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taset & workflows to assess cyclic
peptide solution structures†

Daniel Crusius, a Jason R. Schnell, a Flaviu Cipciganb and Philip C. Biggin *a

Knowing solution structures of cyclic peptides is essential for predicting pharmacokinetic properties for

drug discovery. Here, we report the MacroConf dataset along with computational workflows to evaluate

how well experimental cyclic peptide solution structures are reproduced by current in silico methods.

The dataset was compiled from the literature and contains 68 cyclic peptides and macrocycles with

existing solution NMR data. We provide a reproducible and automated computational workflow to

quickly compare different cyclic peptide (CP) conformer generators with one another and to NMR

derived nuclear overhauser effect (NOE) distance constraints. When analysing the CP subset of

compounds, we found that enhanced sampling molecular dynamics (MD) methods, such as Gaussian

accelerated MD, reproduced experimental NOEs well. Conventional MD suffered from a lack of sampling

especially for compounds with proline isomerisation and did not always match with the reference data.

When considering all compounds studied here, conventional and Gaussian accelerated MD were

statistically indistinguishable when considering the % of NOE distance restraints satisfied.

Cheminformatics based conformer generators such as OMEGA and RDKit ETKDG often generated

diverse and plausible structures that matched the sampling observed in MD-based methods, but do not

yield relative populations or thermodynamic insights. Bundles of conformers produced via

cheminformatics methods reproduced experimental NOE values to similar levels as the MD based

methods, with high-quality structures contained in the cheminformatics outputs. The presented

computational workflow can be easily extended to include new compounds or different simulation

methods. We envisage that this work will serve as a benchmark to help improve cyclic peptide

conformer generators and standardize their assessment.
Introduction

An estimated 80% of human proteins cannot be drugged with
current small molecule drugs.2 Therefore, great effort is put into
developing new modalities to expand the druggable biological
space. New modalities include any molecule not classied as
a small molecule drug.3 While these modalities make more
protein targets accessible, they oen suffer from suboptimal
and less well-understood pharmacokinetic properties than
traditional small molecule drugs.4

Cyclic peptides (CPs) are one such proposed new modality,
which are shown to bind protein surfaces and can mimic protein
loops to imitate protein–protein interactions (PPIs).5 These
molecules are just small enough to be cell permeable in addition
to being stable and long-lived enough to reach targets in high
concentration.6 Over 40 orally available CPs are on themarket and
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in phase III studies,7 but many CP drug candidates have prob-
lematic pharmacokinetic properties, especially cell permeability.8

This is because classic rules to predict ADME properties for small
molecules usually do not apply to CPs.4 The cyclic constraint,
responsible for conformational preorganization, higher binding
affinities, and increased proteolytic resistance makes it chal-
lenging to predict the 3D structure of CPs with conventional
conformer generators.9 Specialised conformer generators exist
nowadays,10–12 but fast prediction of dynamic properties is an
unsolved problem.13 The reason for this is that macrocycles exist
as ensembles of several low energy conformations in solution,
with the bioactive one sometimes only present at levels as low as
4% of the population.14 Predicting which of the possible confor-
mations are biologically relevant is hard, and may also depend on
the environment.15,16 Determining the relevant conformers in
solution and their 3D structure is crucial for predictions of
pharmacokinetic properties.17,18
Cheminformatics conformer generators for cyclic peptides

In the last 15 years or so, specialised conformer generators have
been developed to reproduce X-ray crystal structures of CPs, since
classic conformer generators do not perform particularly well.19,20
Digital Discovery, 2023, 2, 1163–1177 | 1163
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A range of commercial and open-source methods (OMEGA,10

RDKit,12 BRIKARD,21 MacroModel and Prime11,20 etc.19,22–25) now
exist, and a detailed comparison of their ability to reproduce X-ray
crystal structures has been reported.10 Computational methods
tend to work well for nding solid state structures or enumerating
structures for docking studies.26,27 However, predicting dynamics-
based properties (solubility, cell permeability, etc.) remains an
open challenge, as demonstrated by the poor performance of
solubility predictions of cyclosporine A in the recent SAMPL
challenge.28
Molecular dynamics conformer generators for cyclic peptides

To produce conformers with associated information about
dynamics, thermodynamics, or explicit solvent interactions,
one can use molecular dynamics (MD) simulations or similar
methods to generate conformers.27 While the cyclisation of
peptides is benecial for increasing binding affinities,29,30 it
makes predicting solution structures more difficult. Macrocy-
clic systems tend to adopt several distinct conformations
separated by high energy barriers.31 Depending on the system
and type of conformational reorganization, energy barriers can
be as high as 16–22 kcal mol−1 for cis–trans isomerization of
amide bonds.32 Achieving adequate sampling for such systems
in MD simulations is challenging. The initial conditions
determine which parts of the potential energy surface can be
explored during a simulation. Systems can easily get stuck in
a minimum of the potential energy surface (PES) in the given
simulation time.33 Enhanced sampling MD methods address
this problem and allow increased sampling of the PES despite
high energy barriers with comparable computational resources
to conventional MD (cMD) simulations.34 It was reported that
short CPs switch conformations via concerted movement of two
dihedral backbone angles. This observation enables the use of
BE-META or related simulation methods to model CPs.35 For
a generally applicable conformer generator beyond natural CPs
of sizes 6–8, we cannot assume prior knowledge of the system's
collective variables and therefore unconstrained enhanced
samplingmethods without specication of reaction coordinates
are preferable.

