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redoxmers for non-aqueous redox flow batteries†
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Lu Zhang ac and Rajeev S. Assary *ab

Organic non-aqueous redox flow batteries (O-NRFBs) are emerging devices for storing intermittent

renewable energy in the electric grid. For this application, redox-active organic molecules (redoxmers)

are required that have suitable redox potentials, excellent solubility in electrolytes, and adequate stability

in all states of charge. Due to the large available design space of redoxmers, machine learning is useful

to identify optimal molecules that combine these properties. In this contribution, we propose

a probabilistic algorithm that simultaneously expands structural diversity in a molecular library of

redoxmer derivatives and limits it to synthetically accessible structures. A Bayesian optimization-based

active learning algorithm is then used to discover promising molecules with a minimal number of

computationally expensive quantum chemistry calculations. To demonstrate the power of this approach,

we investigated derivatives of a redox active molecule, 2,1,3-benzothiadiazole. A library of 35 500

molecules was explored, and a new class of tricyclic derivatives with unusually low reduction potentials

was discovered. We analyze and report the correlation between low reduction potentials, cyclic

moieties, and positional specificity of functional groups. In addition, we report the electrochemical

stability of selected molecules that display low reduction potentials and suggested molecules for the

experimental validation of their promising electrochemical properties.
1 Introduction

Organic non-aqueous redox ow batteries (O-NRFBs) are
promising energy storage devices for integrating intermittent
renewable energy sources into the electric grid. The attractive
features of these devices include their relatively low materials
cost, scalability, wider electrochemical stability windows
compared to aqueous electrolyte solutions, and large design
space of organic redox-active molecules (redoxmers).1,2

However, their adoption on a commercial scale is hindered by
low energy density and short battery cycle life.2–5 That, in turn,
can be traced to the difficulty of nding redoxmers that satisfy
numerous requirements imposed on the materials that include,
but are not limited to, the synthetic ease, high solubility in
electrolytes, exceptional stability in all states of charge, and the
extreme redox potentials that take advantage of the wide elec-
trochemical windows. Such requirements can be difficult to
harmonize and require exhaustive screening of large chemical
spaces.
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The volumetric energy density of the O-NRFB is determined
by the cell voltage and the molar concentration of redoxmers.6

The open circuit voltage is given by the difference in the redox
potentials of the catholyte (positive charge storage) and anolyte
(negative charge storage) molecules.2,3 Thus, one way to achieve
a higher energy density is to lower the reduction potential of the
anolyte and increase the oxidation potential of the catholyte.
Generally, these extreme redox potentials decrease the stability
of charged molecules.7 Radical ions of organic molecules react
with each other, parent molecules, and other species in solu-
tion,8 and these side reactions decrease the cycle life of
a battery. Further loss of capacity involves the crossover of
redoxmer molecules through the membranes that separate cell
compartments.9 For these reasons,1,8,10,11 nding redoxmers that
have extreme redox potentials and stable charged states is
a major challenge for O-NRFB development.

In the literature, the redox potential, solubility, and stability
of various all or partially organic-derived redoxmers such as
metallocene,12–14 dialkoxy benzene,8,15,16 nitroxide radicals,17–21

and other molecules22 have been modied through derivatiza-
tion of core molecules, which are typically aromatic rings with
pi-systems that can accommodate extra charges. Polar substit-
uents improve the solubility of these molecules in electrolytes
while electron-donating or electron-withdrawing substituents
tune the redox potential. Thus, for each core molecule there
exists a large space of derivatives to explore. One promising
Digital Discovery, 2023, 2, 1197–1208 | 1197
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discovery strategy is high-throughput screening using compu-
tational methods such as density functional theory (DFT)
calculations to compute the properties of interest.23–25 However,
such calculations can be expensive and time-consuming. To
further accelerate materials screening, machine learning (ML)
models have been employed for extremely fast property evalu-
ation. Several recent studies have developed ML models to
predict material properties such as adsorption energies26,27 and
melting temperature.28,29 However, the accuracy of such
methods depends on the diversity, quantity, and quality of the
data used for model training, somassive experimental data and/
or computations are still required to train the ML models for
reliable predictions.30–32

