performant in this context, are largely unin-
terpretable. Lastly, practical considerations may also inform the
application of the method. EfficientNets require high memory
consumption and graphic processing unit (GPU) hardware for
tractable training. However, if adopters of the method simply
apply MP without any training on their datasets, then memory
and compute constraints are much less limiting. Furthermore,
we found the model did not need all technical replicates for
training for near-maximal performance, especially with the
LINCS dataset, indicating that identifying MOAs is possible in
smaller datasets (ESI Fig. 10†).

Here we provide a tool for creating quantitative representations
relevant to the task of MOA identication. With a MOA-specic
© 2023 The Author(s). Published by the Royal Society of Chemistry
embedder, we can query a drug's phenotypic effect on cells and
determine its MOA by similarity. We can then follow up with these
predictions via traditional target-based screens. This strategy of
broad proling followed with target-based experiments can
potentially be a powerful and cost-effective means of searching for
new therapeutics. Moreover, if the hypothesis holds true that
biologically similar MOAs would be similar in phenotypic latent
space, then a future direction can be using tools like MP to query
biological similarity between different MOAs. Although our study
included hundreds of MOAs, including more MOAs would be
another useful direction that will likely increase biological infer-
ence power. Another future endeavor can be understanding how
concentration affects MOA. Since MP relies solely on phenotypic
data, we can query images taken at different concentrations and
generate hypotheses about MOA concentration dependence. We
hope that the method will be readily applicable to archival Cell
Painting datasets and of broad use to future phenotypic screening
endeavors. To facilitate open sharing, the model and source code
are freely available at https://github.com/pzer-opensource/moa-
proler/.
Methods
Dataset preparation

The JUMP1 dataset is described in Chandrasekaran et al.34

Download instructions can be found here: https://github.com/
jump-cellpainting/2021_Chandrasekaran_submitted. We
downloaded the data on February 14, 2022. Briey, they
conducted the Cell Painting protocol with compound
perturbation plated at 5 mM. We kept only compounds that
had no more than one known MOA according to the CLUE
Connectivity Map,39 which can be found at https://clue.io/.
Experimentalists used both U2OS and A549 cells, which were
subjected to both 24 and 48 hours of compound treatment
before being imaged. The resulting dataset aer ltering
single-MOA compounds consisted of 81 310 images (66 270
excluding DMSO) and 7958 wells (6486 excluding DMSO)
coming from 23 384-well plates.

The LINCS Cell Painting dataset36,43 can be found at doi:
10.5281/zenodo.5008187. We downloaded the data on March 12,
2022, and sub-selected the data as follows. We chose batch 1 due
to its larger cell count. For batch 1, authors only used A549 cells,
which were subjected to 48 hours of compound treatment before
being imaged. Like the JUMP1 dataset, we kept only compound
data that had no more than one known MOA according to the
CLUE Connectivity Map. We also sub-selected compounds at 10
mM concentration because this dose produced the strongest
phenotype across compounds.43 The resulting dataset aer
ltering for single-MOA compounds at 10 mM concentration con-
sisted of 87 729 images (56 283 excluding DMSO) and 9749 wells
(6255 excluding DMSO) coming from 136 384-well plates. All
compounds had replicates plated at the same well locations.
Data preprocessing and model training

Each well was shuffled and partitioned into only one of three
sets, following a 60% training, 10%, validation, and 30% test
Digital Discovery, 2023, 2, 1354–1367 | 1363
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split, such that each well and all its image elds were assigned
to only one of the three sets. The 60/10/30 dataset splits were
constructed independently for each MOA. Each MOA was
present in each of the three sets. We then class-balanced the
training set so that each MOA had equal representation (by
duplicating minority-class image examples shown to the
model). We also included the negative DMSO as a class to learn
but excluded it from all performance metrics because of its
overrepresentation in the dataset. All MOAs (including MOAs
with only one compound) were included in training to maxi-
mize the dataset size and to direct the model to differentiate
between as many MOAs as possible. However, these single-
compound MOAs were excluded in all test analyses to better
assess inter-compound MOA proling versus replicate proling.

For both datasets, images were captured in ve channels at
a resolution of 1080 × 1080px. The ve channels came from ve
different biomarkers: Hoechst 33342 for DNA, Alexa 488 for the
endoplasmic reticulum, Alexa 488 long for RNA, Alexa 568 for
the actin cytoskeleton, golgi, and plasma membrane, and Alexa
647 for the mitochondria. We rst scaled each image to the
range zero to one, and then standardized them to a mean of
zero and standard deviation of one. We augmented training by
permuting each channel's brightness and contrast indepen-
dently by a random factor in the range of 0 to 0.30 (just for the
LINCS dataset because the image type for JUMP1 was not sup-
ported by PyTorch's transforms.ColorJitter function). As a nal
training augmentation step for both datasets, we performed
random 90-degree rotations on each image, along with random
horizontal ips. For a given eld of view, we stacked each of the
ve augmented image channels into a single tensor.

