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otentials for reactive chemistry:
CASPT2 quality potential energy surfaces for bond
breaking†

Quin H. Hu, a Andrew M. Johannesen, a Daniel S. Graham ab

and Jason D. Goodpaster *a

Neural Network potentials are developed which accurately make and break bonds for use in molecular

simulations. We report a neural network potential that can describe the potential energy surface for

carbon–carbon bond dissociation with less than 1 kcal mol−1 error compared to complete active space

second-order perturbation theory (CASPT2), and maintains this accuracy for both the minimum energy

path and molecular dynamic calculations up to 2000 K. We utilize a transfer learning algorithm to

develop neural network potentials to generate potential energy surfaces; this method aims to use the

minimum amount of CASPT2 data on small systems to train neural network potentials while maintaining

excellent transferability to larger systems. First, we generate homolytic carbon–carbon bond dissociation

data of small size alkanes with density functional theory (DFT) energies to train the potentials to

accurately predict bond dissociation at the DFT level. Then, using transfer learning, we retrained the

neural network potential to the CASPT2 level of accuracy. We demonstrate that the neural network

potential only requires bond dissociation data of a few small alkanes to accurately predict bond

dissociation energy in larger alkanes. We then perform additional training on molecular dynamic

simulations to refine our neural network potentials to obtain high accuracy for general use in molecular

simulation. This training algorithm is generally applicable to any type of bond or any level of theory and

will be useful for the generation of new reactive neural network potentials.
1 Introduction

Neural network potentials (NNPs) have been shown to be
a promising compromise between accuracy and computational
cost.1–16 NNPs have been shown to be accurate for intra-
molecular interactions,17,18 intermolecular interactions,19,20 in
both gas21,22 and condense phases,23,24 and for large systems.25,26

However, there are fewer examples of NNPs being accurate for
chemical reactions and for bond making and bond breaking
processes. While there are several examples of system-specic
NNPs being highly accurate,21,22,27–29 and several well devel-
oped interatomic NNP models such as ANI,19,30,31 TensorMol,32

SchNet,33 NequIP,34 TorchMD-NET,35,36 and e3nn37 to name
a few. However, the transferability of training on small systems
and applying them to large systems for bond breaking processes
remains a greater challenge.38–42 Here, we performed an in-
depth study of using NNPs for bond making and breaking.
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A challenge in the development of machine learning poten-
tial energy surfaces is the development of quality features to
describe the molecular structures of chemical compounds.43–49

In the development of feed-forward NNs, the 3-dimentional
structures of any given system must be converted into an NN
input of a consistant size. This means nding the correct
representation of molecular structures is the key to trans-
ferability of the potential between smaller and larger systems,
which would allow the method to be applied to larger unseen
systems. To this end, Behler and Parrinello50 developed their
high-dimensional NN model to represent potential energy
surfaces based on symmetry features, which are rotationally and
translationally invariant. This choice of molecular features was
later utilized and developed into the Accurate NeurAl networK
engINe for Molecular Energies (ANAKIN-ME) model (ANI for
short).19 The ANI model utilizes symmetry functions to probe
radial and angular environments of atoms within a molecule, to
accurately and efficiently represents features of molecular
structures that would inuence the molecular energy of the
system. The ANI model has shown great success in the
modeling of intramolecular interactions for a variety of
different systems,30 and highlights the potential for utilizing
NNs to study larger chemical systems by training on smaller-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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size systems that are computationally affordable for high level
quantum methods.

The construction of a transferable NN potential requires large
quantities (106 to 107) of training data.51 However, to target the
chemical problem of bond dissociation energy, the generation of
large quantities of multi-reference calculations at the CASPT2 (ref.
52 and 53) level is still impractical with the current level of
computational power. Transfer learning is a potentially useful
technique in this regard. Transfer learning54,55 can be used to
retain learned relationships between the features and target by
freezing certain parameters; the NNP with frozen parameters can
then be retrained on data obtained from a different but related
task to yield highly accurate predictions even when new data is
sparse.56–58 In computational chemistry, DFT level data that relates
geometries to energies can be cheap to generate, while the more
accurate CASPT2 level data are more computationally expensive,
but the general trend of the bond dissociation potential energy
surface could be similar enough for a simple correction.59 The ANI
group developed a coupled cluster level potential – ANI-1ccx,
which was trained using transfer learning where its starting
potential, ANI-1x, was a DFT level potential then retrained using
ve hundred thousand coupled cluster datapoints.31 The ANI-1ccx
potential is constructed as a general purpose coupled cluster level
NN potential, thus its training still requires a large amount (105) of
data points. With the combination of transfer learning and
effective sampling, a previously trained NN at the DFT level may
need far less than 105 data points to be retrained in order to study
a particular chemical system well with sufficient accuracy at the
best level of theory for that system.

The research presented here demonstrates one possible way
to train NNPs to study carbon–carbon bond dissociation in long
chain alkanes approaching the CASPT2 level of accuracy
through the utilization of NNPs in combination with transfer
learning. We rst obtain transferable NNPs with DFT level of
accuracy for carbon–carbon bond dissociations. Next, we use
transfer learning to obtain transferable NNPs with a CASPT2
level of accuracy. Finally, we explore utilizing these NNPs for
molecular dynamics trajectories and demonstrate the high
accuracy achived by these NNPs.