Among various ML methods, active learning (AL) algorithms
are particularly promising for problems in which data sampling
is limited.33–42 The AL algorithm uses a surrogate model and
a global optimization routine to explore a search space with the
minimal number of evaluations.42–44 Several studies have
applied the AL to the discovery of new materials with optimal
properties. For example, Kim et al.36 and Jablonka et al.35

discovered polymers with optimal physical properties, Bassman
et al.34 have identied layeredmaterials with optimal band gaps,
Xue et al.37 suggested shape-memory alloys with low thermal
hysteresis, and Janet et al.45 identied transition metal
complexes for aqueous redox ow batteries. Recently, Doan and
co-workers,38,39 used the AL algorithms to discover high-
potential redoxmers and optimize multiple properties such as
reduction potential, solvation free-energies, and absorption
wavelength of redox active materials. Despite these pertinent
demonstrations of the AL methods for molecules (and mate-
rials) design, we nd the lack of constraints on structural
complexity and synthesizability in the AL algorithm oen leads
to discovered species of limited practical interest because of the
complex structure and complex synthesis route.38,39

One approach to overcome this problem is to use AL algo-
rithm with a constraint such as synthesizability scores (retro-
synthetic accessibility score (RAScore)46 or synthetic Bayesian
accessibility (SYBA) score47) to discover molecules that are more
likely synthesizable as shown by Hickman et al.42 Other
approach is to apply the AL algorithm to a search space that
contains synthetically accessible molecules. Generative algo-
rithms are shown to be promising methods to generate novel
molecules and can be used to create a molecular search space
besides molecular enumeration. However, generative methods
oen generate molecules that are not synthesizable.48–51

Our approach to nding synthesizable molecules with AL
algorithm is to engineer a search space that mostly contains
structurally diverse yet simple molecules. The approach
resembles planning like a synthetic chemist in which larger
structures are built sequentially by the addition of chemical
blocks or synthons, and the growth of a molecule is interrupted
by cyclization of the growing chains. Thus, we propose
a synthesis-aware rule-based molecule generation algorithm
(SRMGA) that probabilistically generates a large library of pre-
optimized derivatives. We use this library to identify promising
redoxmer candidates in a minimal number of DFT calculations
with AL.
1198 | Digital Discovery, 2023, 2, 1197–1208
To demonstrate the effectiveness of this approach, we chose
2,1,3-benzothiadiazole (BTZ), a promising anolyte that has been
extensively studied because of its low reduction potential, low
molecular weight, high solubility, and outstanding electro-
chemical cycling stability.7,52,53 In this study, we aimed to nd
synthetically accessible BTZ derivatives with the lowest one-
electron reduction potentials. Here we report how the
combined use of SRMGA and ALmethods led us to the discovery
of a new class of tricyclic BTZ molecules with anomalously low
reduction potentials. We also show that low reduction potential
molecules are associated with extra cyclic moieties and
a specic placement of functional groups at benzene ring of
BTZ molecule. In addition, we evaluate the electrochemical
stability of 15 selected molecules using the rst and second
reduction potentials, and proton affinities of radical anions,
and show the tradeoff between the low reduction potential and
electrochemical stability of molecules.

