
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 4
:1

3:
33

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
ESAMP: event-so
aModelyst LLC, Palo Alto, CA, 94303, USA.
bAccelerated Materials Design and Discovery

94040, USA. E-mail: santosh.suram@tri.glo
cDivision of Engineering and Applied Scie

Pasadena, CA 91125, USA. E-mail: gregoire@

† Electronic supplementary informatio
discussion for relational database im
https://doi.org/10.1039/d3dd00054k

Cite this: Digital Discovery, 2023, 2,
1078

Received 30th March 2023
Accepted 14th June 2023

DOI: 10.1039/d3dd00054k

rsc.li/digitaldiscovery

1078 | Digital Discovery, 2023, 2, 107
urced architecture for materials
provenance management and application to
accelerated materials discovery†

Michael J. Statt,*a Brian A. Rohr,a Kris Brown,a Dan Guevarra,c Jens Hummelshøj,b

Linda Hung, b Abraham Anapolsky,b John M. Gregoire *c

and Santosh K. Suram *b

While the vision of accelerating materials discovery using data driven methods is well-founded, practical

realization has been throttled due to challenges in data generation, ingestion, and materials state-aware

machine learning. High-throughput experiments and automated computational workflows are

addressing the challenge of data generation, and capitalizing on these emerging data resources requires

ingestion of data into an architecture that captures the complex provenance of experiments and

simulations. In this manuscript, we describe an event-sourced architecture for materials provenance

(ESAMP) that encodes the sequence and interrelationships among events occurring in a simulation or

experiment. We use this architecture to ingest a large and varied dataset (MEAD) that contains raw data

and metadata from millions of materials synthesis and characterization experiments performed using

various modalities such as serial, parallel, multi-modal experimentation. Our data architecture tracks the

evolution of a material's state, enabling a demonstration of how state-equivalency rules can be used to

generate datasets that significantly enhance data-driven materials discovery. Specifically, using state-

equivalency rules and parameters associated with state-changing processes in addition to the typically

used composition data, we demonstrated marked reduction of uncertainty in prediction of overpotential

for oxygen evolution reaction (OER) catalysts. Finally, we discuss the importance of ESAMP architecture

in enabling several aspects of accelerated materials discovery such as dynamic workflow design,

generation of knowledge graphs, and efficient integration of simulation and experiment.
Introduction

Accelerating materials discovery is critical for a sustainable
future and the practical realization of emergent technologies.
Data-driven methods are anticipated to play an increasingly
signicant role in enabling this desired acceleration, which
would be greatly facilitated by the establishment and commu-
nity adoption of data structures and databases that capture data
from the broad range of materials experiments. In computa-
tional materials science, automated workows have been
established to produce large and diverse materials datasets.
While these workows and associated data management tools
can be improved to facilitate capturing of a materials' state and
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enable easy capture of re-congurable analysis methods, their
current implementations have facilitated a host of materials
discoveries,1–4 emphasizing the importance of continued
development of materials data architectures. In case of experi-
mental materials science, the majority of the data remains in
human readable format and is not ingested into a database. In
cases where the databases exist, they are either large with
limited scope (ICSD, ICDD, which contains hundreds of thou-
sands of X-ray diffraction patterns) or are diverse but have
limited data.5–7 This has limited application of machine
learning for acceleration of experimental materials discovery to
specic datasets such as microstructure data, X-ray diffraction
spectra, X-ray absorption spectra, or Raman spectra.8–11

Recent application of high-throughput experimental tech-
niques has resulted in two large, diverse experimental datasets:
(a) High Throughput Experimental Materials (HTEM) dataset,
which contains synthesis conditions, chemical composition,
crystal structure, and optoelectronic property measurements
(>150 000 entries), and (b) Materials Experiment and Analysis
Database (MEAD) that contains raw data and metadata from
millions of materials synthesis and characterization experi-
ments, as well as the corresponding property and performance
© 2023 The Author(s). Published by the Royal Society of Chemistry
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metrics.12,13 These datasets contain thousands to millions of
data entries for a given type of experimental process, but the
experimental conditions or prior processing of the materials
leading up to the process of interest can vary substantially. The
multitude of process parameters and provenances results in
datasets whose richness could be fully realized and utilized if
the context and provenance of each experiment were appro-
priately modeled. In contrast to computational data, where the
programmatic workows facilitate provenance tracking, exper-
imental workows generally experience more variability from
many on-the-y decisions as well as environmental factors and
evolution of the instrumentation. Sensitivity to historical
measurements is generally higher in experiments since any
measurement could conceivably alter the material, making any
materials experiment a type of “processing.” Factors ranging
from instrument contamination to driing detector calibration
also may play a role. Therefore, a piece of experimental data
must be considered in the context of the parameters used for its
generation and the entire experimental provenance.

The importance of sample and process history of the exper-
imental data makes it challenging to identify which measure-
ment data can be aggregated to enable data-driven discovery.
The standard practice for generating a shareable dataset is to
choose data that match a set of process and provenance
parameters and consider most or all other parameters to be
inconsequential. This method is highly subjective to the indi-
vidual researcher. For both human and machine users of the
resulting dataset, the ground truth of the sample-process
provenance is partially or fully missing. In addition, an injec-
tion of assumptions prior to ingestion into a database creates
datasets that do not adhere to the Findability, Accessibility,
Interoperability, and Reusability (FAIR) guiding principles14

resulting in lack of interoperability, creation of data silos that
cannot be analyzed efficiently to generate new insights and
accelerate materials discovery. As a result, the data's value is
never fully realized, motivating the development of data
management practices that closely link data ingestion to data
acquisition.