We then fed this tensor (5 × 1080 × 1080) into a modied
EfficientNet-B0 architecture with the task of classifying the
image's compound's MOA (multi-class classication). The only
modication to EfficientNet was adjusting the input layer to
receive ve channels instead of three. We trained for 100 epochs
and selected the model that had the highest accuracy on the
validation set (epoch 76 for JUMP1 and epoch 82 for LINCS). We
used a learning rate of 0.1, a weight decay of 0.0001, a dropout
rate of 0.2, a learning momentum of 0.9, a learning rate
scheduler with a gamma decay of 0.1 at epoch 50 and 75, and
batch size of 56 for training. Hyperparameters were chosen
based on the default recommendations of the EfficientNet
package. We trained using four NVIDIA A-100 GPUs.

For training on smaller subsets of data (ESI Fig. 10†), all
hyperparameter choices were kept the same as the training
scheme on the full training set. The compound-replicate wells
excluded from training were chosen randomly for each training
run. The maximal allotted compound-replicates values went up
to the maximal number of compound replicates in the full
training set.

For the logistic regression models (ESI Fig. 2†), we trained
models to classify an image embedding's MOA. We used
sklearn's LogisticRegression package with a one-vs.-rest
scheme, L2 regularization, the Broyden–Fletcher–Goldfarb–
Shanno algorithm solver, and a max-iteration count of 10 000.
These were the standard default parameters except for the max-
iteration count, which required more iterations before
1364 | Digital Discovery, 2023, 2, 1354–1367
convergence. To generate the MP training set embeddings, we
fed each image in the training set through the trained Effi-
cientNet, extracted the last convolutional layer, performed an
average pool operation, and attened the result. For CP and DP
training set embeddings, we DMSO-standardized the existing
embeddings (see CellProler and DeepProler Extraction)
before feeding them to the logistic regression model. We then
applied the trained logistic regression models (one for each of
MP, CP, and DP) to the held-out test set ltered for multiple-
compound MOAs.
CellProler and DeepProler extraction

All CP embeddings were provided at the well-level (in this case,
average embeddings of all single cells within a well). We down-
loaded CP embeddings for the JUMP1 dataset from https://
github.com/jump-cellpainting/2021_Chandrasekaran_submitted.
The CP pipeline used for extraction can be found at https://
github.com/jump-cellpainting/2021_Chandrasekaran_submitted/
tree/main/pipelines/2020_11_04_CPJUMP1. We downloaded CP
embeddings for LINCS from: https://github.com/broadinstitute/
lincs-cell-painting/tree/master/proles. The CP pipeline used for
extraction can be found at https://github.com/broadinstitute/
lincs-cell-painting/blob/master/proles/README.md and https://
github.com/broadinstitute/lincs-cell-painting/blob/master/
proles/proling_pipeline.py.

To compare CP and MP embeddings independent of the many
possible downstream post-processing transformations, we used
the raw provided CP embeddings and performed a simple stan-
dardization of features with respect to the DMSO control wells on
the same plate (DMSO-standardization). For each feature f on plate
p, we subtracted the mean of the DMSO wells of plate p of feature f
and divided by the standard deviation of the DMSOwells of plate p
of feature f. This was done to prevent features with wider ranges
from disproportionately affecting similarity metrics, and to
normalize features to the plate controls. To compare baseline MP
performance to more optimized CP embeddings (robustizing by
plate viamedian absolute deviation, selecting features via variance
and feature correlation thresholding, and spherizing to DMSO), we
also downloaded optimized proles for JUMP1 from https://
github.com/jump-cellpainting/2021_Chandrasekaran_submitted/
tree/main/proles and for LINCS from https://github.com/
broadinstitute/lincs-cell-painting/tree/master/spherized_proles/
proles. We compared these hyper-optimized proles with
baseline MP embeddings that underwent DMSO-standardization
(ESI Fig. 4 and 6†).

The repository for DP can be found at https://github.com/
cytomining/DeepProler. DP leverages an EfficientNet trained
on the ImageNet dataset for proling. DP employed a weak-
supervision approach (i.e. train on one task like ImageNet or
compound identication, evaluate on a different task like MOA
similarity). We derived DP embeddings using the “prole”
function of DP with the default congurations and pre-trained
weights automatically downloaded by DP on April 12, 2022.
We aggregated single-cell DP embeddings into well-level
embeddings by taking the median over all single-cell embed-
dings within a well, and then DMSO-standardized the features.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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When comparing MP and DP when both were allowed to
train on the LINCS dataset (ESI Fig. 8†), we extracted and
DMSO-standardized all available DP embeddings from https://
github.com/broadinstitute/neural-proling/tree/main/training/
runs/1102. We chose these embeddings because the author
reported the highest validation accuracy on this set. Outlier
control was not applied to any of the CP, DP, or MP
embeddings.