2 Method
2.1 The ANI atomic neural networks model

The choice of machine learning model is inuenced by: (1) the
choice of features, sometimes called descriptors, used as the
input into the model, (2) the amount of available training data,
and (3) the desired accuracy of the model. As discussed above,
there are a plethora of different options when it comes to
molecular features and machine learning models for atomic
potential energy surfaces. What is less available are large data
sets used in the training of these models. One of the largest
available data sets to date is the ANI-1 data set60 that contains
over 20 million geometries and energies. The resulting model19

trained on the ANI-1 data set and the ANI-1x data subset61 were
found to be very accurate. We choose to utilize the existing ANI-
1 data set and model to only have to supplement additional
bond breaking data.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The ANI model19 depicted in Fig. 1, uses atomic environment
vectors (AEVs) GX

m as the features. AEVs are similar to those
proposed from Behler and Parrinello's NN model, which was
designed to represent and capture potential energy surfaces.50

This model accurately and efficiently enforces translational and
rotational invariance while describing the distance and angles
of individual atoms with respect to other atoms within the
system, and has shown great accuracy and transferability with
the prediction of electronic energies.19,30,31

Within the ANI model, the 3-dimensional coordinates of the
molecule are converted into the AEVs (features). These AEVs
then enter the atomic NN model, and aer three hidden layers,
the atomic NN model returns atomic energy Ei, which is the
atomic contributions of a particular atom to the overall system.
The total energy of the molecule ET of N atoms is the sum of all
atomic energies,

ET ¼
XN
i

Ei: (1)

The features in this model make use of two types of
symmetry functions where the 3D geometry is transformed into
a set of GX

m vectors, which give numerical descriptions of both
radial (X = R) and angular (X = A) features of the local envi-
ronment of a given atom i. The radial symmetry functions,

GR
m ¼

XN
jsi

exp
h
�h

�
Rij � RS

�2i
fC
�
Rij

�
; (2)

are a sum of Gaussians that describe the radial environment of
an atom i to all its neighboring atoms with index m associated
with tunable parameters h and RS, where fC(Rij) is the piece-wise
cutoff function with Rij being the distance from atom i to j,

fC
�
Rij

� ¼
8<
:

1

2
cos

�
pRij

�
RC

�þ 1

2
for Rij #RC

0 for Rij .RC

(3)

RC is the cutoff radius, which is typically set to be relatively
small to exploit chemical nearsightedness, but large enough to
accurately represent the local chemical environment. Any atom
having a distance beyond RC with respect to atom i will cause
fC(Rij) to return zero, which would result in the atom having no
effect on the radial GR

m vectors. In this project, RC is set to be 5.20
Å, and a constant h = 16 was used to limit the width of each
Gaussian peak and provide resolution of the atoms relative
distance. A total of 16 RS values were used in the radial functions
to cover the radial distance of fC(Rij) from 0 Å to the cutoff RC.

The angular symmetry functions GA
m describe the angular

environment of an atom i by summing all possible interactions
it has with atom pairs within the angular cutoff radius,

GA
m ¼ 21�z

XN
j;ksi

�
1þ cos

�
qijk � qS

��z � exp

"

�h

�
Rij þ Rik

2
� RS

�2
#
fC
�
Rij

�
fCðRikÞ: (4)
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Fig. 1 Accurate NeurAl networK engINe for Molecular Energies (ANAKIN-ME) high dimensional neural network model.19 The general algorithm
of themodel is shownwith the geometric data of a single watermolecule as the input. This model is built with atomic neural networks of different
atom types. The left-half of the figure shows the algorithm of atomic energy determination of the oxygen atom. The molecular coordinates of
the full molecule are used to calculate the features, the atomic environment vectors GX

m of a particular atom, and this is used as the input to the
atomic NN. Each atomic NN is built with three hidden layers of nodes to process the input and determine atomic energy contribution to the
overall system. The right-half of the figure shows the algorithm of total energy determination. Each atomic NN returns atomic energies of
a specific atom, and the sum of all atomic energies is the total energy of the molecule.
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Each interaction within the sum describes the angular
environment of atom i with respect to atom j and k, where qijk is
the angle of atoms i, j, k centered on atom i. Similar to the radial
symmetry functions, index m of GA

m is associated with tunable
parameters z, qS, h, and RS.

In this project, a z value of 32 is used to limit the width of the
peaks in the angular environment. Here, h and RS are similar to
that of eqn (2), with h set to 8 to control the width of the
Gaussians and a total of 4 RS values are used to shi the
Gaussians from 0 Å to the angular radial cutoff RC of 3.5 Å. The
angular symmetry functions also utilize a total of 8 angular
shis qS from 0 to p to cover all regions of the angular envi-
ronment. In summary, the radial and angular AEVs are calcu-
lated using these denitions and used as the input into the
atomic NNs.