The remainder of this paper is organized as follows. In
Section 2, we provide details of DFT calculations, SRMGA, and
the AL workow. In Section 3, we discuss BTZ molecular library
generation with SRMGA, exploration of a molecular library with
AL algorithm, the correlation between reduction potential and
chemical structure of low reduction potential molecules, elec-
trochemical stability of 15 selected anolyte candidates, and
provide retrosynthetic analysis of a promising scaffold mole-
cule. Finally, in Section 4, we provide a summary of our work
and concluding remarks.
2 Methods
2.1. Density functional theory (DFT) computations

The calculations were performed using the Gaussian 16 so-
ware package54 at the B3LYP/6-31+G(d,p) level of theory.55,56 The
acetonitrile solvent was simulated using the conductor-like
polarizable continuum model (CPCM).57,58 Geometry optimiza-
tion and vibration frequency calculations of neutral and
charged molecules were performed in the solvent dielectric to
calculate the electronic energies at T = 0 K and Gibbs free
energies at T= 298 K. The rst reduction potential of a molecule
with or without the vibration frequency corrections (designated
ERed1 and E

0
Red, respectively), and the second reduction potential

(ERed2) were calculated using eqn (1)–(3),

E
0
Red ¼ �5:09� DERed1

F
(1)

ERed1 ¼ �5:09� DGRed1

F
(2)

ERed2 ¼ �5:09� DGRed2

2F
(3)

where F is the Faraday constant, and the−5.09 V is the potential
difference between the standard hydrogen electrode (SHE,
−4.29 V) and the Ag/Ag+ redox couple (+0.80 V).59 In these
expressions, DERed1 and DGRed1 are the differences between the
DFT energies and the Gibbs free energies of the reduced
molecule and the neutral molecule (in eV), respectively. DGRed2
© 2023 The Author(s). Published by the Royal Society of Chemistry
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is the Gibbs free energy difference between the doubly reduced
and neutral molecules. Hereaer, all computed redox potentials
are given in V vs. Ag/Ag+ reference electrode in acetonitrile. For
convenience, the reduction potential gap between the 1e− and
2e− states are dened as DERed = ERed1 − ERed2. The free energy
of protonation of the radical anion, DGH+, is computed from:

DGH+ = GAH − GA− − GH+, (4)

where GAH, GA−, and GH+ are the Gibbs free energies for the
protonated radical anion (AH), the radical anion (A−), and the
proton, respectively.
2.2. The molecular library generation

The schematic of molecular generation from a core structure,
development of a database and molecular discovery with AL is
shown in Scheme 1. Specically, it shows how a core molecule
(or a molecular scaffold) and building blocks are combined by
a generator complemented with a Metropolis type sampler that
biases the process to simpler molecules. Aer the molecular
generation, AL is used to identify the promising molecules with
the minimum number of DFT calculations.
Scheme 1 Discovery of promising molecules using a Bayesian optimiza
calculations. The scaffolds and building blocks are combined by molecul
the process to simpler molecules. AL is then used to identify the promis

Fig. 1 Workflow of SRMGA. In the example shown above, a core molec
listed in Table 1 (in this case, the amine groups, –NXY) are added to these
Y). Subsequent growth with chemical building blocks (Table 2) elonga
cyclization. This growth stops when all growth points are terminated wi
defined rules is added to the library, otherwise the process is repeated. In
atoms in a molecule, and p(CS) is defined in eqn (5).

© 2023 The Author(s). Published by the Royal Society of Chemistry
To populate the molecular library, we devised the SRMGA
illustrated in Fig. 1, in which the functional groups and
chemical building blocks are added randomly to a molecular
scaffold (or core molecule), with a bias to smaller building
blocks. The SRMGA starts with a molecular scaffold (BTZ
molecule shown in Fig. 1), functional groups, and chemical
building blocks provided in Tables 1 and 2. The parent BTZ
molecule has four possible derivatization sites at carbons 4 to 7
in the benzene ring. As we seek to further reduce the redox
potential of this molecule, the substituents (provided in Tables
1 and 2) are chosen as electron donating or neutral groups, such
as the alkyl, amino, alkoxy, amide, and carboxylate, that are
known to decrease the reduction potential of molecules. The
structural casts of these groups are given in Table 1. All casts
and chemical building blocks are presented in the symbolic
Simplied Molecular-Input Line-Entry System (SMILES) format
so that the molecule building operations involve symbolic
manipulation of SMILES strings using a Python program based
on the standard RDKit routines.60 For example, the cast for an
amino group would be –NXY, where synthetic blocks X and Y are
growth points shown by orange circles in Fig. 1 and chosen from
Table 2. This set includes the H atom, straight and branched
tion-based active learning (AL) algorithm and quantum chemistry DFT
e generator complemented with a Metropolis type sampler that biases
ing molecules with the minimum DFT calculations.