Given the complexity and variability in materials experi-
mentation, several tailored approaches such as ARES, AIR-
Chem, and Chem-OS have been developed to enable integra-
tion between data ingestion and acquisition for specic types of
experiments.15–17 Recently, a more generalizable solution for
facilitating experiment specication, capture, and automation
called ESCALATE was developed.18 Such approaches aim to
streamline and minimize information loss that occurs in an
experimental laboratory. We focus on modeling the complete
ground truth of materials provenances that could operate on
structured data resulting either from a specialized in-house
data management soware or a more general framework such
as ESCALATE.

Prior efforts such as TheMaterials Commons,19 GEMD,20 and
PolyDAT21 have also focused on modeling materials prove-
nances. GEMD uses a construction based on specs and runs for
materials, ingredients, processes, and measurements. However,
there isn't an explicit distinction between measurements and
processes. Especially, in case of in-operando or in situ
© 2023 The Author(s). Published by the Royal Society of Chemistry
experiments, a single experiment corresponds to both a process
and also a measurement. PolyDAT focuses on capturing trans-
formations and characterizations of polymer species. Materials
Commons focuses on creation of samples, datales, and
measurements by processes. We acknowledge the efforts of
these earlier works, here we aim to further simplify the data
architecture such that it is easily generalizable for various data
sources. We also simplify various terminologies such as mate-
rials, ingredients, processes, measurements, characterizations,
transformations into three main entities – sample, process, and
process data. We also introduce a concept called “state” that
enables dynamic sample / process data mapping and
demonstrate its value for machine learning.

We use an event-sourced architecture for materials prove-
nances (ESAMP) to capture the ground truth of materials
experimentation. This architecture is inspired by event-sourced
architectures used in soware design wherein the whole
application state is stored as a sequence of events. This archi-
tecture maintains relationships among experimental processes,
their metadata, and their resulting primary data to strive for
comprehensive representation of the experiments. We believe
that these attributes make ESAMP broadly applicable for
materials experiments and beyond. We discuss database
architecture decisions that enable deployment for a range of
experiment throughput and automation levels. We also discuss
the applicability of ESAMP to primary data acquisition modes
such as serial, parallel, and multimodal experimentation.
Finally, we present a specic instantiation of ESAMP for one of
the largest experimental materials databases (MEAD) named
Materials Provenance Store22 (MPS) consisting of more than 6
million measurements on 1.5 million samples. We demonstrate
facile information retrieval, analysis, and knowledge generation
from this database. The primary use case described herein
involves training machine learning models for catalyst
discovery, where different denitions of provenance equiva-
lence yield different datasets for model training that profoundly
impact the ability to predict catalytic activity in new composi-
tions spaces. We also discuss the universality of our approach
for materials data management and its opportunities for the
adoption of machine learning in many different aspects of
materials research.
ESAMP description
Overview

ESAMP is a database architecture designed to store experi-
mental materials science data. It aims to capture all three of the
types of aforementioned data: (1) information about the
samples in the database including storing provenance
regarding how they were created and what processes they have
undergone, (2) raw data from processes run on the samples, and
(3) information derived from analyses of these raw data.

Altogether, this architecture enables users to use simple SQL
queries to answer questions like:

� What is the complete history of a given sample and any
other samples used to create this one?
Digital Discovery, 2023, 2, 1078–1088 | 1079
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Fig. 1 An overview of the framework showing the central location of
the sample_process entity and its relationship to the three major areas
of the framework.
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�Howmany samples have had XRD run on them both before
and aer an electrochemistry experiment?

�What is the gure of merit resulting from a given set of raw
data analyzed using different methods?

Identication of data to evaluate any scientic question
requires consideration of the context of the data, motivating our
design of the ESAMP structure to intuitively specify contextual
requirements of the data. For example, if a researcher wishes to
begin a machine learning project, creating a custom dataset for
their project can be done by querying data in the ESAMP
architecture. For example, training data for machine learning
prediction of the overpotential in chronopotentiometry (CP)
experiments from catalyst composition can be obtained via
a query to answer questions such as

� Which samples have undergone XPS then CP?
� How diverse are the sample compositions in a dataset?
The researcher may further restrict the results to create

a balanced dataset or a dataset with specied heterogeneity with
respect to provenance and experiment parameters. The query
provides transparent self-documentation of the origins of such
a dataset; any other researcher wondering how the dataset was
created can look at the WHERE clause in the SQL query to see
what data was included and excluded.

To enable these benets, we must rst track the state of
samples and instruments involved in a laboratory to capture the
ground truth completely. In this article, we focus mainly on the
state of samples and note that the architecture could capture
the state of instruments or other research entities. A sample
provenance can be tracked by considering three key entities:
sample, process, and process_data, which are designed to
provide intuitive ingestion of data from both traditional manual
experiments and their automated or robotic analogues.

Sample. A sample is a label that species a physically-
identiable representation of an entity that can undergo many
processes (e.g. the liquid in that vial or the thin lm on that
substrate). Samples can be combined or split to form complex
lineages, such as an anode and a cathode being joined in
a battery or a vial of precursor used in multiple catalyst prepa-
rations. The only fundamental assumption placed on a sample
is that it has a unique identier so that its lineage and process
history can be tracked.

Process. A process is an event that occurs to one or more
samples. It is associated with an experiment in a laboratory,
such as annealing in a sample furnace or performing spectro-
scopic characterization. Processes have input parameters and
are identied by the machine (or human) that performed them
at a specic time.

Process_data. Process data is data generated by a process
that applies to one or more samples that underwent that
process. Since the process but not the specic ProcData is
central to sample provenance, management of ProcData can
occur in a connected but distinct part of the framework. As
many raw outputs from scientic processes are difficult to
interpret without many additional steps of analysis, ProcData is
connected to a section of the framework devoted to iterative
steps of analysis where ProcData is transformed and combined
to form higher-level gures of merit (FOM).
1080 | Digital Discovery, 2023, 2, 1078–1088
These three entities connected via a sample_process table
form the framework's central structure. Fig. 1 shows these
entities and their relationships. The three shaded boxes indi-
cate the secondary tables that support the central tables by
storing process details, sample details, and analyses. Each
region is expanded upon below.