The ANI model is an ensemble of atomic NNs, specically H,
C, N, O atom types. In other words, each atom type has its own
multi-layer feed-forward NN, and the AEVs discussed above are
calculated per atom type. Therefore, there are 4 radial sets of
AEVs (one for each atom type) and 10 angular sets of AEVs (one
for each atom type pair). The usefulness of these denitions of
the AEVs are that the AEVs have a constant size yet can differ-
entiate molecular geometries of anymolecules with any number
of atoms. All tuneable parameters z, qS, h, and RS of the
symmetry functions as well as the number of functions (for
instance, the number of RS) could be changed to optimized the
NN depending on the specic system. The current choice of
these parameters is selected to minimize the size of the AEVs
1060 | Digital Discovery, 2023, 2, 1058–1069
while maximizing the resolution. While optimization of these
parameters for bond breaking is le to future work, here we
simply used the same parameters as those used in the universal
ANI potential ANI-1x and ANI-1ccx.30,31 All parameters are
provided in the ESI.†

In this project, neurons or nodes within each hidden layer
described in the ANI model uses a Continuously-differentiable
Exponential Linear Unit62 (CELU) as their activation function,
while the nal transformation at the output node uses a linear
activation function for simple determination of the nal
singular output. The backpropagation algorithm employed in
this project is Adam,63 a computationally efficient algorithm
developed specically for gradient-based optimization in
machine learning with large data sets. This algorithm was
further improved and tested on NNs, as well as being used for
the previous development of the universal ANI poten-
tials.19,30,31,64 All NN calculations in this paper were performed
using the ANI model implemented in the open source package
TorchANI,65 which is an implementation of the original model
in PyTorch.66
2.2 Training methods and automated CASPT2 calculations

2.2.1 Transfer learning. Utilizing transfer learning, we can
re-train a previously trained NNP with new wavefunction level
data, to obtain a NNP at the wavefunction level of theory with
signicantly less data than what was required to train the
original NNP.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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The idea of transfer learning is to retain information learned
from previous training (such as the general relationship
between the AEVs and electronic energies), and to directly apply
or optimize on new data that is different but overall related to
what has been learned. This use of transfer learning allows fast
convergence, and requires signicantly less data for the training
of the partially frozen networks. Because both DFT and wave-
function methods utilize the same general process of assigning
energies to given geometries, previously trained DFT NNPs can
be “corrected” with wavefunction data by using transfer
learning.

In practice, a previously trained ensemble of DFT NNPs was
used as the starting potentials for transfer learning. A large
portion (about 80%) of optimized parameters in each NNP were
frozen. Specically, the parameters associated with the trans-
formation of AEV input to the rst hidden layer, and the
parameters associated with the transformation of the second
hidden layer to the third hidden layer were set as constants,
meaning these frozen parameters would not be further opti-
mized when this NNP is being trained again with new data. The
parameters associated with the rst hidden layer to the second,
and the third hidden layer to the output were allowed to be
further optimized to obtain the nal transfer learned NNP. This
choice of which layer of parameters to freeze is consistant with
ANI-1ccx.31 An example training trajectory is provided in
Fig. S2.† We see that aer only 100 epoch the RMSE drops to
a low value, and further epochs lead to over tting. Therefore,
we employ early stopping and take the best model based on
RMSE for our transfer learned NNP.

2.2.2 Automated CASPT2. To train a CASPT2 level of theory
NNP, CASPT2 calculations were performed using Molpro
quantum chemistry soware.67 However, to incorporate transfer
learning where thousands of CASPT2 calculations would be
required, a calculation scheme is developed in order to auto-
mate CASPT2 calculation to ensure ideal active space selection
without manually checking orbitals during the calculation.

To do this, we developed the following protocol. First, aer
the initial Hartree-Fock calculation is performed using the ANO-
VT-TZ basis set,68 the orbitals are localized with Atomic Valence
Active Spaces69 (AVAS), where all 10 orbitals of the two dissoci-
ating carbon atoms were selected, specically the 1s, 2s, and 2p
from each dissociating carbon. We found this lead to better
localized orbitals than just using the 2s and 2p orbitals.
However, since the 1s carbon orbitals shouldn't signicantly
contribute to the bond-breaking energies, in a second step from
this set of 10 orbitals, we choose 4 occupied and 4 virtual
orbitals to perform CASSCF (8, 8) calculations. Incidentally, we
found that the CASSCF (8,8) calculations did not always give
smooth potential energy surfaces, due to different orbitals
selected at equilibrium versus dissociated geometries. However,
we observed that the 6 most correlated orbitals did stay con-
sistant. Therefore, aer the (8, 8) calculation, we used the new
natural orbitals to perform another CASSCF calculation with
active space (6, 6), and nally the perturbation correction is
calculated on the CASSCF(6,6) wavefunction. We determined
that this protocol gives the most consistent results across all
alkanes tested in this study and always lead to smooth potential
© 2023 The Author(s). Published by the Royal Society of Chemistry
energy surfaces. A sample script for this calculation is included
in our github repository.70
2.3 Training and validation data

2.3.1 ANI-1CH data set: the ANI-1 database. All of the
geometries and total energies used in this work are available
either in the ANI-1 database,60 or on github [https://github.com/
GoodpasterGroup/Alkane-Dataset],70 and Zenodo.71