Accelerated MD (aMD), and Gaussian accelerated MD
(GaMD) are two closely related, enhanced sampling methods
that do not require specication of reaction coordinates.36,37

They both effectively atten the potential energy surface by
adding a boosting potential to reduce energetic barriers.37

Through this, much faster sampling compared to cMD simu-
lations can be achieved.36 Enhanced sampling comes with the
caveat of having to reweigh the resulting trajectory to reproduce
physically correct quantities. Kamenik et al. demonstrated
recently that aMD is suitable to reproduce experimentally
measured nuclear overhauser effects (NOEs) and X-ray struc-
tures of three CPs/macrocycles.38 An advantage of this method is
that aer reweighting the original thermodynamic information
the original PES is retained.33 Alternative methods to study
cyclic peptides in solution include replica-exchange MD
(REMD39), complementary-coordinates MD (CoCo-MD40), mul-
ticanonical MD (McMD41), among others.27
1164 | Digital Discovery, 2023, 2, 1163–1177
Comparing the performance of different conformer
generators

Many macrocyclic X-ray crystallographic structures are available
in public databases suitable for conformer generator bench-
marks. Several compiled datasets of macrocycles are available,
including the Sindhikara set consisting of 208 solid state
conformations of macrocycles.11 The most used metric for
comparing conformer generators to experimental structures is
the root mean square deviation (RMSD) of atomic positions.
Other less commonly used metrics include 3D shape compar-
ison,10 bounded atom-centric measures,42 and measures of
torsion angle deviation.43

While X-ray crystallographic structures make conformer
generator benchmarks straightforward, we need to also
consider benchmarking conformer generators on solution
structures. This is important if conformer generators form the
basis for predictions of pharmacokinetic properties, which are
determined by accessible conformers in solution.44 Solution
state structures of macrocycles are more challenging to nd
since many solution structures are not deposited in a central
database, even though such databases exist.45

Experimental solution structural data for CPs oen comes
from NMR studies but the structural information is semi-
quantitative and structures are oen underdetermined. To
obtain solution structures by NMR a range of different NMR
observables can be measured. Among the most commonly used
experimental variables are 3J coupling constants to determine
torsion angles via the Karplus equation46 and NOE intensities47

that arise due to through-space dipolar couplings and depend
on internuclear distance. Additional information on intra-
molecular H bond information can be obtained by variable
temperature experiments.5

Multiple conformers exchanging slower than the NMR time-
scale can be detected by the presence of multiple signals in the
affected regions or by peak broadening.5,48 However, the presence
of multiple conformers are missed if conformer exchange rates
are faster than the NMR timescale (∼1ms), which results in signal
averaging.27 In the case of NOEs, fast conformer exchange will
result in a set of intensities (and therefore the calculated inter-
nuclear distances) that arise from a time average of the
conformers.5,33,39

By itself or combined with torsion angles, NOE distance
constraints oen form the basis for direct comparison with
computational predictions of solution ensembles. By computing
these quantities for computational ensembles, it is possible to
directly compare how well the computational predictions match
experimental evidence. Alternatively, further computational
renement can be done to generate a structural ensemble of CP
solution structures that best matches the experimental evidence:
the NAMFIS (NMR analysis of molecular exibility in solution)
method deconvolutes the NMR signal into distinct conformer
contributions, such that the same metrics used for the solid state
comparison can be applied (e.g. RMSD of backbone atoms).14,17,49

Because of variable experimental conditions, reporting
formats, and the signicant effort involved in using previously
published NOE data, there is currently no dataset available for
© 2023 The Author(s). Published by the Royal Society of Chemistry
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macrocyclic peptide solution structures. Cyclic peptide
conformer generators are usually benchmarked by only
considering solution structures of a few compounds. In this
study, we systematically compared (G)aMD simulations with
different cheminformatics-based conformer generators to
assess how well they reproduce solution structures. As a basis
for this, we assembled a dataset of macrocycle solution struc-
tures termed MacroConf. Further, we developed computational
workows to automatically setup, run, and analyse MD simu-
lations and cheminformatics conformer generators. In the
following sections, we present the assembly of the MacroConf
dataset of CP solution structures and the design of the
computational workows to automatically run and compare
MD based conformer generators with the cheminformatics-
based tools OMEGA macrocycle and RDKit ETKDG. Then, we
directly compare the ability of the cheminformatics conformer
generators andMDmethods to reproduce solution structures of
cyclic peptides.
Methods
Overview

In this study, we use a variety of different cyclic peptide
conformer generators and compute NOE distance constraints to
compare to experimental reference data. Processing of the
experimental reference data and the assembly of the MacroConf
dataset are described in the section dataset generation. The
Fig. 1 Semi-automatic workflow to extract molecular structures and a
process for natural cyclic peptides is also shown. Steps that require man

© 2023 The Author(s). Published by the Royal Society of Chemistry
conformer generators were run as part of an automated
computational framework to increase reproducibility and
reusability. The details about creating this computational
workow are in the section workow generation. We distin-
guish two classes of conformer generators; details can be found
in the sections: MD based conformer generators and chem-
informatics conformer generators. Finally, we describe how the
NOE distance constraints were computed in the section NOE
distance constraints for cyclic peptide structure determination.
Dataset generation

The MacroConf dataset was compiled manually from available
literature, which was found via keyword searches of PubMed
and Google Scholar and by following references of key publi-
cations. We included cyclic peptides and chemically modied
derivative molecules (macrocycles that resemble CPs) if exper-
imental NOE values from NOESY, ROESY or comparable
experiments were available. Unfortunately, there is no stand-
ardised format to report NOE values across the literature. We
therefore developed a semi-automatic system to extract SMILES
strings and NOE data from the PDF-les of papers and convert
them into a table of NOE values with matching topology les.
The system to achieve a topology and matching NOE table is
shown in Fig. 1.

This process results in a computer readable NOE represen-
tation that matches the generated molecular topology of the
macrocycles.
ssociated NOE data from publications. The topology parametrisation
ual intervention are marked with an asterisk (*).

Digital Discovery, 2023, 2, 1163–1177 | 1165
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For natural cyclic peptides, the SMILES string was derived
from the amino acid sequence via the python toolkit Peplib-
gen.50 For macrocyclic compounds, the OSRA soware51 was
used to extract the molecular structure from images found in
corresponding publications. Any errors and inaccuracies of the
OSRA soware were corrected manually. The resulting SMILES
strings were then used to build a molecular topology via amulti-
step process: for natural cyclic peptides (only L amino acids), the
SMILES strings were converted into a 3D PDB le via
OpenBabel52 (which adds appropriate atom types). Then, the
pdb les were “cleaned” with pdb4amber and parametrised with
tleap. Using tleap we produced a range of different output le
formats (amber topology le, pdb le, .). These steps are only
valid for natural cyclic peptides and may need slight alterations
for macrocycles depending on forceeld used. For L/D-amino
acid cyclic peptides, initial structure generation failed with
OpenBabel, and thus experimental structures were used as
available to generate an MD topology. Protonation states were
chosen according to the reference publications.