ule (BTZ) has two sites tagged for substitution (orange circles). Groups
points at random. Each cast adds twomore growth points (blocks X and
tes the groups through recursive daisy chain growth, branching or
th blocks containing no growth points. A molecule satisfying all user-
the diagram, HMW is the molecular weight (g mol−1) of non-hydrogen

Digital Discovery, 2023, 2, 1197–1208 | 1199
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Table 1 SMILES casts for substitution groups in the core scaffolds

Cast Comment

H Hydrogen atom
X Growth point (any chemical block in Table 2)
Y Growth point (any chemical block in Table 2 except H

atom)
N(X)(Y) Amine cast with growth points
OY Alkoxy cast with growth points
\[N+](X)]
C([O–])/Y

Amide cast (zwitterionic form) with growth points

OC(]O)Y Carboxylate cast with growth points

Table 2 Chemical building blocks (X and Y in Table 1) and their
probability for random drawing (Pd). Pd is provided to the SRMGA to
bias the selection of simple building blocks for structure growth.
Smaller and simple chemical building blocks (like H, and C) were given
higher Pd than larger chemical building blocks (like CCN(Y)(Y) and
CCOY), to ensure that simple blocks get selected more frequently for
structure growth than the larger blocks with low Pd

SMILES Pd

H 0.47
C 0.24
CC 0.12
CCC 0.04
C(C)C 0.04
CCCC 0.02
C(C)CC 0.02
CC(C)C 0.02
CCOY 0.02
CCN(Y)(Y) 0.01
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alkyl groups, and functional groups such as polyethylene oxide
(CCOX) or amines (CCNXY) that are added to make a molecule
more soluble in acetonitrile. These blocks contain new growth
points (orange circles in Fig. 1), so the chains can elongate and
branch out (Fig. 1). The probability of randomly drawing
chemical building blocks (Pd) from Table 2 is provided for each
chemical building block. The SRMGA uses the Pd values to bias
the selection of simple chemical building blocks for structure
growth. The chemical building blocks with the higher Pd get
selected more frequently than the chemical building blocks
with smaller Pd values. Therefore, smaller (and simple) chem-
ical building blocks (like H, C, and CC) were given higher Pd
than larger (and complex) chemical building blocks (like
CCN(Y)(Y) and CCOY). By recursively adding (“daisy chaining”)
the synthetic blocks, the growth points are terminated or
substituted further until no such points remains (Fig. 1).
Provisions are made so that the chains can “recombine” with
one of the initial growth sites making cycles (Fig. 1). We want to
highlight that additional cycles generated by the SRMGA are
saturated and not aromatic, therefore in this work the molec-
ular search space does not include BTZ molecules with an
additional aromatic or unsaturated cycle. Although additional
aromatic or unsaturated cycles may modify the BTZ properties,
we do not study them here and it will be discussed elsewhere.
1200 | Digital Discovery, 2023, 2, 1197–1208
The blocks and chains are added either non-symmetrically or
symmetrically (as the non-symmetric molecules could be more
difficult to synthesize). The functional groups and synthetic
blocks are chosen at random from Tables 1 and 2, i.e., therefore
the generator is probabilistic. For that reason, duplicates can
occur and need to be removed by comparing the canonical
SMILES. As the generation is fast, this duplication is a minor
computational expense compared to DFT calculations.