The ANI-1 database is a large data set containing the DFT
total energies and coordinates from equilibrium and off-
equilibrium geometries of organic molecules. This data set
contains roughly 22 million molecular conformations of 57 462
molecules consisting elements H, C, N, and O.72

All electronic structure calculations in ANI-1 database were
performed with the uB97X73 density functional and the 6-
31G(d)74 basis set using Gaussian.75 Here, we trained ensembles
of 10 NNPs at a time. To prepare a starting ensemble, 10 NNPs
were initialized randomly, and each network was trained on
10% of the ANI-1 database. Specically, the ANI-1 database was
evenly divided into 10 training sets, where each training sets
contains 10% of the original ANI-1 data. Each NNP of the
ensemble was given 1 of the 10 divided ANI-1 database, where
no two potentials of the ensemble were trained with any amount
of shared data. This created the initial ensemble of NNPs used
for this project. The use of an ensemble of NNPs instead of
a single potential is a common tactic to avoid random noise that
might be present in a single individual potential. Each NNP
discussed in the remainder of the paper is an ensemble of 10
NNPs; therefore, we will use the notation NNP (ANI-1CH) to
refer to an ensemble of 10 NNPs trained on the ANI-1CH data
set.

For any training that came aer the initialization, data
within the ANI-1 database containing molecules consisting only
of carbons and hydrogens were extracted and used as part of the
training data for each potential. This was to ensure each
potential would always accurately predict minimum energy
geometries of long chain alkanes, so that the performance of
NNPs aer training with various amount of dissociated geom-
etries can be compared. For the remainder of the paper, we will
refer to this subset of the ANI-1 database as the ANI-1CH data
set and it contains a total of 1 221 012 geometries.

2.3.2 MEP data set: minimum energy paths for evaluation
only. One goal of this project is to predict the dissociation paths
of C–C bond breaking in various length of alkanes. Geometries
along the dissociation path for each possible C–C dissociation
of 2–9 carbons alkanes from 1.0–5.0 Å with a 0.1 Å increment are
generated and optimized at the DFT level of theory. In order to
be consistent with the ANI-1 database, additional DFT data in
this project were all generated with the uB97X functional and 6-
31G(d) basis set using Gaussian 16.75 A sample script for this
calculation is included in our github repository.70 These MEP
data sets serve as part of the validation data sets for this project.
Additionally, the equilibrium geometry of each alkane was also
generated to be a part of the MEP data sets. The combined
dissociated and equilibrium geometries leads to a total of 42
data points per bond dissociation. In this work, we considered
Digital Discovery, 2023, 2, 1058–1069 | 1061
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Fig. 2 The DFT energies of the minimum energy path, normal mode
sampling, and DFT molecular dynamics geometries as a function of
bond length relative to the equilibrium geometry. The notation C3(12)
indicates the dissociation pattern is propane carbon 1 and 2. The
minimum energy path data set is shown in red, the normal mode
sampled data set is shown in blue, and the DFT molecular dynamics
data set is shown in green. The combination of these data sets show
that these geometries cover a significant amount of phase space
associated with bond dissociation.
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16 unique bond dissociations of various linear alkanes. The red
curve in Fig. 2 shows the MEP of propane as a representation for
each dissociation path. For the remainder of the paper, we will
refer to this database as the MEP data set containing a total of
672 geometries.

2.3.3 NMS data set: normal mode sampling. To sample
additional phase space for training, the Normal Mode Sampling
(NMS) method was used to map out molecular potential
surfaces near the dissociation path. NMS was used previously
for the generation of ANI-1 database.60 The goal of the NMS
method is to generate a set of conformations that would suffi-
ciently map out the potential energy surface near the dissocia-
tion path. To perform normal mode sampling using
a conformation of Na atoms from a DFT minimum energy
conguration (or MEP geometry), rst a set of Nf number of
vibrational normal mode coordinates, where Nf = 3Na − 6, is
calculated at the DFT level with the uB97X functional and 6-
31G(d) basis set using Gaussian 16. Here, each vibrational
normal mode Qi correspond to a force constant Ki. Then, the
displacement distance Ri is calculated by setting the harmonic
potential to be equal to a scaled average energy at some
temperature with the scaling coming from a random scalar ci,

Ri = ±ci3NakbT/Ki5

where kb is Boltzmann's constant, and the sign of Ri is deter-
mined randomly by Bernoulli distribution of p = 0.5 to ensure
samples are equally distributed on both side of the harmonic
potential for a set of sampling. Each displacement is then
applied to the starting geometry to generate a new
conformation.

In this work, each geometry from the MEP data sets were
used as starting point for NMS. A minimum of 10 000 new
geometries were generated using NMS for each dissociation of
2–8 carbons alkanes. Single point calculations were performed
at the DFT level for each geometry to create the NMS training
1062 | Digital Discovery, 2023, 2, 1058–1069
sets. The blue dots in Fig. 2 shows the distribution of NMS for
propane in terms of energy with respect to dissociation
distance. For the remainder of the paper, we will refer to data-
base as the NMS data set and it contains a total of 159 840
geometries.