If not already available as a computer readable table, printed
NOE tables in the publications were extracted from PDF les via
tabula.53 A custom-made Python script queried the user to
match all atom names provided in the paper with the atom
numbers of the molecular topology. As part of this matching
process, the molecular topology le was visualized as a 2D
structure annotated with atom numbers via RDKit.54 This
process results in a computer readable NOE representation that
matches the molecular topology of the macrocycles. For a full
specication of the dataset, see the ESI Text S1, Text S2† and
https://github.com/bigginlab/macroconf.
Workow generation

To generate the associated computational workows to analyse
the MacroConf dataset, Snakemake,55 a workow management
system that aims to produce sustainable data analyses56 was
chosen. Snakemake is Python based, works in a range of
computational environments, and ensures the MacroConf
workow is fully reproducible, scalable to different compute
architectures, and easily extendable. Parts of the Snakemake
workow relied on the following soware: Numpy,57 Pandas.58,59
Molecular dynamics-based conformer generators

For the CPs studied in this work, we used unconstrained
enhanced sampling methods. Kamenik et al. showed that aMD
describes cyclic peptide solution structures well.33 Here, we
applied two variants of accelerated MD: aMD36 and GaMD,34

which were both already used to describe cyclic peptides in
solution.60 For comparison, we also performed unbiased
conventional (cMD) simulations.

All MD simulations were run in the Amber 18 soware61

using the AMBER FF-14SB protein force-eld62 for D and L-amino
acid CPs. The simulations performed here could easily be
extended to include modied, non-natural amino acids by
using extended parameters such as Forceeld_NCAA63 or
a more general all atom forceeld (GAFF or others).39
1166 | Digital Discovery, 2023, 2, 1163–1177
When building the cyclic peptide topologies in Amber,
a bond between the ring closing amino acids had to be included
during the topology building process, for details see ESI Text
S3.† For water, the TIP3P model was used.64 For simulations in
DMSO, the GAFF forceeld was used to describe the solvent.65

RESP charge parameters for DMSO were taken from literature.66

For comparison, the BCC charge derivation method was also
used.67 To simulate chloroform, we used the Amber18 chloro-
formmodel.68 All solvent boxes were octahedral, with a distance
of at least 12 Å from the molecule to any box edge. An appro-
priate number of sodium/chloride ions were added if required
to neutralize the systems.

Aer topology parametrisation and solvation, a cascade of
different energy minimization and equilibration steps were per-
formed: (1) energy minimisation of the solvent with up to 15 000
steps of steepest decent and 5000 steps of conjugate gradient if
not converged previously; (2) relaxation of the solvent via 20 ps of
NVT simulation increasing the temperature from 200 K to 300 K
with all other atoms xed; (3) minimisation of the full system as in
(1); (4) heating of the system to 300 K via 500 ps of NVT simula-
tion, restraining all heavy atoms not including the solvent;
(5) equilibrating the solvent via 500 ps of NPT simulation,
restraining all heavy atoms not including the solvent; (6) equili-
bration of the full system via 5 ns of NPT simulation without
restraints.69 Production runs in (G)aMD or cMDwere performed in
the NPT ensemble. Before the (G)aMD simulations, an additional
equilibration step was performed to determine the boosting
parameters. All production simulations were, if not indicated
otherwise, run for 2000 ns. For a detailed analysis of the conver-
gence of simulations, see the ESI, Fig. S5–S11 and ESI Text S5.†
Further simulation details, parameters and complete input les
are provided as part of the computational workow at https://
github.com/bigginlab/macroconf. The analysis of simulations is
handled automatically by the created Snakemake workow.
Analysis of MD trajectories is based on the mdtraj library.70

Dimensionality reduction and clustering are done using
principal component analysis (PCA), t-SNE, DBSCAN;
reweighting of GaMD is performed via a modied version of
PyReweighting by Miao et al. Statistical metrics are computed
using scipy71 and scikit-learn.72 Visualization of 2d structures is
accomplished by using RDKit,54 3d structures and trajectories
are visualized via nglview73 and PyMOL.74
Cheminformatics conformer generators

SMILES strings were used as inputs to the RDKit12 and OMEGA10

conformer generators to remove any kind of previous structural
information.10 SMILES strings were produced from the para-
metrised MD topology to closely match the MD reference
structure for later comparison. The resulting conformer gener-
ator outputs were renumbered if necessary to match the MD
reference and in some cases hydrogen atoms were added or
removed to exactly match the MD topology. The parameters for
both RDKit ETKDGv3 and OMEGA macrocycle were closely
matched to those of Hawkins et al.,10 the exact parameters and
input les are provided (https://github.com/bigginlab/
macroconf).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) Composition of the MacroConf dataset by CP type. We
distinguish compounds into three types, depending on whether the
compounds contain only L-amino acids, L- and D-amino acids, or if any
non-natural and chemically modified amino acids are present (mac-
rocycles). (B) Distribution of peptide sequence length (number of
amino acids) for all compounds. The most common peptide in the
dataset are cyclic pentapeptides. (C) Occurrence of different solvents
in the MacroConf dataset. Most commonly, NMR experiments were
performed in DMSO. (D) NOE quality assessment, high quality means
NMR experiments were performed with multiple mixing times. (E)
Number of reported NOE values for compounds in the dataset. Most
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NOE distance constraints for cyclic peptide structure
determination

NOE distance constraints are NMR derived distance constraints
commonly used in solution structure determination of
biomolecules.75 The NOE signal typically follows a r−6 distance
dependence, but dependent on the internal mobility compared
with the overall tumbling motion the signal can also exhibit an
r−3 dependence.76 There are several different ways of computing
and reporting NOE data in the literature, depending on the
specic NMR experiment. Some reports include NOE distances,
sometimes with upper and/or lower bounds of uncertainty.
Other publications report distance bins (short, medium, long).

Negative information from NOE experiments cannot reliably
be used to infer structures. Certain NOE intensities can be
weaker than the corresponding distance would indicate (or even
zero) because of spin diffusion.76,77 Furthermore, spectral over-
lap, incomplete assignments, misassignments, and typos are all
possible sources of error in NMR experiments.

Experiments with multiple mixing times allow for a quanti-
tative analysis of distances.78 When compiling the MacroConf
dataset, we assigned every data point an NMR experiment
quality label of either high or low quality. High quality means
the authors reported NMR experiments with multiple mixing
times.