Samples, collections, and lineage

The trinity of sample, process, and process-data enable us to
have a generalized framework that captures the ground truth
associated with any given sample in an experimental dataset.
However, interpretation of experimental data requires us to
capture the provenance of a sample completely. That is,
throughout the sample's lifetime, it is important to track three
key things:

� How was the sample created?
� What processes occurred to the sample?
� If the sample no longer exists, how was it consumed?
The middle question is directly answered by the sequence of

entries in the sample_process table wherein each record in
sample_process species the time that a sample underwent
a process. This concept is complicated by processes that merge,
split, or otherwise alter physical identication of samples. Such
processes are oen responsible for the creation and consump-
tion of samples, for example the deposition of a catalyst onto an
electrode or the use of the same precursor in many different
molecule formulations. In these cases, the process history of the
“parent” catalyst or precursor is an inherent part of the prove-
nance of the “child” catalyst electrode or molecular material.
These potentially-complex lineages are tracked through the
sample_ancestor and sample_parent entities as shown in
Fig. 2a.

Both the SampParent and SampAnc entities are dened by
their connection to two sample entities, indicating a parent/
ancestor and child/descendant relationship, respectively. The
SampParent entity indicates that the child sample was created
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 An overview of the three major areas of the framework as
shown in Fig. 1. Each region is centered on one of the three entities
connected to the central SampProc entity: (a) Samp (b) ProcData (c)
Proc.
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from the parent sample and should inherit its process history
lineage. Each SampParent can be decorated with additional
attributes to indicate its role in the parent–child relationship,
such as labeling the anode and cathode when creating a battery.
The SampAnc entity is nearly identical to SampParent with an
additional attribute called “rank” that indicates the number of
generations between the ancestor and the descendant. A rank of
0 indicates a parent–child relationship, while a rank of 2 indi-
cates a great-grandparent type relationship. The parent and the
ancestor tables are not essential to the database and are tables
that can be derived from the materials provenance. However,
these derived tables are extremely valuable for simplifying
complex queries dependent on sample lineages.

The nal entity connected to a sample is the collection. It is
common for researchers to group samples. For example, in high
throughput experiments many samples may exist on the same
chip or plate, or researchers may include in a collection all
samples synthesized for a single project. In these cases,
researchers need to be able to keep track of and make queries
based on that information. It is clear from the previously-
mentioned example that many samples can (and almost
always do) belong to at least one collection. It is also important
that we allow for the same sample to exist in many collections.
For example, a researcher may want to group samples by which
plate or wafer they are on, which high-level project they are
a part of, and which account they should be billed to all at the
same time. The corresponding many-to-many relationships are
supported by ESAMP.
Processes & process details

A process represents one experimental procedure (e.g.
a synthesis or characterization) that is applied to a sample. The
only requirement imposed on a process is that it must be
© 2023 The Author(s). Published by the Royal Society of Chemistry
possible to sort them chronologically. Chronological sorting is
essential for accurately representing a sample's process history.
Therefore, each process is uniquely associated with a time-
stamp and machine/user. There is an underlying assumption
that for a given timestamp and a given machine/user, only 1
process is occurring, although that process may involve
multiple samples.

While single-step experiments on machine-based workows
can easily provide a precise timestamp for each process, it is
cumbersome and error-prone for researchers to provide these at
the timescale of seconds or even hours. Additionally, somemulti-
step processes may reuse the initial timestamp throughout each
step, associating an initiation timestamp with a closely-coupled
series of experiments whose ordering is known but whose indi-
vidual timestamps are not tracked. It is important to add a simple
ordering parameter to represent the chronology when the time-
stamp alone is insufficient. For tracking manual experiments,
this ordering parameter allows researchers to record the date and
a counter for the number of experiments they have completed
that day. Inmulti-step processes, each step can be associated with
an index to record the order of steps.

Processes indicate that an experimental event has occurred
to one or more samples. However, it is important to track
information describing the type of process that occurred and
the process parameters used, or generally any information that
would be required to reproduce the experiment. A given
research workow may comprise many different types of
experiments, such as electrochemical, XPS, or deposition
processes. Each of these types of processes will also be associ-
ated with a set of input parameters. The ProcDet entity and its
associated process-specic tables are used to track this impor-
tant metadata for each process. A more comprehensive
discussion on the representation of process details for various
relational database management system (RDMS) implementa-
tions is provided in the ESI.†
Process data & analysis

While ProcDet tracks inputs to a Proc, ProcDet tracks the output
of a Proc. For reproducibility, transparency, and ability to
continue experiments without reliance on an active database
connection, it is prudent to store process outputs as raw les
independent from the data management framework. Therefore,
while ProcData may include relevant data parsed from the raw
les, it should also always include a raw le path. Additionally,
attributes can be added to specify the location to search for the
le, such as an Amazon S3 bucket or local storage drive. A single
le may also contain multiple pieces of data that each refers to
different samples. This complexity motivates the inclusion of
the start and end line numbers for a le identifying information
for ProcData. If an entire le should be consumed as a single
piece of process data, null values can be provided for those
attributes. As a signicant amount of scientic data is stored as
comma-separated values (CSV) les, it can also be benecial to
parse these les directly into values in the database utilizing
exible column data types, such as JavaScript Object Notation
(JSON) that is supported by modern RDMS's. For large datasets,
Digital Discovery, 2023, 2, 1078–1088 | 1081
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storing data using efficient binary serializations such as Mes-
sagepack could be benecial.23

The relationship between process outputs and their associ-
ated processes and samples can be complex. The most
straightforward relationship is one piece of process data is
generated for a single sample, which is typically the case for
serial experimentation and traditional experimentation per-
formed without automation. In parallel experimentation,
a single process involves many samples, and if the resulting
data is relevant to all samples, SampProc has a many-to-one
relationship to ProcData. In multi-modal experiments,
multiple detectors can generate multiple pieces of data for
a single sample in a single process, where SampProc has a one-
to-many relationship to ProcData. Parallel, multi-model exper-
imentation can result in many-to-many relationships. To model
these different types of experimentation in a uniform manner,
ESAMP manages many-to-many relationships between Samp-
Proc and ProcData.