2.3.4 DFTMD data set: DFT molecular dynamics. As
mentioned in the last section, NMS offers a systematic way to
map out the potential energy surfaces near the dissociation
paths; however, phase space further from the MEP can also be
sampled by performing molecular dynamics, as is commonly
done to generate physically relevant samples of molecular
potential surfaces.76 In this project, Born-Oppenheimer molec-
ular dynamics (BOMD) using DFT for the potential energy
surface was used to further sample phase space.77,78 Using
BOMD in Gaussian 16 with the uB97X functional and 6-31G(d)
basis set, 10 000 new geometries were generated for each
dissociation of 2–8 carbons alkanes using various starting
positions along the dissociation path directly from MEP data
set. The BOMD trajectories were initialized at 300 K, and were
ran in the NVE ensemble; therefore, some trajectories produced
temperatures as high as 1000 K, which allowed for efficient
sampling of the high energy phase space. Visual distribution of
DFTMD data generated for propane is shown as the green dots
in Fig. 2. DFTMD geometries span a region across the dissoci-
ation path on top of the NMS data. For the remainder of the
paper, we will refer to database as the DFTMD data set and it
contains a total of 158 720 geometries.

2.3.5 NNMD data set: neural network potential molecular
dynamics. As shown in Fig. 2, even though DFT molecular
dynamics were performed at various starting point along the
dissociation path, the majority of these trajectories formed
bonds and fell into near equilibrium carbon–carbon bond
distances. Therefore, when evaluating our NNPs on the DFTMD
data sets we would be unevenly evaluating the performance for
bond dissociation due to signicant more data being near
equilibrium. To further evaluate NNP performance on MD
geometries less represented in the phase space mapped from
the DFTMD trajectories, we performed additional MD trajecto-
ries with xed carbon–carbon bond lengths. In these MD
trajectories, we used NNP (NMS + DFTMD) trained on both NMS
and DFTMD data sets. These calculations were performed in the
Atomic Simulation Environment (ASE),79 using a Velocity Verlet
MD simulation80 in the NVE ensemble with a 0.5 fs timestep.
The trajectories were initialized using MEP geometries with
initial momenta set at 300 K. With the dissociating C–C bond
being xed, we ensured an even distribution of data across the
phase space for each dissociation for a fair validation of the
NNPs' performance.

Using this protocol, we generated a total of 20 000 geome-
tries per dissociation where the bond length was xed from 1.0
to 5.0 Å in 0.1 Å increments. We then took 1950 geometries from
each bond dissociation studied (20 total) for a total of 39 000
geometries. We randomly selected 10% of these geometries to
make the NNMD validation data set. Additionally, for propane,
we ran MD trajectories with initial momenta set to 1000 K, 1500
K, and 2000 K, and extracted another 5850 geometries. For the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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remainder of the paper, we will refer to database as the NNMD
data set containing a total of 44 850 geometries.

2.3.6 CASPT2 data set: CASPT2 energies. All CASPT2
calculations were preformed in MOLPRO 2018.1 (ref. 67, 68 and
81) using the ANO-VT-TZ basis set.68 Following the automated
CASPT2 protocols discussed in the previous section, we gener-
ated a data set of CASPT2 energies. Specically, all geometries
from the MEP data sets and 10% randomly selected geometries
from the NMS data sets were taken for ethane, propane, and
butane, and calculated using CASPT2 for a total training data
set of 2088 geometries. For the remainder of the paper, we will
refer to this data set as the CASPT2 training data set. Addi-
tionally, 1872 geometries from the NNMD data set for ethane
through butane, and 585 geometries from pentane to octane
were taken for the validation data set. For the remainder of the
paper, we will refer to this data set as the CASPT2 MD data set
containing a total of 2457 geometries.

3 Results and discussion
3.1 DFT potentials for bond breaking

To generate NNPs for bond breaking, we initially trained a NNP
with the ANI-1 database as discussed in Section 2.3.1. We then
re-trained all of these NNPs on the ANI-1CH data set. The ANI-
1CH data set was always included as part of the training set for
any future training at the DFT level of theory within this paper.
This means that a NNP further trained on ethane dissociation
data was still trained with the ANI-1CH database including
equilibrium and near-equilibrium geometries of other alkanes.
The ANI-1CH database only contains DFT energies, force data
were not available prior to this work. Therefore, all NNPs dis-
cussed in this work were only trained with energies.