In some cases, experimentally observed NOE intensities
cannot be assigned to a single H-atom pair. Instead, the NOE
values are assigned ambiguously to multiple pairs of H-atoms.
This can be for two reasons: rst, the NOE signal could not be
assigned unambiguously to a single H-atom pair because of
chemical shi degeneracy. Second, multiple H-atoms can
contribute to a single observed signal. For ambiguous NOE
values, we separately computed all possible combinations of
H-atoms as ambiguous NOE pairs. Instead of averaging the
resulting ambiguous NOEs, we individually compared the
ambiguous NOE values to the experimentally observed value.
The reason is that we are uncertain about how the ambiguous
experimental NOEs were derived for some of the reference NMR
data. In cases where we averaged over the whole set of NOE
values to report statistical metrics, we considered the best of the
ambiguous values (smallest deviation from the experimental
value) and discarded the rest. We also considered any stereo-
specic assignments of H-atoms as ambiguous, even if they
were unambiguously assigned experimentally.

To compare MD simulation ensembles to experimentally re-
ported NOEs, we need to average distances of the simulation
trajectory in a comparable way to the experimental conditions. To
compute a NOE distance from an unbiased MD simulation we
locate and track the relevant H-atoms over the full MD trajectory.
Given the distance between the H-atoms that correspond to
a given NOE value is ri at frame i, the computed NOE distance over
the whole MD trajectory dNOE, is then given as

dNOE ¼ �r�6��1=6 ¼
 
1

N

XN

i¼1

1

ri6

!�1=6

; (1)

where i runs over all simulation frames N.
© 2023 The Author(s). Published by the Royal Society of Chemistry
For (Gaussian) accelerated MD, we cannot use the r−6 aver-
aging procedure because the trajectories are biased and thus
unphysical.33 Therefore, we rst reweighed the relevant
distances for each NOE value via Maclaurin series expansion to
the 10th order. We then applied a weighted r−6 average, with the
weights derived from the resulting PMF distribution as Boltz-
mann factors.79

To compare simulated NOE values to experiment, we
consider different statistical metrics. We compute the mean
absolute error (MAE), mean squared error (MSE), root mean
squared deviation and Kendall's tau between the set of
computed and experimentally reported NOEs. Thesemetrics are
computed between the simulation average and the experimen-
tally reported NOE distance. Further we compute the percentage
of fullled NOEs of the simulations, termed % of NOE distance
restraints satised. We consider a NOE violated if the simulated
NOE value does not fall within the experimentally reported
upper and lower limits, or in the case where no upper limited is
reported, if the experimental value is exceeded by 20%. Errors of
these metrics are computed via statistical bootstrapping.

To test for statistically signicant performance differences
between simulation methods, we used the paired Student's
t-test and Wilcoxon signed-rank tests to consider differences in
mean and mean signed rank, respectively. P-values were cor-
rected by application of the method of Holm,80 to control the
family-wise error rate (FWER), for details see ESI Text S8.†
Results
Dataset of cyclic peptides with solution structures

We compiled a dataset of cyclic peptides and macrocycles with
available solution structures in the form of NOE distance
constraints, which we named “MacroConf”. The MacroConf
dataset is shown in Fig. S1† and contains 68 compounds; of
compounds have between 10 and 40 individual NOE values.

Digital Discovery, 2023, 2, 1163–1177 | 1167
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which 36 (53%) compounds are cyclic peptides made up
exclusively of D- and L-amino acids. The remaining 32 (47%)
compounds are macrocycles and contain amino acids with
various chemical modications (see Fig. 2A).

All 68 compounds have associated experimental NOE data of
various quality. 24 compounds (35%) have what we term high-
quality NOE data; NOE data that is based on NMR measure-
ments (NOESY, ROESY) performed with multiple mixing times
(Fig. 2D). Distributions of properties such as the sequence
length, solvents, and the number of NOEs are shown in Fig. 2.
The full dataset, including MD topology les for the cyclic
peptides are available at https://github.com/bigginlab/
macroconf. Detailed dataset specications are described in
ESI Text S2.†

Snakemake workow to perform simulations & analysis.
Snakemake56 was used to develop a simulation and analysis
pipeline that automatically simulates the MacroConf dataset.
The computational pipeline (Fig. 3A) is comprised of two key
modules, the molecular dynamics module and the chem-
informatics module. Both modules and their functionality are
shown schematically in Fig. 3B. The MD module handles all
aspects related to setting up, performing, analysing, and
comparison of MD simulations. The cheminformatics module
works as a wrapper around the OMEGA and RDKit conformer
generators and ensures production of suitable molecular
outputs to compare to the MD simulations. Due to the modular
design of the workow, other MD or cheminformatics-based
conformer generators for cyclic peptides can be easily added.
Other compounds or datasets can also be added.

To use the computational pipeline, we need to specify
compounds, simulation methods, and parameters in a tabular
input le. Every parameter set is then automatically labelled
with a unique hash, which is derived from and identies
a specic set of parameters (see Fig. S2 and ESI Text S3† for
more details). Based on these parameter sets, requested
Fig. 3 (A) Overview of the computational pipeline. (B) Details about
key components of the workflow and dataset.
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compounds are, if possible, automatically parametrised and
then simulated in a cascade of different energy minimization-,
equilibration-, simulation-, and analysis-steps.

The entire workow and a more detailed description of the
specic simulation and analysis parts are available at https://
github.com/bigginlab/macroconf. If specied in a separate
conguration le, multiple conformer generators of the same
compound with different parameters and simulation methods
can be compared with one another. The workow produces
both per-compound analysis results that show detailed simu-
lation results for each compound, as well as analyses that
compare different methods.

The analysis steps are done in Jupyter notebooks, such that
aer running the workow, all steps can be inspected, if
desired, in part also interactively.

Example analysis of compound 22. We demonstrate the
analysis that the workow makes trivial, via analysis of one
compound, compound 22.1 Fig. 4 shows results of a 2000 ns
GaMD simulation of compound 22 in aqueous solution. The
potential energy landscape based on a principal component
analysis of the backbone dihedral angles (Fig. 4A) shows the
presence of multiple conformers, with a global minimum at
∼(−0.4, −0.8). We also use different inputs for the PCA
(cartesian coordinates, pairwise N–O distances, Cremer–
Pople ring puckering parameters22), which are not shown
here. Fig. 4A also shows structural clusters of the MD
ensemble overlaid. The clusters are derived via DBSCAN
clustering of a t-SNE reduced space of the dihedral angles (see
Fig. S3, S4 and ESI Text S4†). The average cluster structures
reproduce the potential energy minima well and serve as
a validation for the reweighting procedure used for produc-
tion of the PES. The reweighted shape potential energy
landscape in Fig. 4B shows that the simulation explores
a wide range of different shapes, while the most stable
structures have a predominantly disk-like structure. Extreme
shapes and the most populated MD cluster structures are
shown in Fig. 4C. Fig. 4D shows the comparison of the
computed NOE values for the MD ensemble with the experi-
mental NOE values and bounds. Many values agree well with
the experiment, but some deviate. However, when consid-
ering the experimental upper bounds (grey line), deviations
are not much more than 1 Å for a few outliers. Fig. S12 and ESI
Text S6† show the reweighted PMF plots that were used to
compute the NOEs from the MD simulations.