The raw output of scientic processes may require several
iterative analytical steps before the desired results can be ob-
tained. As the core tenet of this framework design is tracking
the full provenance of scientic data, analytical steps must have
their lineage tracked similarly to that of samples and processes.
This is achieved by the analysis, analysis_details, and ana-
lysis_parent tables. The analysis table represents a single
analytical step and, similar to Proc, is identied by inputs,
outputs, and associated parameters. Just as Proc has a many-to-
many relationship with sample, analysis has a many-to-many
relationship with process_data; a piece of process data can be
used as an input to multiple analyses and a single analysis can
have multiple pieces of process data as inputs. The type of
analysis and its input parameters are stored in the ana-
lysis_detail entity. The analysis type should dene the analytical
transformation function applied to the inputs, while the
parameters are fed into the function alongside the data inputs.

An important difference between analysis and Proc is that an
analysis can use the output of multiple ProcData and analysis
entities as inputs. This is analogous to the parent–child rela-
tionship as that modeled by SampParent. The introduction of
analysis_parent table allows for this complex lineage to be
modeled. This allows for even the most complex analytical
outputs to be traced back to the raw ProcData entities and the
intermediate analyses on which they are based.
Fig. 3 An example of a sample state graph. Sample 1 is shown
undergoing five processes with types P1, P2, or P3. A state is defined
between every process. The right boxes show how different sets of
rules governing whether a process is state-changing or not can
change the equivalency between the states. Without any rules, all
processes are assumed to be state-changing, and no states are
equivalent. This constraint can be fully relaxed to make all states
equivalent. It can also partially relaxed based on process type or
process details, such as g, as shown in the lower two rule sets.
State

During experiments a sample may be intentionally or unin-
tentionally altered. For example, a researcher couldmeasure the
composition of a sample, perform an electrochemical process
that unknowingly changes the composition, and nally perform
a spectroscopic characterization. Even though the sample label
is preserved throughout these three processes, directly associ-
ating the composition measurement with the spectroscopic
measurement can lead to incorrect analysis because the inter-
vening process altered the link between the two. This example
motivates the need for the nal entity in the framework, state.
The ESAMP model for state assumes that every process
1082 | Digital Discovery, 2023, 2, 1078–1088
irreversibly changes the sample. A state is dened by two sam-
ple_process entities that share the same sample and have no
sample_process chronologically between them. By managing
state under the most conservative assumption that every
process alters the sample's state, any state equivalency rules
(SERs), i.e. whether a certain type of process alters the state or
not, can be applied in a transparent manner. A new state table
can be constructed from these SERs, which may be easily
modied either by a human or a machine.

As state essentially provides a link between the input and
output of a process, it is best visualized as a graph. Fig. 3 shows
an example state graph. Sample 1 undergoes a series of ve
processes that involve three distinct types of processes. A new
state is created aer each process. If no relaxation assumptions
are applied, all processes are assumed to be state-changing, and
since all states are non-equivalent, it might be invalid to share
process data or derived analysis amongst them. Under the most
relaxed constraint, no processes are state-changing. However,
the utility of state is the ability to apply domain and use-specic
rules to model SERs. For example, consider process 3 (P3) to be
a destructive electrochemical experiment that changes the
sample's composition, while the other processes are innocuous
characterization experiments. By designating only P3 as state-
changing, the sample can be considered to have only 2
unique states. SERs can be further parameterized by utilizing
the ProcDet's of the process to determine state-changing
behavior. For example, if P2 is an anneal step, we might only
© 2023 The Author(s). Published by the Royal Society of Chemistry
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consider it state-changing if the temperature rises above
a certain level. By dening simple rules, merging equivalent
states yields simpler state graphs that serve as the basis for
dataset curation. This powerful concept of state is enabled by
the core framework's ability to track the process provenance of
samples throughout their lifetime.
Database implementation

The framework (Fig. 4) so far has been dened using standard
entity relationship language. It is important to note that this
framework can be instantiated in most or all RDMS's and is not
tied to a specic implementation. However, the specic imple-
mentation details of the framework may change slightly
depending on the RDMS used. These changes are vital in deciding
the RDMS system that is appropriate for a particular use case.

Fig. S1† shows the framework in its entirety. All double-sided
arrows indicate a many-to-many relationship. The implementa-
tion of many-to-many relationships differs between SQL, NoSQL,
and graph databases. In a SQL RDMS such as PostgreSQL, the
standard practice uses a “mapping” table where a row is dened
simply by its relationship to the two tables with the many-to-
many relationship. In graph databases, many-to-many relation-
ships can be represented simply as an edge between two nodes.
Additionally, entities that track lineages, such as SampParent,
state, and analysis_parent, can also be represented simply as
edges between two nodes of the same type. The cost of this
simplicity is the reduced constraints on column datatypes as well
as a less standardized query functionality.

If complicated process provenance and lineages are expected
to exist along with a need to query those lineages, then a graph
database may be the right choice. However, if simpler lineages
with large amounts of well-structured data are used, a standard
SQL RDMS would be more advantageous. Data can even be
migrated quite easily between implementations of this frame-
work in two RDMS's if the slight differences noted above are
carefully considered. In this implementation we used a post-
greSQL database due to the presence of a large amount of
reasonably well-structured data. In addition, the postgreSQL
database allows us to build a graph database on top of it, which
can be used for complex provenance queries.
Fig. 4 A full graphical representation of the framework described in
Fig. 1 and 2. Single headed arrows indicate a many-to-one relationship
in the direction of the arrow. Double-headed arrows indicate a many-
to-many relationship.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Results

Implementation of the ESAMP framework is demonstrated via
ingestion and modeling of MEAD, the database resulting from
high throughput experimental investigation of solar fuels
materials in the Joint Center for Articial Photosynthesis
(JCAP).24 MEAD contains a breadth and depth of experiments
that make it representative of a broad range of materials
experiments. For example, the 51 types of processes include
serial, parallel, and multi-modal experiments.