This initial NNP was then trained with increasing amounts
of NMS dissociation data. Specically, an NNP was trained on
Table 1 Validation of neural network potentials for the prediction of the
trained using the NMS data set (up to N carbons) and ANI-1CH, and were
indicated in the example format of C4(12) where 4 specifies total num
between the first carbon and the second carbon. Each column provide RM
column head such as “butane” indicates the NNP was trained on dissoci

C–C
bond dissociation

Largest alkane included in training data

Ethane Propane Butane

C2(12) 0.53 0.10 0.54
C3(12) 13.05 0.08 0.45
C4(12) 12.02 6.06 0.39
C4(23) 25.33 1.59 0.33
C5(12) 12.11 5.79 0.40
C5(23) 24.29 6.42 0.54
C6(12) 12.12 5.78 0.38
C6(23) 24.36 6.15 0.53
C6(34) 23.23 13.35 0.84
C7(12) 12.08 5.71 0.39
C7(23) 24.37 6.14 0.51
C7(34) 23.32 13.09 0.84
C8(12) 12.11 5.72 0.41
C8(23) 24.35 6.10 0.51
C8(34) 23.34 12.09 0.82
C8(45) 23.40 11.82 0.87

© 2023 The Author(s). Published by the Royal Society of Chemistry
the ANI-1CH data set and then further trained by adding the
ethane dissociation part of the NMS data set to the ANI-1CH
data set. A different NNP was trained utilizing the same initial
NNP, but now with both the ethane and propane dissociation
from the NMS data set (in addition to the ANI-1CH data set), so
on and so forth. The last NNP was trained with all C–C bond
dissociaitons up to 8 carbon alkanes. This yielded 7 unique
NNPs for which performances could be evaluated and
compared.

Table 1 and Fig. 3(a) show the RMSE of the NNP performance
with respect to DFT on the MEP data set for these NNPs trained
with increasing amount of alkanes dissociations. When only
including bond dissociation data of ethane, the trained NNP
can only accurately predict ethane. A similar result is observed
with inclusion of propane dissociation data. The prediction of
all other bond dissociations improved in accuracy drastically
aer the inclusion of butane dissociation data. In fact, aer the
inclusion of butane dissociations, all energy predictions for all
possible C–C bond dissociation paths in alkanes containing 2–8
carbons returned RMSEs lower than 1 kcal mol−1. The reason
the accuracy improves dramatically once butane is included is
that the training data now contains C–C bond breaking data
between two secondary carbons, which is required to predict the
longer alkanes dissociations. Minor improvements and uctu-
ations in performance were observed with the inclusion of more
bond dissociation data of longer alkanes, which is associated
with slightly different convergence behavior of the NNP training
due to differently sized training sets and is not physically
signicant.

The NNPs are further evaluated on NMS data generated for
each possible dissociations. The RMSE of the NNPs with respect
to DFT energies of the training data generated from NMS is
shown in Fig. 3(b) and Table S2.† Evaluations of NNPs over NMS
training data is meant to justify the effectiveness of the training,
minimum energy path for the dissociation of alkanes. The NNPs were
used to predict the MEP data set. The specific C–C bond dissociated is
ber of carbons in the alkane, and (12) specifies the dissociating bond
SE evaluation in kcal mol−1 of the NNP on each dissociation path. The

ation data of butanes and smaller alkanes

Pentane Hexane Heptane Octane

0.10 0.09 0.17 0.10
0.09 0.07 0.18 0.10
0.11 0.06 0.22 0.10
0.17 0.10 0.18 0.10
0.16 0.07 0.29 0.09
0.11 0.06 0.22 0.10
0.23 0.07 0.35 0.10
0.14 0.08 0.29 0.09
0.19 0.07 0.29 0.12
0.30 0.07 0.43 0.10
0.19 0.08 0.35 0.09
0.21 0.10 0.35 0.10
0.36 0.09 0.50 0.11
0.25 0.08 0.42 0.10
0.27 0.10 0.42 0.11
0.26 0.12 0.41 0.14
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Fig. 3 Evaluation of neural network potentials for the prediction of the
potential energy surface of alkane dissociations. The NNPs were
trained using the NMS and ANI-1CH data sets and used to predict (a)
the MEP data set and (b) the NMS data set. The results are averaged
over all bond dissociations for a given alkanes.

Table 2 CASPT2 trained NNP RMSE performance on evaluating the
minimum energy path and the energy of dissociation obtained at the
CASPT2 level of theory. The ED is calculated as the potential energy
differences between the molecule at 5 Å dissociation versus at the
equilibrium distance. All values are in unit of kcal mol−1

C–C
bond dissociation RMSE ED(CASPT2) ED(NNP)

C2(12) 0.11 93.93 93.56
C3(12) 0.23 92.42 91.85
C4(12) 0.13 93.00 92.62
C4(23) 0.21 91.25 90.66
C5(12) 0.22 92.80 92.34
C5(23) 0.33 91.80 91.25
C6(12) 0.40 92.81 92.28
C6(23) 0.50 91.61 90.94
C6(34) 0.61 92.33 91.82
C7(12) 0.65 92.81 92.27
C7(23) 0.70 91.63 90.87
C7(34) 0.73 92.15 91.49
C8(12) 0.92 92.80 92.27
C8(23) 0.97 91.61 90.86
C8(34) 0.97 92.16 91.41
C8(45) 0.99 91.97 91.16
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as well as supporting that the NNPs are not over trained. The
convergence of the NNPs trained using C–C bond dissociation
up to butanes performed especially well over geometries that
were never included in the training data as shown by RMSE
evaluations over the 10 000 NMS data per dissociation for
pentanes-octanes being lower than 1 kcal mol−1.
3.2 CASPT2 potentials for bond breaking

In this work, what was desired was a CASPT2 level NNP for C–C
bond breaking in alkanes. CASPT2 calculations were performed
on all MEP geometries using the automated CASPT2 scheme
described in Section 2.2.2 to create initial training data sets
mentioned in Section 2.3.6 and performance evaluation data
sets. CASPT2 level MEP data of dissociating alkanes with 2–4
carbons, combined with 10% (randomly selected) NMS data of
2–4 carbons were used as the training data to retrain the DFT
potentials to CASPT2 level. We used transfer learning described
in Section 2.2.1 to retain the information learned during the
DFT training to the CASPT2 training.