Classication analysis

For all classier evaluation metrics (Fig. 3a and 5a), we binar-
ized the classes using sklearn's label_binarize function, and
plotted using sklearn's precision_recall_curve function.
Random baseline was set to the positive prevalence of the
binarized labels. We did not include the negative control DMSO
condition for analysis of raw-image classication due to its large
class over-representation.

Embedding extraction and analysis

Once the MP models were fully trained, we applied them to the
held-out test set of wells never exposed to the model's training.
Since a single-compound MOA cannot be disentangled from its
compound, we removed these MOAs and corresponding wells
from the test set. To extract MP embeddings, we fed each image
within a well through the EfficientNet, extracted the last con-
volutional layer, performed an average pool operation, attened
the result, and DMSO-standardized the embedding. The image-
eld level embeddings had a size of 1280. We then took the
median of all image-eld level embeddings that belonged to the
same well and assigned this as the well-level embedding.

Once we had well-level embeddings, we performed four anal-
yses to assess how well the embeddings captured MOA-specic
features. We excluded negative control DMSO wells from all
embedding analyses. For assessing the similarity between two
embeddings, we used PCC (centered cosine similarity).

First, we calculated the enrichment factor, which was the
odds ratio in a one-sided Fisher's exact test (Fig. 3b and 5b).
This test assessed whether high PCC similarity for an embed-
ding pair is independent of the embeddings sharing the same
MOA. We used a range of PCC percentiles (from the 98th to the
99.8th percentile) as the thresholds for determining which
embedding pairs were considered strongly correlated (versus
weakly correlated). The odds ratio was calculated as (a/b)/(c/d)
for the following 2 × 2 frequency table:
© 2023 The Author(s). Publis
MOA replica
hed by the Royal Societ
Non-MOA replica
Strongly correlated
 a
 b

Weakly correlated
 c
 d
Second, we calculated the average pairwise PCCs for two
groupings of well-level embeddings: (1) those that had the same
MOA, (2) those that had different MOA. Within each grouping,
we calculated the PCC for each pair of wells and averaged the
result. Delta values were the differences between the two
groups' averages (Fig. 3c and 5c).
y of Chemistry
Third, we calculated k-NN metrics by nding the k closest
neighbors for each well based on PCC similarity between the well
embeddings and taking the majority MOA of those neighbors as
the predicted MOA (Fig. 3d and 5d). We evaluated all possible
values of k from one to the total number of embeddings minus
one. For each k, we used sklearn's f1_score, precision_score, and
recall_score functions. Averages were weighted by support (the
number of true instances for each label).

Fourth, we derived a MLE by grouping all the wells of that
MOA and taking the median (Fig. 3e and 5e). We treated each
well in the test set as a query well. For each query well, we
calculated the class embeddings with the query well excluded,
and then assigned a prediction for the query well's MOA based
on which MLE was the most similar (by PCC) to the query well's
embedding. We calculate weighted-average F1, precision, and
recall scores for these predictions with a one-vs.-rest scheme
using the sklearn's f1_score, precision_score and average_r-
ecall_score functions.

As a last metric of embedding integrity andMOA-specicity, we
calculated pairwise PCC averages of three groups: (1) embeddings
with the same compound (and hence sameMOA), (2) embeddings
with different compound but sameMOA, and (3) embeddings with
different compound and different MOA (Fig. 3f and 5f). All pairs
were unique and an embedding was never paired with itself. We
determined statistical signicance of difference of means with
a two-sided z-test (see “Statistical Tests”).

Analysis for held-out compounds

For the held-out compound analyses (Fig. 4), we split the dataset
by compound instead of by well. We held out one randomly
selected compound for each MOA class that was represented by
at least two unique compounds. All other compounds were used
for training and validation, with 70% of the wells used for
training, and 30% for validation (wells were assigned
randomly). We trained a new model based on this dataset split
using the same hyperparameter choices as the analysis for the
well-split scheme. We made MOA predictions for the held-out
compounds using the model's generated embeddings. For the
training set, each MOA was assigned a MLE by aggregating (via
median) over all well-level embeddings belonging to the MOA.
For determining the nal MOA of a held-out compound, we
evaluated two methods:

(1) Individual vote: For each well-level embedding in the
held-out test set, we assigned its MOA prediction as the MOA of
the most similar MLE via PCC. Finally, we assigned
a compound's MOA prediction as the majority MOA over these
well-level predictions.

(2) Aggregated vote: For each held-out compound, we derived
an aggregated CLE by taking the median over all well-level
embeddings of the compound. Finally, we assigned the
compound's MOA prediction as the MOA of the MLE most
similar to CLE by PCC.

Statistical tests

For all statistical test of signicance, we performed a two-sided
z-test for difference of means. We used a null hypothesis stating
Digital Discovery, 2023, 2, 1354–1367 | 1365
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that the means were equal, and an alternative hypothesis
stating that the means were different. Signicance was set at p <
0.05. Each sample corresponded to a well-level embedding.
Data availability

The code and datasets used in this study are public and can be
found at https://github.com/pzer-opensource/moa-proler.
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