Using the most conservative rule that every process is state-
changing, the database contains approximately 17 million
material states. This dataset contains many compositions in
high-order composition spaces, particularly metal oxides with
three or more cation elements. For electrocatalysis of the oxygen
evolution reaction (OER), the high throughput experiments
underlying MEAD have led to the discovery of catalysts with
nanostructured mixtures of metal oxides in such high-order
composition spaces.25–27 Given the vast number of unique
compositions in these high-dimensional search spaces, a crit-
ical capability for accelerating catalyst discovery is the genera-
tion of machine learning models that can predict composition-
activity trends in high-order composition spaces, motivating
illustration of ESAMP for this use case.
Catalyst discovery use case

To demonstrate the importance and utility of the management
of process provenance and parameters, we consider a use case
where data is curated to train a machine learning model and
predict the catalytic activity of new catalyst compositions. We
commence by considering all MEAD measurements of metal
oxides synthesized by inkjet printing and evaluated as OER
electrocatalysts, particularly the OER overpotential for an
anodic electrochemical current density of 3 mA cm−2. This
overpotential is the electrochemical potential above 1.23 V vs.
RHE required to obtain the current density, so smaller values
correspond to higher, desirable catalytic activity. Measurement
of this overpotential can be made by cyclic voltammogram (CV)
or chronopotentiometry (CP) measurements.

Querying MEAD for all measurements of this overpotential
and identifying the synthesis composition for each sample
produces a dataset of composition and activity regardless of
each sample's history prior to the CP experiment and the elec-
trochemical conditions of the measurement. This dataset is
referred to as dataset A in Fig. 5a and contains 660 260
measurements of overpotential. Considering a provenance to be
the ordered set of process types that occurred up to the over-
potential measurement, this dataset contains 19 129 unique
provenances. To increase the homogeneity in provenance and
materials processing, the SERs can require that the catalyst
samples have been annealed at 400 °C. Additionally, to generate
a single activity metric for each sample, the SERs can also
require only the most recent or “latest”measurement of activity,
which results in a dataset B containing 66 653 measurements,
corresponding to 304 unique provenances. To further increase
the homogeneity, the SERs can also require the electrolyte pH to
Digital Discovery, 2023, 2, 1078–1088 | 1083
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Fig. 5 Machine learning for catalyst discovery use case: prediction of OER overpotential for 3 mA cm−2 in 3-cation and 4-cation composition
spaces. Datasets for model training are A: all measurements of this performance metric, B: only the most recent measurement of activity for
catalysts annealed at 400 °C, and C: the measurements from B made in pH 13 electrolyte and succeeding at least 100 minutes of catalyst
operation. (a) The dataset size in terms of the number of overpotential measurements and the number of unique provenances (right axes) and
MAE (left axis) for the three datasets, where the MAE is aggregated over 63 data instances of machine learning prediction both from prediction
using only composition and from prediction using composition and experiment parameters. (b) The overpotential predicted from the
composition for the Ce–Fe–Mn–Ni data instance using dataset B, resulting in MAE of 143 mV. (c) The analogous result using composition and
experiment parameters, which lowers theMAE to 25mV. (d) The ground truth data, where the element labels for the composition graph as well as
the overpotential color scale apply to (b) and (c) as well.
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be within 0.5 of pH 13 and require those catalysts to have been
operated for at least 100 minutes before catalyst activity
measurement, resulting in dataset C containing 20 012
measurements. This dataset contains only 29 unique prove-
nances that differ in their sequence of electrochemical experi-
ments that preceded the overpotential measurement.

Dataset C contains 63 unique 4-cation composition spaces.
To demonstrate machine learning prediction of catalyst activity
in new composition spaces, each of these 63 combinations of 4-
cation elements is treated as an independent data instance in
which the test set is taken to be all catalyst measurements from
dataset C where the catalyst composition contains three or all
four of the respective 4-cation elements. Keeping the test set
consistent, three independent eXtreme Gradient Boosting
(XGB) random forest regression models, one for each of the
three datasets, were trained to predict over-potential from
composition, wherein each case the composition spaces that
comprise the test are held out from training. Repeating these
exercises for all 63 data instances enables calculation of the
aggregate mean absolute error (MAE) for predicting catalyst
activity, as shown in Fig. 5a for the three different datasets. The
MAE improves considerably when increasing the homogeneity
of provenance and experimental parameters from dataset A to B
and from dataset B to C, demonstrating the value of using
appropriate SERs to curate materials databases with specic
provenance and property conditions to generate suitable
training data for a specic prediction task.
1084 | Digital Discovery, 2023, 2, 1078–1088
The parameters used for creating the SERs can also be
considered as properties of the catalyst measurements, enabling
the training of machine learning models that not only use
composition as input but also additional parameters, in the
present case themaximum annealing temperature, the number of
previous measurements of the catalyst activity, the electrolyte pH,
the duration of prior catalyst stabilitymeasurements, andwhether
the measurement occurred by CV or CP. Fig. 5a shows the cor-
responding results for the same exercise described above wherein
the aggregate MAE is calculated for each dataset A, B, and C. This
more expressive input space enables a substantial decrease in the
MAE when using the dataset B. Whereas, for dataset A this
expressive input space marginally increased the MAE, high-
lighting the importance of combining SER based data classica-
tion with regression using richer expressions of the input space.