Assessment of conformers requires extensive sampling of
the conformational space. A comparison of the potential energy
surface (Fig. 5) shows accelerated MD approaches (aMD and
GaMD) give similar sampling and that cMD only covers a small
fraction of the conformational scape. Furthermore, cMD did not
reproduce the global minimum found in the accelerated MD
simulations. Simulations can be designed to reproduce
different solvent effects, an important aspect that needs to be
considered with respect to the experimental conditions for
different peptides. The effects of simulating compound 22 in
H2O, DMSO and chloroform reveals only subtle changes in
terms of the shape of the peptide (Fig. 6A). However, simula-
tions in DMSO and chloroform solvents do not seem to sample
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Summary of different analysis steps performed for a GaMD
simulation (aqueous solution, 2000 ns simulation) of compound 22
with the sequence cyclo-(-Ser-Pro-Leu-Asn-Asp-), SPLND. (A)
Potential energy landscape based on principal component analysis of
the backbone dihedral angles of compound 22. Structural clusters
(obtained via t-SNE dimensionality reduction of the dihedral angles
and subsequent DBSCAN clustering) of the MD ensemble are also
shown. (B) Potential energy landscape based on the principal
moments of inertia (a proxy for the shape of molecules). The black X's
show the same MD clusters as in (A). (C) Extreme structures extracted
from the shape descriptor in (B). Shown are the most spherical, disk-
like, and rod-like structures observed in the MD simulations. For
comparison, themost populated cluster structure is also shown, which
is predominantly disk-like. (D) Deviation of the MD simulation
computed NOEs to the experimental NOEs (red X). Repeated NOE
numbers show ambiguous NOEs. The grey line shows the difference
between the resulting maximal distance (max) as reported in the
original publication1 and the experimental reference distance. The blue
dashes give an estimate of the variance of the mean of the MD
simulated NOE distances. The blue dashes do not necessarily show the
full fluctuations of the MD simulations. For details, see ESI Text S6.†

Fig. 5 Comparison of different dPCA based potential energy land-
scapes. (A) shows a GaMD run, which forms the reference coordinates.
(B) is an aMD run, plotted in the dPCA space of the GaMD simulation.
(C) shows a conventional MD simulation, also plotted in the dPCA
space of the GaMD simulation.
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as many spherical structures as aqueous solvent. This is
because H2O can form extensive H-bonds with the cyclic
peptide. The chloroform structure is more compact because
intramolecular H-bonds dominate. Fig. 6B shows the intra-
molecular H-bond contacts in the majority clusters of MD
simulations in the three solvents H2O, DMSO and chloroform.
The majority cluster of the chloroform simulation shows
extensive intramolecular H-bonds, which lead to a more
compact structure.

The workow also enables an easy comparison to be made in
terms of the conformers produced by MD compared to those
© 2023 The Author(s). Published by the Royal Society of Chemistry
made by dedicated conformer predictors. Fig. 7 shows an
overlay of the PES derived viaGaMDwith the OMEGA and RDKit
conformer generators. Most of the conformers reproduce the
preferred shape well, the global minimum of the PCA repre-
sentation is reproduced too. However, some of the structures
sampled in the GaMD simulation are not reproduced by either
conformer generator.

Gaussian accelerated MD vs. conventional MD. To start, we
compared Gaussian accelerated MD (GaMD) with conventional
MD (cMD) on the subset of CPs that contains L- and D-amino
acids. We chose to not simulate the subset with aMD, since aMD
and GaMD are closely related methods. Compared to GaMD,
aMD can suffer fromhigh statistical noise leading to inaccurately
reweighted free energy landscapes and ensembles.81 Due to the
similar conformational sampling performance of GaMD and
aMD observed for several compounds (see Fig. 5 for compound
22), we only used GaMD for the following analysis.

To compare different methods with one another, we intro-
duced several metrics to measure agreement between computed
and experimental NOE values for each compound. Here we
show two such metrics, the percentage of NOE values fullled
by the conformer generator (% of NOE distance restraints
satised), as well as the root mean squared deviation (RMSD)
between computed and experimental NOE values. For an
alternative denition of the RMSD that takes the bounds into
account, see ESI Text 11 and Fig. S24–S27.†

Comparing GaMD with cMD, we nd, perhaps unsurpris-
ingly that performance varies from compound to compound.
Generally, experimental NOE values are reproduced well by
the MD simulations for most compounds (Fig. 8). The GaMD
(cMD) ensembles full 74% (67%) of the reported NOEs, with
an average RMSD from the experimental values of
0.6 Å (0.8 Å). Discrepancies between the two metrics can be
attributed to reporting differences of the experimental NOE
values and differences in how tight bounds are dened. E.g.,
compound 66 has the highest RMSD value (1.3 Å for GaMD).
However, 70% of NOE values are still fullled in GaMD
simulations. When considering all compounds analysed,
cMD and GaMD do not show signicantly different perfor-
mances in the % of NOE distance restraints satised metric.
However, in terms of RMSD, GaMD performs signicantly
Digital Discovery, 2023, 2, 1163–1177 | 1169

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00053b


Fig. 6 (A) Comparison of cyclic peptide shapes observed in different solvents (H2O, DMSO, chloroform) in otherwise identical GaMD simulations
(2000 ns). (B) Majority clusters from MD simulations of compound 22 in the same solvents as (A). Intramolecular H-bond contacts are shown as
yellow dashed lines and were assigned via PyMOL. The simulation in H2O (left column) shows no intramolecular H-bonds, the structure instead
forms H-bonds with the solvent (not shown here). The majority cluster of a simulation in DMSO (middle column) shows some intramolecular
H-bonds. Themajority cluster of the chloroform simulation (right column) shows extensive intramolecular H-bonds, resulting in amore compact
structure.
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better (see Fig. S15†). For some compounds GaMD clearly
outperforms cMD. Conventional MD fails to reproduce the cis
structure of compounds 24 and 49 (see Fig. S13 and S14† for
Fig. 7 Potential energy surfaces of compound 22, obtained via reweight
of the PES, outputs of the OMEGA macrocycle (black squares) and RDK