The SRMGA keeps track of all additions to a molecular
scaffold with the complexity score (CS). The core molecule has
a CS score of zero (CS = 0). The CS value is incremented by one
each time a non-hydrogen (non-H) substituent (for example –

CH3, or –OCH3) is added to the molecule. In this fashion, the CS
provides a crude estimate for the synthetic complexity of
a molecule. It is important to note that the value of CS is
determined by the order in which substituents are added to
a core molecule. Additionally, it is possible to derive a molecule
from the core molecule through multiple routes as the selection
of chemical blocks and functional groups is random. As a result,
a given derivative molecule may have different CS values in
different independent runs of SRMGA, even if using the same
core molecule.

As mentioned earlier, the goal of the SRMGA is to bias
molecular search towards less complex molecules. While
providing explicit bias towards smaller building blocks in Table
2 helps to reduce complexity, there is still overabundance of
synthetically inaccessible structures with high CS. While we
need complex structures in the library, they can overrun the
search space with these molecules. Taking inspiration from the
Metropolis–Hastings sampling61 mentioned in Fig. 1, we dene
a condition, p(CS), to accept (p(CS) = 1) or reject (p(CS) = 0)
a molecule in the library based on its complexity score,

pðCSÞ ¼

8>><
>>: 1; if e

�b

�
CS�CS0

CSmax�CS0

�
. x

0; otherwise

(5)

Here CSmax is themaximumCS allowed in themolecular library,
CS0 is the minimum CS below which all molecules are allowed
in the molecular library, and x a computer generated random
number uniformly distributed between 0 and 1. The SRMGA
rejects all molecules with CS > CSmax, accepts all molecules with
CS# CS0, and accepts somemolecules with the intermediate CS
between CS0 and CSmax that satisfy the condition

e
�b
�

CS�CS0
CSmax�CS0

�
. x. In eqn (5), b is the penalizing factor that is

analogous to the Boltzmann factor 1/kT in thermodynamics.
The higher is the “temperature” (the smaller is b > 0), the
weaker is the penalization of molecular complexity.

Besides the p(CS), the SRMGA can also check if a new
molecule satises other user-dened rules (see Section 3.1). For
example, we can limit the number of atoms and/or molecular
weight of a molecule. The latter is important as larger molecules
(due to their excessive molar volume) cannot satisfy volumetric
energy density requirements in O-NRFBs.15,16 If a new molecule
satises all user-dened rules, the SRMGA checks for duplicates
and adds it to the library, otherwise, it starts the process over
© 2023 The Author(s). Published by the Royal Society of Chemistry
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again until we get desired number of molecules in the library
(Fig. 1).

2.3. The active learning (AL) methodology

The next step is using machine learning to navigate the large
library generated by SRMGA. To this end, we used the Bayesian
optimization-based active learning algorithm illustrated in
Fig. 2. In this algorithm, each molecule is rst represented by
a vector of 49 descriptors (consistent with ref. 37 and 38) which
was generated from its canonical SMILES using the RDKit
soware (see Table S1†).60 To train a surrogate model faster with
a reasonable accuracy we reduced the number of descriptors
using the principal component analysis. Specically, we used 16
principal components as features (Fig. S3†), Xi

j, that explain at
least 99% variance in the data, where Xi

j is the ith principal
component of molecule j. To start the algorithm, we select at
random n molecules (e.g., n = 10) from the SRMGA library and
use DFT to compute their properties of interest here reduction
potential E

0
Red. From eqn (1) and (2), we note that E

0
Red and ERed1

differ only by the vibrational frequency and entropy corrections,
and our calculations show the value of these corrections
ðERed1 � E

0
RedÞ has an average value of 0.1 eV with a small vari-

ance (Fig. S20†). Thus, we omitted vibrational frequency
calculation and used E

0
Red instead of ERed1 for computational

efficiency and faster screening of molecules.
Using E

0
Red values as labels (the dependent variable) and 16

principal components of 49 molecular features (as independent
variables) of these n molecules, we train a surrogate model (a
Gaussian process regression model, or GPR) to predict the
mean (m) and standard deviation (s) of the E

0
Red values for the

remaining molecules in the library. Further, we use an acqui-
sition function (eqn (6)) to select, based on GPR predicted m and
s values, the next molecule(s) to be evaluated for E

0
Red calcula-

tion and to optimize the objective function (minimize E
0
Red) in

the labeled data set (molecules with DFT calculated E
0
Red).