For the Ce–Fe–Mn–Ni data instance, Fig. 5b shows the
prediction using dataset B and only composition as model input,
resulting in an MAE of 143 mV. Using the same dataset but
expanding themodel input to include the experiment and catalyst
parameters lowers the MAE to 25 mV, which is the approximate
measurement uncertainty (Fig. 5c). Comparison to the ground
truth values in Fig. 5d reveals that the prediction in Fig. 5c
captures the broad range in activity and the composition-activity
trends in each of the four 3-cation and 4-cation composition
spaces. Overall, these results demonstrate that curation of data to
accelerate materials discovery via machine learning requires
management of experiment provenance and parameters.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Discussion
Automated ML pipelines

In the catalyst discovery use case described above, we identied
that the choice of state-changing processes had a signicant effect
in predicting OER overpotential. To avoid making such decisions
a priori, which is oen not possible in experimental research, all
distinguishable processes should be reected in the data
management. For instance, a sample storage event is typically
assumed to be non state-changing, which may not be the case.
The simplest example is air-sensitive materials whose sample
handling between experiments should be documented as “sample
handling” processes. The ESAMP framework allows for every event
in the laboratory to be dened as a process. However, in practice,
capturing every event in a laboratory is infeasible in a typical
laboratory setting. There may always exist “hidden” processes that
altered a material's state but were not tracked, which compounds
the issues discussed above with human-made decisions about
what processes are state-changing and whether that designation
varies with either sample or process parameters. By liberally
dening what constitutes a process and aggregating data from
many experimental workows, ESAMP will ultimately enable
machine learning to identify hidden processes and which tracked
processes are indeed state-changing.

Recently, several research works have focused on developing
closed-loop methods to identify optimal materials and pro-
cessing conditions for several applications such as carbon
nanotube synthesis,28 halide perovskite synthesis,29 and organic
thin lm synthesis.30 The workows of these experiments are
typically static. Similarly, several high-throughput experimental
systems deploy static workows or utilize simple if-then logic to
choose amongst a set of pre-dened workows. Machine
learning on data dened using ESAMP that contain various
process provenances along with denitions of state-changing
processes will enable dynamic identication of workows that
maximize knowledge extraction.
Generality for modeling other experimental workows

While the breadth of process provenances and the dynamic range
of depth within each type of provenance makes the MEAD data-
base an excellent demonstrator of ESAMP, the provenance
management and the database schema are intended to be general
to all experimental and computational workows. A given type of
experiment may be considered equivalent when performed in 2
different labs, although differences in the process parameters and
data management have created hurdles to universal materials
data management. Such differences may require lab-specic
ingestion scripts and tables, but custom development of these
components of ESAMP comprise a low-overhead expansion of the
database to accept data from new labs as well as new types of
processes. One of the most widely used experimental inorganic
crystal structural and diffraction databases (ICDD) was generated
by manual curation and aggregation over several decades of X-ray
diffraction data generated in many laboratories. We anticipate
that ESAMP's universal data management will result in a more
facile generation of several large experimental datasets with full
© 2023 The Author(s). Published by the Royal Society of Chemistry
provenance that enables data-driven accelerated materials
discoveries.

In addition to the generation of new insights from prove-
nance management and acceleration of research via more
effective incorporation of machine learning, we envision
materials provenance management to profoundly impact the
integrity of experimental science. In the physical sciences, the
complexity of modern experimentation contributes to issues
with reproducing published results.31 However, the
complexity itself is not the issue, but rather the inability of the
Methods sections in journal articles to adequately describe
the materials provenance, for example, via exclusion of
parameters or processing steps that were assumed to be
unimportant, which is exacerbated by complex, many-process
workows. Provided an architecture for provenance
management such as ESAMP, data can ultimately determine
what parameters and processes are essential for reproducible
materials experiments.
Generation of knowledge graphs and data networks

As discussed above, we anticipate ESAMP to provide the
framework that enables the curation of large and diverse data-
sets with full provenance. Such large datasets are a great start-
ing point for machine learning applications. However, ESAMP
is quite general, and adapting amore specic data framework to
one's use case can make knowledge extraction easier. These
frameworks may extract subsets of the data stored in the main
framework and apply simplifying assumptions that apply to the
specic use case. However, as long as a link exists between the
higher-level framework and ESAMP, then the complete prove-
nance information will still be preserved and queryable.
Machine learning datasets, such as those described in datasets
A, B, and C in the above use case, are examples of a practical
higher-level extraction. See (Fig. 6) for extraction of datasets
based on process provenance constraints.

One example of a higher-level framework enabled by ESAMP
is that of knowledge graphs. Knowledge graphs are a powerful
abstraction for storing, accessing, and interpreting data about
entities interlinked by an ontology of classes and relations.32

This allows for formal reasoning, with reasoning engines
designed for queries like “Return all triples (x1, x2, x3) where
f(x1, x2) and f(x1, x3) and (j(x2, x3) if and only if q(x3))”. Beyond
direct queries which produce tabular results suited for tradi-
tional machine learning applications, machine learning models
can be applied directly to relational databases33,34 and knowl-
edge graphs.35 Applications involving knowledge graphs and
ontologies have been explored in the space of chemistry and
materials science research.36,37

The population of knowledge graphs is mainly facilitated by
ESAMP in two ways. Firstly, data within a relational database
structure is straightforwardly mappable into the data structure of
knowledge graph triples.38 Secondly, a solid grasp of how to
resolve distinct entities can be achieved through ESAMP before
populating the nodes of the knowledge graph. Alternative
approaches of merging all samples with the same label or
considering every possibly-distinct sample to be a uniquematerial
Digital Discovery, 2023, 2, 1078–1088 | 1085
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Fig. 6 An illustration of how process provenance can be queried to
ensure uniformity within output datasets. If process data for an analysis
of interest is populated by process P4 it may be necessary to group
samples based on the processes that preceded P4. Each of the four
purple squares indicate different constraints on the processes that
occurred before P4. A plain arrow is used to indicate a process is
immediately followed by another, while a wildcard * is used to indicate
that the any number of processes can intervene. These constraints can
be implemented in the query language of the RDMS to obtain specific
datasets for further analysis.
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are too coarse- and ne-grained, respectively. Beyond knowledge
graphs, other high-level frameworks specialize in the migration
and merging of data between research groups that structure their
experiments and analyses differently,39 and these demand struc-
tured data such as ESAMP data as their initial input.
Better simulation-experiment integration

While the initial focus on experimental materials data is moti-
vated by the historical lack of concerted effort tomanage and track
experimental provenance compared to computational materials
science, we also envision that ESAMP has the inherent exibility
and expressiveness to model computational materials provenance
as well and assist in the holy grail of combining simulation,
experiment, and machine learning systematically.