1170 | Digital Discovery, 2023, 2, 1163–1177
PES). Generally, cMD reproduces the less exible compounds
well (57–68) but struggles with some of the more exible
compounds.
ed dihedral PCA analysis (A) and principal moment of inertia (B). On top
it ETKDGv3 (red squares) conformer generator are shown.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Comparing GaMD with cMD. The green triangle shows the
mean, the black bar shows the median, +’s indicate compounds with
high-quality NOE data. According to the paired t-test and Wilcoxon
signed rank test (not shown here), no method performs significantly
better in both the RMSD or % of NOE distance restraints satisfied
metrics. For a heatmap of p-values for both statistical tests see
Fig. S15.†
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Fig. S22 and S23† compare the Maclaurin series expansion
used here to reweigh the GaMD NOEs with the alternative
Boltzmann reweighting method. GaMD Boltzmann reweighted
NOEs do not match the experimental NOEs as well as NOEs
reweighted via the Maclaurin reweighting method.

Can cheminformatics conformer generators match MD
simulations?

Although accelerated methods show broader coverage of
conformational space, cMD also performs well at reproducing
experimental NOEs. We thus evaluated how well the OMEGA
and RDKit conformer generators perform relative to the MD
simulations.
Fig. 9 Comparison of full GaMD/cMD trajectories with the best single OM
bar shows the median. The +’s indicate compounds with high-quality N
significantly better than the cMD at fulfilling NOEs in both metrics. OME
performance relative to one another or to GaMD. For outputs of all sign

© 2023 The Author(s). Published by the Royal Society of Chemistry
In the following, we consider three separate comparisons:
(a) Comparison of the full (Ga)MD ensembles with a single

cheminformatics structure that best matches the experimental
data. We separately computed NOEs for every produced
conformer and chose the conformer with the largest % of NOE
distance restraints satised value.

(b) We compare the single most populated cluster of the MD
simulations with the best cheminformatics-based structures
(largest % of NOE distance restraints satised value, as in (a).

(c) We compare the full MD ensembles with various
conformer bundles, composed from the cheminformatics
derived structures.

Fig. 9–11 show the results for a–c, respectively. Full tables of
the reported mean values are provided in ESI Tables S1 and S2.†
For a brief discussion of the NOE coverage for varying peptide
sequence lengths, see ESI Text S12.† For details on how well the
solvation properties solvent accessible surface area (SASA) and
polar surface area (PSA) of MD and cheminformatics agree, see
ESI Text S13.†

Best cheminformatics structures vs. MD ensembles. Here,
we compare the full MD ensembles with the OMEGA and
RDKit conformer generators. Since the cheminformatics tools
produce many conformers, we selected a single conformer to
compare to the MD ensembles. Instead of choosing a random
conformer, we chose the conformer with the highest % of
NOE distance restraints satised value, i.e., the conformer
that best matches the reported experimental NOE values.
Comparing the best cheminformatics conformer matches the
common practise when evaluating cyclic peptide conformer
generators for solid state data, where the best conformer
(oen: lowest backbone RMSD) is chosen for comparison. By
choosing the best conformer, we also get an estimate of the
best possible performance of the investigated methods.
EGA/RDKit conformers. The green triangle shows the mean, the black
OE data. The best structures from OMEGA and RDKit ETKDG perform
GA macrocycle and RDKit ETKDG do not show significantly different
ificance tests see Fig. S16.†

Digital Discovery, 2023, 2, 1163–1177 | 1171
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Both OMEGA and RDKit show statistically signicant
different % of NOE distance restraints satised values (higher)
compared to cMD (see Fig. 9, and S16† for p values of statistical
tests). GaMD ensembles are statistically indistinguishable from
the best OMEGA/RDKit structures. Equivalent observation can
be made in the RMSD metric, where the cheminformatics
conformer generators have lower values e.g., lower deviations
from the experimentally reported NOE values, compared to
cMD in a statistically signicant manner. GaMD has higher
RMSD values than OMEGA/RDKit, but these differences are
again not statistically signicant. Between OMEGA and RDKit,
there is no statistically signicant difference in either metric
visible. While it is perhaps not “fair” to compare a full MD
ensemble with a single best cheminformatics structure, it is
nonetheless interesting to uncover the theoretical best perfor-
mance of cheminformatics methods, relative to much more
computationally expensive MD simulations.

Best cheminformatics structures vs. most populated cluster
from MD. Comparing the most populated cluster structure
derived in the MD simulations with the best cheminformatics
structure is a better comparison than comparing the chem-
informatics tools to the full MD trajectories. Here, we again
compare the single best structure of the cheminformatics
methods (not a randomly drawn structure) with the thermody-
namically most favourable structure from MD (requires no
knowledge of the experimental NOEs). For reference, we also
compare to a randomly drawn cheminformatics structure,
averaged over 10 random draws, which does not require any
knowledge of the experimental NOEs. The “best” RDKit and
OMEGA structures perform signicantly better (Fig. 10) than
the most populated MD clusters, both for cMD and GaMD. The
“best” cheminformatics structures also perform signicantly
Fig. 10 Comparing the most populated clusters derived via MD
simulations to the best and randomly drawn cheminformatics struc-
tures. The green triangle shows the mean, the black bar shows the
median. The +’s indicate compounds with high-quality NOE data. The
best OMEGA/RDKit structures perform significantly better than the
most populated GaMD/cMD clusters. Picking a randomOMEGA/RDKit
structure, averaged over 10 draws is significantly worse than the best
OMEGA/RDKit structures or the most populated GaMD structure. The
outputs of all significance tests are in Fig. S17.†

1172 | Digital Discovery, 2023, 2, 1163–1177
better than a single randomly drawn structure from chem-
informatics. The most populated GaMD structures outperform
single randomly drawn cheminformatics structures. The most
populated cMD structures on the other hand do not show
signicant differences to randomly drawn cheminformatics
structures. When comparing the most populated GaMD and
cMD structures with each other, there are no signicant
differences visible.