As shown in Table 2, by combining transfer learning and
active learning, the NNP was able to reach CASPT2 level of
accuracy for C–C bond dissociation in alkanes with training
data of small alkanes, specically ethane, propane, and butane.
The RMSE of the NNP evaluating on all dissociation patterns of
1064 | Digital Discovery, 2023, 2, 1058–1069
2–8 carbons were below 1 kcal mol−1, even though the NNP had
never seen CASPT2 data of alkanes longer than 4 carbons
during training. The NN predicted dissociation path are
graphically indistinguishable with the reference CASPT2 ener-
gies as shown in Fig. 4.

As shown in Table 2, the NNP prediction ED(NNP) has a less
than 1 kcal mol−1 error for any of the dissociations. The
dissociation energy in these alkanes, ED(CASPT2), is between 91–
94 kcal mol−1, with the largest gap between the dissociation
curves being about 3 kcal mol−1. The highest and lowest bond
dissociation energies are C2 and C4(23), which suggests that
one reason high accuracy is seen from training on C2–C4 and
predicting up to C8 is due to the NNP only having to interpolate
to energies within the CASPT2 data set.

The NNP predictions have even greater accuracy for relative
energies. For example, between C8(34) and C8(45), the CASPT2
reference shows a gap of 0.19 kcal mol−1 with C8(34) being
slightly higher, the NNP prediction shows a gap of 0.25 kcal-
mol−1 with C8(34) being slightly higher. By looking at the
relative energies, one can still see that knowledge was trans-
ferred from the DFT trained NNP to the CASPT2 trained NNP.
The only carbon–carbon bond dissociation between two
secondary carbons in the CASPT2 training set is C4(23). The
reference CASPT2 data shows a relative energy difference
between the dissociation energies C4(23) and C6(34) of
1.08 kcal mol−1 compared to 1.16 kcal mol−1 for the CASPT2
trained NNP. Thus, despite the C6(34) bond dissociation only
being included in the DFT data, the CASPT2 trained network
correctly predicts this energy due to the transfer learning.
Therefore, while here we are only demonstrating a modest
transferability, performing a larger study on transferability of
this network to non-alkanes is the subject of our future work.

We can conclude that once a NNP is sufficiently trained with
DFT data for a specic system, you only need a very small
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Evaluation of the transfer learned neural network potentials for
the prediction of the potential energy surface of alkane dissociations.
The NNPs were trained using the NMS and ANI-1CH data sets and
transfer learning was used to describe the CASPT2 potential energy
surface. The dissociation of hexane and octane were unseen by the
NNP. The energies from the neural network potential and the energies
from CASPT2 are graphically indistinguishable.

Fig. 5 Evaluation of neural network potentials on the test set of
molecular dynamics bond-constrained dissociating geometries. The
neural network potentials were trained on the NMS data set (blue) or
both the NMS and DFTMD data sets (red).
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amount of CASPT2 data to achieve a high level energy correc-
tion. What is demonstrated here shows that if only targeting
a specic system, one would only need a few thousands of
geometries at the higher level of theory to utilize transfer
learning to retrain a DFT level NNP to the CASPT2 level of
theory.

3.3 Performing MD using neural network potentials

We now test the performance of our NNPs for their ability to
accurately performmolecular dynamics simulations. Due to the
relatively large amount of training data required, if the end goal
is to simply calculate the bond dissociation energy or the
minimum energy path, one would simply perform the DFT or
CASPT2 calculations. The real advantage of the NNPs is: (1) their
transferability to larger systems (as demonstrated above for
minimum energy paths) and (2) their ability to accurately
interpolate between geometries in the training data. Here, we
seek to test the accuracy of both, as molecular dynamic simu-
lations will sample many geometries not in the training data. By
performing molecular dynamics on larger systems than in the
training data, we can test the NNPs transferability to larger
systems. With sufficient accuracy, NNPs will be a powerful tool
in performing molecular dynamics simulations (such as
© 2023 The Author(s). Published by the Royal Society of Chemistry
WHAM82) due to the large number of energy and force evalua-
tions required.

We performed a series of molecular dynamics simulations
where each simulation constrained the bond length of the rst
and second carbon to be at a xed distance between 1.0 to 5.0 Å
in increments of 0.1 Å forming the NNMD data set as
mentioned in Section 2.3.5. As shown in Fig. 5, the NNP (NMS +
DFTMD) performed incredibly well with RMSE under
0.5 kcal mol−1 for the test set. Surprisingly, NNP (NMS), which
was trained with noMD data, also performed quite well in terms
of RMSE on these MD geometries generated with NNP (NMS +
DFTMD) with an RMSE of around 1 kcal mol−1. The improve-
ment in the performance of the NNPs with the inclusion of the
DFTMD geometries is due to the NMS data including only
displacements of single normal modes, whereas the DFTMD
geometries contains the coupling of multiple normal modes.
Both the NNP (NMS + DFTMD) and NNP (NMS) were only
trained with data up to octane; therefore, the high accuracy for
nonane dissociation demonstrates good transferability to larger
systems.