In the computational context, simulation details are recor-
ded from automated workows, input and output les, and
code documentation, so the provenance and parameters
involved in computations are simpler to track and ingest than
experiments. To ingest computational data into ESAMP, we
would consider the physically relevant aspects of a simulation,
such as atomic positions, composition, micro-structure, or
device components and dimensions, to comprise a sample. The
simulation itself would be the process, with numerical param-
eters, simulation approximations, and the compute hardware
1086 | Digital Discovery, 2023, 2, 1078–1088
and soware, potentially being relevant process details. Output
les and logs would be the process data. Just as samples in
experiments can undergo multiple processes, a simulation
“sample” can start in a specic conguration, undergo opti-
mization during a “process,” and the new conguration, still
associated with the same “sample,” can be passed on for further
processing. Computational samples could be combined –

results of a simulation are mixed in a new simulation – or
partitioned into new samples. The ESAMP framework allowing
analyses to be built on multiple process data components is
relevant when post-processing simulation data.

Integrating simulation and experimental workows has long
been pursued in materials research. If a computational simu-
lation indicates a material has desirable properties, it is
advantageous to directly query all of the experimental data
associated with that material to validate the prediction. Simi-
larly, connecting a physical material to its computational
counterpart can provide key insight into the fundamental
source of its properties.

In general, the signicant differences in metadata associated
with simulation and experimental workows have resulted in
databases that have signicantly different architecture, increasing
the barrier for integration of experimental and simulation data-
sets. Since the key entities of ESAMP are independent of the type
of samples, processes, and process data, it allows representation
of various forms of data including simulation and experiments
using similar architectures. This reduces the accessibility and
queryability barrier for integrating experimental and simulation
datasets.

As long as the experimental and simulation databases have
a single common key (for example: composition, polymer ID) the
barrier for initial comparison between simulation and experi-
mental data is signicantly reduced because of the increased
accessibility and queryability enabled by ESAMP. However,
complex queries that depend on the metadata that enable more
detailed experiment to simulation comparison may not be
obvious. We hope that experts who have experience in simulation-
experiment integration will publicly share the specic queries
used for comparison in addition to publishing simulation and
experimental databases that use similar architecture. For
example, an initial comparison of band gap derived from simu-
lation vs. experiment could be based on a query that depends on
common composition. A more detailed comparison could be to
compare experimental measurements obtained on materials that
have been annealed in air within a certain temperature range with
simulated band gaps for compositions wherein the corresponding
crystal structure is on the thermodynamic convex hull for specic
ranges of oxygen chemical potential. Transparent publication of
the queries that share similar language for simulation vs. experi-
ment comparison will open the doors for more data-driven inte-
gration between theory and experiment. Wherein, simply
comparing the ndings from theory and experiment can help
shed light on where the computational simulations are valid.
Additionally, one could train machine learning models to map
simulation values to experimental values and use that to make
predictions about future experiments. The use of similar archi-
tecture for experimental and simulation databases is also likely to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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aid in development of an interface for simulation assisted
autonomous experimentation.

Computational models are oen benchmarked against
experimentally obtained values. However, this mapping relies
upon the common keys used for comparison between simula-
tion and experiment to be valid for the measurement associated
with the property. If an intervening process changes the mate-
rial's state, the mapping between the simulation and experi-
mental dataset would be incorrect. Therefore, it is advantageous
to use ESAMP to dene state equivalency rules similar to those
described earlier, to ensure a more relevant comparison of
simulation-experiment data.
Adoption

To accelerate adoption of FAIR usage of experimental data, we
believe that other aspects of data management such as data
ingestion and data parsing need to be streamlined along with
the use of generalizable database architectures such as ESAMP.
The generalizable framework and language of our database
architecture lends itself to development of simple user-interface
modules that will assist in the data ingestion step. However,
parsing data even aer ingestion can be particularly challenging
due to the presence of various le types such as les for X-ray
diffraction, electrochemistry, X-ray photoemission spectros-
copy etc. We believe that community sourcing of these parsers
and their association with process types could be greatly bene-
cial to our ecosystem, and we particularly point to the effort
undertaken by the MaRDA extractors working group.40

We also point out that many prior efforts focus on static
mapping of samples to attributes derived from process data.
Our architecture in conjunction with the concept of “state”
enables state equivalency rule based mapping of samples to
process data attributes, which expands the utility of this data-
base architecture to analysis of materials workows that include
state altering processes.