Bundles of cheminformatics structures vs. MD ensembles.
To see whether the cheminformatics-based structures can
collectively match the observed performance of the MD simu-
lations, we used bundles of cheminformatics generated struc-
tures and compared them to the full MD ensembles. We used
the following bundling methods, closely matching the bundling
methods used in Wang et al.:44

Lowest energy conformers:
For a bundle of size n, we picked the n lowest MMFF energy

conformers.
LICUV (least individual conformer upper violations):
For a bundle of size n, we picked the n conformers with the

highest % of NOE distance restraints satised values.
NAMFIS (NMR analysis of molecular exibility in solution):
We input all available conformers into a NAMFIS analysis

and picked the n conformers with the largest weights.
Random:
We picked a random set of n conformers from all available

conformers. We repeated this 10 times, and any computed
properties are the average over these 10 bundles, each of size n.

LICUV and NAMFIS were used to establish a best-case
scenario, as they rely on knowledge of the experimental NOE
values. We chose a bundle size of n = 10, but also investigated
other bundle sizes (see Fig. S20 and S21†). Results for OMEGA
are shown in Fig. 11A (p-values in Fig. S18†), results for RDKit
are shown in Fig. 11B (p-values in Fig. S19†).

All cheminformatics bundling methods that require knowl-
edge of the NOEs (best, NAMFIS, LICUV) perform similar to
each other and signicantly better than the reference cMD
simulations for both OMEGA and RDKit. OMEGA based NAM-
FIS ensembles show signicantly better performance than the
GaMD reference in both metrics, while LICUV is only signi-
cantly better in the RMSD metric. RDKit NAMFIS ensembles
only show signicant differences in the RMSD metric via the
Wilcoxon signed rank test, and are otherwise statistically
indistinguishable from the GaMD ensembles. LICUV and
NAMFIS both improve performance relative to random bundle
selection for OMEGA in all metrics, for RDKit the RMSD
performance difference of NAMFIS and random is not signi-
cant in the paired t-test. Taking the single best structure is
statistically indistinguishable to LICUV for OMEGA in both the
paired t-test and Wilcoxon signed rank test for both metrics
considered.

We nd equivalent results for RDKit. LICUV seems not to
improve the performance over taking only the single best
structure. NAMFIS reduces the RMSD for OMEGA relative to the
single best structure but does not show signicant differences.

The bundling methods that do not involve knowledge of the
NOEs for selecting conformers (random and lowest MMFF
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 The green triangle shows themean, the black bar shows the median. +’s indicate compounds with high-quality NOE data. (A) Comparing
bundles of OMEGA macrocycle with the full MD ensembles. Random or low energy bundles of size 10 perform significantly better relative to
GaMD ensembles or to picking a single random structure. Bundling randomly or via low MMFF energy are statistically indistinguishable from one
another. LICUV and the single best structure do not show differing performance. NAMFIS reduces RMSDs of NOEs relative to the single best
structure, but this does not lead to a significant increase in %NOE fulfilled values. See Fig. S18† for all p-values of statistical tests. (B) Comparing
bundles of cheminformatics conformer generators (RDKit ETKDG) with the full MD ensembles. Random or low energy bundles of size 10 do not
perform significantly different relative to GaMD/cMD ensembles in most statistical tests. See Fig. S19† for all p-values of statistical tests. Bundling
randomly or via low MMFF energy are statistically indistinguishable from one another. The single best and LICUV bundles perform significantly
better than randomly chosen or low MMFF energy bundles.

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 1163–1177 | 1173
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energies) do not perform signicantly different to the cMD or
GaMD simulations for both OMEGA and RDKit.

Selecting the lowest energy (MMFF) conformers is not
signicantly different from randomly choosing conformer
bundles for both OMEGA and RDKit when comparing RMSDs or
% of NOE distance restraints satised values of the NOEs.

Discussion

Knowledge of cyclic peptide solution structures is crucial for
predicting their pharmacokinetic properties, such as passive
membrane permeability.18 A variety of methods exist to produce
CP (solution) structures, but method comparison and
methodical evaluation is oen lacking, in part due to the
absence of easy-to-use CP solution structure datasets. Here, we
provide a dataset of CP solution structures and computational
workows to automate method comparison.

The data cleaning process during assembly of theMacroConf
dataset was a laborious semi-manual procedure. We made every
effort to automate as much of this process using existing tools,
such as OSRA, but manual interventions were still required. We
see two developments that will simplify this process in the
future:

(1) More efficient and automated extraction of chemical
information from previously published sources via tools such as
ChemDataExtractor82 or CIRCA (https://circa.res.ibm.com/).

(2) Addition of experimental results to relevant databases
will ensure that experimental data is as easily accessible as
possible. Further, through provision of topology les and
SMILES strings of studied compounds, studies can make follow
on work much simpler and reduce possible errors.

Our workow supports both MD simulations and chem-
informatics conformer generators and automates execution and
analysis of MD simulations. The workow further allows for
detailed comparisons of simulation outputs to one-another, to
experimental NMR data, and to other conformer generators.

The MacroConf dataset is limited by the available experi-
mental data we found in the literature, which can be seen in the
heterogeneous composition and varying NMR measurements,
setups, and parameters. Experiments were performed in
different solvents and were not necessarily of equal quality,
which is reected particularly in the different reporting of the
NOE values. The dataset does not cover the whole chemical
space of short to medium sized cyclic peptides, with some
compounds similar to others. Thus, we must keep in mind the
limit of available quantity and quality of experimental data. In
the present study, we made sure to employ relative comparisons
between different methods. Absolute comparisons between
different compounds or subsets of the dataset can be prob-
lematic due to the varying information content of different
NOEs, which leads to different restraining power.

Further, some studies provide additional data such as
chemical shis or coupling constants, which could be used as
a supplement to the NOEs to further constrain the conforma-
tional preferences of certain compounds. For example, 3J(HNHa)
coupling constants and 1Ha chemical shis can be used to
constrain backbone dihedral angles. Sidechain coupling
1174 | Digital Discovery, 2023, 2, 1163–1177
constants and methyl chemical shis also can provide
restraints for sidechain c1 and c2 dihedral angles, but these
measurements typically require peptides enriched with 13C
isotopes.