In order to probe the performance of NNPs on MD geome-
tries at different temperatures, additional MD trajectories were
generated for propane with initial momenta of 1000 K, 1500 K,
and 2000 K as described in Section 2.3.4. The performance of
NNP (NMS) and NNP (NMS + DFTMD) evaluating these geom-
etries is shown in Fig. 6. The NNPs trained with DFTMD data
performed well at all temperatures. The NNP (NMS) performed
well for low temperatures, but based on Fig. 6, the RMSE
appears to increase exponentially as the temperature increased.
These ndings suggest that the NNP (NMS) could be used to
potentially run MD simulations if the system is kept at low
temperatures. However, if the goal is to observe bond dissoci-
ation during MD trajectories where higher temperatures are
Digital Discovery, 2023, 2, 1058–1069 | 1065
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Fig. 6 Evaluation of neural network potentials on the test set of
molecular dynamics bond-constrained dissociating geometries as
a function of temperature. The neural network potentials were trained
on the NMS data set (blue) or both the NMS and DFTMD data sets (red).
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required, an NNP need to be trained on geometries that span
the higher energy regions.

The performance of CASPT2 level NNPs on MD geometries at
300 K is also evaluated. Starting with two different previously
trained DFT NNPs, one trained with NMS data (NNP NMS), the
other trained with NMS and DFTMD data (NNP NMS + DFTMD),
we explore transfer learning using the procedure described in
Section 2.2.1 using the CASPT2 data set mentioned in Section
2.3.6 to generate the transfer-learned NNPs, referred to as NNP
(CASPT2/NMS) and NNP (CASPT2/NMS + DFTMD). The CASPT2
data set is the same for both networks, the only difference
between the networks is which DFT data the NNP was trained
on before transfer learning. The RMSE performance of the two
Fig. 7 Evaluation of transfer learned neural network potentials on the
test set of molecular dynamics bond-constrained dissociating
geometries at 300 K. The neural network potentials were initially
trained on the NMS data set (blue) or both the NMS and DFTMD data
sets (red). Then both neural network potential were retrained using the
same CASPT2 data set.

1066 | Digital Discovery, 2023, 2, 1058–1069
CASPT2 level NNPs evaluating the CASPT2 validation set of MD
geometries are shown in Fig. 7.

The NNP (CASPT2/NMS) has an RMSE of around
2 kcal mol−1 for most carbon one and two dissociations in
alkanes, while the NNP (CASPT2/NMS + DFTMD) gave about
1 kcal mol−1 for most of these dissociations. This shows that
even when CASPT2 training data contains only geometries ob-
tained from the NMS data set, if DFTMD geometries are used in
the transfer learning, the accuracy of the NNP for molecular
dynamics is signicantly improved. Due to the computational
time for CASPT2 calculations, we limited our study to mostly
carbon one and two dissociations. However, in order to test the
performance of the CASPT2 level NNP on other dissociation
variations, C4(23) and C8(45) dissociation data were also
generated in the CASPT2 test set. The RMSE of the CASPT2 NNP
perviously trained with both NMS and DFTMD data gave
1.27 kcal mol−1 for butane carbon two and three dissociation,
and 1.07 kcal mol−1 for octane carbon four and ve dissocia-
tion. Therefore, the accuracy of NNP (CASPT2/NMS + DFTMD) is
retained regardless of which alkane bond is being dissociated in
MD.

In summary, the transfer learning from DFT to CASPT2
provided a great amount of transferability for both MEP
geometries and in MD geometries. This suggests that a rela-
tively small amount of CASPT2 is all that is required to obtain
general and transferable NNPs for chemical reactions.

4 Conclusions

We have demonstrated the capability of our NNPs to retain high
accuracy relative to the methods used to generate the training
data. For MEPs, we have shown that NNPs trained up to 4
carbon alkanes with DFT or transfer learned CASPT2 can
accurately calculate bond dissociation energies of alkanes up to
8 carbons. For MD simulations, we showed that NNPs trained
on NMS data sets can be valid to use at low temperatures, but
additional geometries sampled from higher energy congura-
tions are required to be included in the training data to main-
tain accuracy at higher temperatures. Finally, we showed that
transfer learning, with a surprisingly small amount of CASPT2
data, is all that is required to perform MD trajectories with
accuracy comparable to CASPT2.

While we have shown good transferability between small
alkanes to large alkanes, we have not shown transferability
between alkanes to other compounds, which is the subject of
our future research. However, this work showcases that NNPs
have the ability to describe bond making and breaking
processes, and what remains is to generate appropriate training
data. We believe this work further shows the applicability of
NNPs to the study of chemical systems and we expect further
adoption of NNPs by the larger community as larger data sets
are generated and further advancements in NNPs are
developed.
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