Another key barrier for adoption is inconsistencies in the
nomenclature used for variables in the database. For example,
various databases might use anneal_temperature or hea-
ting_temp to describe the same variable. In cases where the type
of process (such as characterization, machining etc.) determines
the database schema, inconsistent nomenclatures could result in
inconsistencies in the database architecture increasing the barrier
for interoperability. Whereas, in the case of ESAMP, these vari-
ables are present in details tables such as process_details.
Therefore, dening sets of equivalent terms for terms used in the
details tables can support in achieving interoperability amongst
various databases.
Conclusions

In this work, we present a database architecture, called ESAMP,
designed for storing materials science research data. We
demonstrate that the database architecture captures each
material sample's provenance, the data derived from experi-
ments run using each sample, and high-level results derived
from the raw data. We further demonstrate how this database
© 2023 The Author(s). Published by the Royal Society of Chemistry
can be used to enable material state-aware machine learning
datasets. Finally, we discuss the role of ESAMP architecture in
accelerated materials discovery via dynamic workow design,
generation of knowledge graphs, and efficient integration of
simulation and experiment.
Data availability

The entire MEAD data stored in ESAMP provenance is available
in a PostgreSQL database. This format requires three steps to
make use of: download the compressed SQL database dump
le (.tar.gz format) from https://data.caltech.edu/records/
hjfx4-a8r81; install PostgreSQL by following the instructions
here; extract the .tar.gz le, which will yield a .sql le; follow
the PostgreSQL documentation to create a new database
from the .sql le. This will create a local copy of the database
that we present in this work. The data can be browsed using
the DBeaver user. Our docker container scripts to setup the
database are provided here: https://github.com/modelyst/
mps-docker. Database generation code: the database
discussed in this manuscript was generated using the
custom built DBgen tool: https://github.com/modelyst/
dbgen/. Code to generate Fig. 5: all the scripts used to
generate this gure are available at https://github.com/TRI-
AMDD/ESAMP-usecase. The notebook
‘query_and_modeling.ipynb’ was used to generate the results
and visualizations. The associated database queries are made
available in eche_forms_query.sql and eche_pets_query.sql.
In addition helper scripts such as myquaternaryulitity.py,
myternaryutility.py, quaternary_faces_shells.py are provided
to aid in visualization.
Conflicts of interest

Modelyst LLC implements custom datamanagement systems in
a professional context.
Acknowledgements

The development and implementation of the architecture were
supported by the Toyota Research Institute through the Accel-
erated Materials Design and Discovery program. Generation of
all experimental data was supported by the Joint Center for
Articial Photosynthesis, a US Department of Energy (DOE)
Energy Innovation Hub, supported through the Office of
Science of the DOE under Award Number DE-SC0004993. The
development of the catalyst discovery use case was supported by
the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Award DESC0020383. The authors
thank Dr Edwin Soedarmadji for stewardship of MEAD and all
members of the JCAP High Throughput Experimentation group
for the generation of the data. The authors thank Daniel
Schweigert for providing insights into standard database
management practices. The authors thank Thomas E. Morell
for facilitating implementation of DOI-based linkages between
MPS and CaltechDATA.
Digital Discovery, 2023, 2, 1078–1088 | 1087

https://data.caltech.edu/records/hjfx4-a8r81
https://data.caltech.edu/records/hjfx4-a8r81
https://github.com/modelyst/mps-docker
https://github.com/modelyst/mps-docker
https://github.com/modelyst/dbgen/
https://github.com/modelyst/dbgen/
https://github.com/TRI-AMDD/ESAMP-usecase
https://github.com/TRI-AMDD/ESAMP-usecase
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00054k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 4
:1

3:
33

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Notes and references

1 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. a. Persson, APL Mater., 2013, 1, 011002.

2 S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak,
M. Aykol, S. Rühl and C. Wolverton, npj Comput. Mater.,
2015, 1, 1–15.

3 S. Curtarolo,W. Setyawan, S.Wang, J. Xue, K. Yang, R. H. Taylor,
L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli,
N. Mingo and O. Levy, Comput. Mater. Sci., 2012, 58, 227–235.

4 A. Jain, Y. Shin and K. A. Persson, Nat. Rev. Mater., 2016, 1,
15004.

5 P. Pauer, Cryst. Res. Technol., 1983, 18, 1318.
6 M. Hellenbrandt, Crystallogr. Rev., 2004, 10, 17–22.
7 Y. Xu, M. Yamazaki and P. Villars, Jpn. J. Appl. Phys., 2011, 50,
11RH02.

8 Y. C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan and
S. R. Kalidindi, Acta Mater., 2019, 178, 45–58.

9 C. P. Gomes, J. Bai, Y. Xue, J. Björck, B. Rappazzo, S. Ament,
R. Bernstein, S. Kong, S. K. Suram, R. B. van Dover, et al.,
MRS Commun., 2019, 9, 600–608.

10 S. E. Ament, H. S. Stein, D. Guevarra, L. Zhou, J. A. Haber,
D. A. Boyd, M. Umehara, J. M. Gregoire and C. P. Gomes,
npj Comput. Mater., 2019, 5, 1–7.

11 S. B. Torrisi, M. R. Carbone, B. A. Rohr, J. H. Montoya, Y. Ha,
J. Yano, S. K. Suram and L. Hung, npj Comput. Mater., 2020,
6, 1–11.

12 A. Zakutayev, N.Wunder,M. Schwarting, J. D. Perkins, R.White,
K. Munch, W. Tumas and C. Phillips, Sci. Data, 2018, 5, 1–12.

13 E. Soedarmadji, H. S. Stein, S. K. Suram, D. Guevarra and
J. M. Gregoire, npj Comput. Mater., 2019, 5, 1–9.

14 M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg,
G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten,
L. B. da Silva Santos, P. E. Bourne, J. Bouwman,
A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon,
S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa,
P. A. C. 't Hoen, R. Hoo, T. Kuhn, R. Kok, J. Kok,
S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik,
S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M. A. Swertz, M. Thompson, J. van der Lei, E. van
Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg,
K. Wolstencro, J. Zhao and B. Mons, Sci. Data, 2016, 3, 1–9.

15 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker,
M. Krein, J. Poleski, R. Barto and B. Maruyama, npj
Comput. Mater., 2016, 2, 1–6.

16 J. Li, Y. Lu, Y. Xu, C. Liu, Y. Tu, S. Ye, H. Liu, Y. Xie, H. Qian
and X. Zhu, J. Phys. Chem. A, 2018, 122, 9142–9148.
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