Various MD based methods to elucidate solution structures
of cyclic peptides are available,27 but frequently, methods are
only evaluated on relatively small datasets. It is underexplored
how well computationally much cheaper cheminformatics
conformer generators produce solution structures of CPs. Oen
designed for high-throughput workows, cheminformatics
conformer generators are usually benchmarked to reproduce
crystal structures of CPs.10 However, cheminformatics
conformer generators have merit when studying solution
structures of CPs. For example, it has been shown that OMEGA
produces plausible solution structures for a set of bRo5 drugs.83

More recently, Wang et al.44 adapted the popular open source
RDKit ETKDG conformer generator to incorporate NOE-derived
distances directly in the conformer generation process. They
also showed how the cheminformatics output structures can be
rened via restrained MD simulations.

As part of this study, we made use of the NAMFIS method to
lter out the cheminformatics conformers that best match the
NOE data. However, other methods exist that enable re-
weighting of conformations of the full ensemble to select the
sub-ensemble that is most compatible with the NMR data.84 The
maximum-parsimony approach selects a minimum ensemble
that can explain the experimental data, while the maximum-
entropy method only minimally perturbs the original
weights.85,86 However, methods that produce plausible solution
structures of CPs without relying on experimental parameters
are more attractive from an in silico design perspective.

Here, we evaluated four commonly used methods to model
cyclic peptide conformations: GaMD, cMD, OMEGA macrocycle
and RDKit ETKDG. Instead of using the full MacroConf dataset,
we used a subset of the MacroConf dataset, containing exclu-
sively cyclic peptides with natural L- and D-amino acids. This
made the forceeld choice for the MD based methods easier
and avoided manual parametrisation of charges. To consider
the chemically modied macrocycles of the MacroConf dataset,
we will need to use additional forceeld parametrisations, such
as Forceeld_NCAA,63 for only minor chemical modications,
or rely on a more exible all-atom force eld such as GAFF,
parsley, sage or others.

The two avours of accelerated MD, GaMD and aMD, per-
formed comparably at sampling conformations of the CPs
studied when considering dPCA PES of several compounds.
Both methods were superior at sampling compared to cMD,
which does not converge to the same energy landscapes within
equivalent simulation times. We required long simulation
times (1000 ns or more) to achieve convergence for (G)aMD,
which makes these methods much more expensive (runtime
∼7 days for a 2000 ns simulation on a Nvidia GeForce RTX2080
GPU) than the cheminformatics conformer generators (run-
time: from several seconds to 10's of minutes on an Intel Core
i9-9920X CPU). However, MD simulations allow us to retrieve
a time resolved trajectory, which includes thermodynamic
© 2023 The Author(s). Published by the Royal Society of Chemistry
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information and explicit solute–solvent interactions that are
unavailable for cheminformatics conformer generators.

All MD methods, including cMD, reproduced experimental
NOE values well and performed overall similar in terms of the
number of fullled NOEs, as captured by the % of NOE distance
restraints satised metric. The GaMD ensembles showed lower
RMSD values, which can be interpreted as better agreement with
the experimentally reported NOE distances. The observed simi-
larity of GaMD and cMD in the % of NOEs fullled could be for
two reasons. First, while the sampling looked dissimilar in the
dihedral PCA representation, the observed structures in the cMD
or non-converged GaMD/aMD simulations might be close enough
to the experimental structures, such that no signicantly different
performance was observed. Alternatively, the NOE metric may not
be sensitive enough to pick up subtle quality differences of the
different methods implemented. Compounds 24 and 49 illustrate
why enhanced sampling methods, such as GaMD, are required:
both compounds are present in solution in an equilibrium of
cis/trans isomers caused by their proline residues. In the cMD
simulations, only the trans isomers were sampled, the cis struc-
tures were not observed (see ESI Text S7 and Fig. S13, S14†). GaMD
was able to sample both isomers and produce good agreement
with the experimental NOE values. Despite GaMD and cMD not
being statistically signicantly different for the whole dataset,
outlier cases like compounds 24 and 49 illustrate why enhanced
samplingmethods are useful, when no prior knowledge of a cyclic
peptide system is available.

The comparison of cheminformatics and MD methods is
also a comparison of different force elds and solvent models,
since both OMEGA and RDKit have optional nal force eld
optimisation steps with MMFF94. While the cheminformatics
methods lack explicit solvent interactions and polar nonbonded
interactions this does not seem to impact their performance at
producing valid solution structures that agree closely with
experimental NOEs, as shown here. We observed that picking
a bundle of random structures from cheminformatics methods
performs comparably to usingMD ensembles. This might partly
be due to the r−6 averaging when combining structures, i.e., as
soon as one of the structures fulls a given NOE then the bundle
probably fulls the NOEs as whole. Further improvements to
cheminformatics structures are possible by running short MD
simulations based on the conformer generator outputs.44 In our
analysis, we focused on the fraction of NOEs that were fullled
(% of NOE distance restraints satised). An interesting point of
view in the context of cheminformatics conformer generators is
to consider NOE violations. This is essentially the inverse of the
% of NOE distance restraints satised metric. As such, the
results presented here can also be interpreted in terms of
violations. In the future, it will be interesting to see whether we
can devise innovative selection methods for choosing relevant
cheminformatics conformers from the ensembles produced
that do not rely on incorporating experimental knowledge. We
tried using the MMFF energies to select cheminformatics
structures, but this selection method was statistically indistin-
guishable from selecting conformers randomly. This conrms
previous indications that MMFF energies are not a useful metric
for conformer selection.83
© 2023 The Author(s). Published by the Royal Society of Chemistry
Conclusions

We presented the MacroConf dataset of CP solution structures,
together with an analysis of how well different CP conformer
generators reproduce CP solution structures. We provide reus-
able, modular, and open-source code that is easily extendable to
other methods (cheminformatics & MD), as well as to more
compounds or other datasets. We showed as part of our analysis
that both GaMD/cMD and the cheminformatics methods
OMEGA Macrocycle/RDKit ETKDG produce CP-structures in
good agreement with experimental NOE values. Single
randomly selected cheminformatics structures oen do not
match the performance observed in MD simulations. However,
bundling of multiple cheminformatics structures increases
performance to levels comparable to GaMD. We encourage
readers to submit any CP solution structures with associated
NOE data that are not part of the MacroConf dataset at https://
github.com/bigginlab/macroconf. We hope this work will aid
validation and further improvement of conformer generators
to improve solution structure predictions of CPs.
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