Among several acquisition functions, we selected the expected
improvement (EI), which has been successfully used for
redoxmer discovery.38,39 We calculate the EI of each molecule in
the library and select the molecule with the highest EI for the
next DFT calculation. Aer this DFT calculation, we add the
Fig. 2 The AL algorithm to discover promising redoxmers with optimal r
(eqn (6)), DFT is the density functional theory calculations, PCA is the prin
Xi

j are the reduced features (principal components with the index i) asso

© 2023 The Author(s). Published by the Royal Society of Chemistry
selected molecule to the labeled dataset to complete one itera-
tion of the AL algorithm.

In subsequent iterations, we use the updated labeled dataset
to retrain the GPR model and predict the EI of all molecules to
select another unlabeled molecule. With more iterations of the
AL algorithm, we add new data points in the labeled data set
that typically improve the accuracy of GPR model predictions so
that the AL algorithm ndsmore optimal molecules for labeling
(next DFT calculations). We stop the AL algorithm iterations
when we either obtain several molecules with the E

0
Red in the

desired low range or use up our computational resources. For
a more detailed description of this AL algorithm, we refer
readers to Agarwal and Doan et al.38,39

Here, we used GPR models62 with the Matérn kernel with the
smoothness parameter (n) equal to 1.5 (Fig. S4†) by utilizing
GPyTorch package.63 The EI acquisition function is given by,34

EIðxÞ ¼
(
ðmðxÞ � f ðxþÞ � 3ÞFðZÞ þ sðxÞ4ðZÞ; if sðxÞ. 0

0; sðxÞ ¼ 0

(6)

4ðZÞ ¼ e�Z
2=2ffiffiffiffiffiffi
2p

p (7)

FðZÞ ¼ 1ffiffiffiffiffiffi
2p

p
ðZ
�N

e�t
2=2dt (8)

Z ¼ mðxÞ � f ðxþÞ � 3

sðxÞ (9)

where m(x) and s(x) are the GPR predicted mean and standard
deviation for unlabeled dataset x. In eqn (6)–(9), f(x+) is the
optimal property value in the labeled dataset x+, F(Z) and 4(Z)
are the cumulative-density function and probability-density
function, respectively, the variable Z is dened in eqn (9), and
the parameter 3 determines the extent of exploration during the
optimization. We used 3 = 0.01 to obtain an optimal trade-off
between the exploration and exploitation regions during the
AL optimization based on the recent works from our research
group.38,39
edox potential in a library of Nmolecules. AF is the acquisition function
cipal component analysis, and GPR is the Gaussian process regression.
ciated with a molecule with the index j.
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Fig. 3 The 2,1,3-benzothiadiazole (BTZ) scaffolds. R1–5 are the substitution sites.
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3 Results and discussion
3.1. Molecular library generation

We constructed a diverse library of BTZ based molecules using
SRMGA. The parent molecule (B in Fig. 3) is decorated with
cyclic and acyclic functional groups. Additionally, in Fig. 3, we
show additional scaffolds S1 to S6, (SMILES in Table S2†) that
were originally identied among the cyclic structures origi-
nating from the parent molecule (B in Fig. 3) and were selected
to generate new molecules for closer scrutiny to understand the
effect of adding extra cyclic moieties on the reduction potential.
In our molecular library, the BTZ derivatives were accepted if
they satised the following conditions:

(1) p(CS) = 1, where CS0 = 3, CSmax = 8, and b = 5 in eqn (5).
(2) Molecular weight of non-hydrogen atoms # 300 g mol−1.
(3) No hydroxylamine, hydroxyl, and carboxyl groups.
Regarding rules 3, we excluded the molecules that can

protonate BTZ radical anions.10,53,64

In Fig. 4, the “bird's-eye” view of a diverse library of 35 500
molecules is shown. In this library, 78% molecules are
Fig. 4 The bird's-eye view of our molecular library (35 500
compounds). The fractions of (a) each scaffold that are shown in Fig. 3,
(b) the complexity score (CS) of the molecules, (c) the number of
hetero atoms (nHt), and (d) the total number of aliphatic and aromatic
rings (nRing).

1202 | Digital Discovery, 2023, 2, 1197–1208
generated using the original BTZ core, B (Fig. 4a), while 22% of
the molecules are generated from other scaffolds. In the library,
fractions of S1 to S6 molecules are smaller than B, because
SRMGA is biased towards simpler molecules that satisfy all
three rules mentioned in the preceding paragraph, hence many
S1 to S6 derivative molecules were rejected by SRMGA. The heavy
atom molecular weight varies between 132 and 298 g mol−1.
Complexity wise, 33% molecules have CS > 6, while 3% mole-
cules have CS # 3 (Fig. 4b). The number of heteroatoms (nHt)
ranges from three (as in the parent molecule) to nine; 97%
molecules have four to seven heteroatoms (Fig. 4c). While most
of these molecules (56%) are bicyclic (Fig. 4d), 34% molecules
are tricyclic and 10% are polycyclic.
3.2. Application of the active learning (AL) method to
a library of computed molecules

We rst applied the AL algorithm to a subset of 1500 randomly
selected molecules from our library of 35 500 to demonstrate
that the AL algorithm can nd the global minimum in E

0
Red in

a small number of iterations and exclusively select molecules
with low E

0
Red. To this end, using DFT, we calculated the E

0
Red for

all 1500 molecules. A summary of the DFT calculations
including distribution of computed reduction potentials and
selected BTZ molecules is shown in Fig. 5. We note that the
SMILES and E

0
Red for these 1500 molecules are provided in the

ESI,† and additional analyses of properties were shown in
Fig. S1 and S2.† The computed E

0
Red of the parent BTZ molecule

is−2.14 V; the computed E
0
Red (redox potentials) span−3.07 V to

−1.98 V (see the histogram in Fig. 5a and the map plot in
Fig. S2(c)).† From Fig. 5a, the molecules with the lowest 10% of
the E

0
Red ðE0

Red # � 2:70 VÞ almost exclusively had the S1 scaf-
folds, precisely ∼87% (142 out of 164). Using the RDKit
package,60 we generated molecular descriptors for each mole-
cule (Table S1†) and then selected 16 principal components
(PCs) that accounted for 99.3% of the cumulative variance in the
DFT data (Fig. S3†). These PCs were used as features in the AL
search as described in Section 2.3.

We started the AL algorithm by randomly sampling 10
molecules from the dataset of 1500molecules and performed 75
iterations to sample new molecules from the remaining set of
1490 molecules. Note that since all 1500 molecules have been
evaluated for E

0
Red, each iteration does not invoke a DFT
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) The histogramof E
0
Red (V vs. Ag/Ag+) for 1500 randomly selected BTZmolecules. The orange and black dashed vertical lines correspond

to the mean E
0
Red and the E

0
Red for the parent BTZ molecule, respectively. (b) The boxplot shows the spread of E

0
Red for 10 molecules in the initial

training set (blue) and 75 molecules selected by the AL algorithm (orange). The solid horizontal lines correspond to the quartile positions. The
blue and red dashed horizontal lines correspond to the E

0
Red of the parent BTZmolecule and the global minimum of E

0
Red ¼ �3:07 V, respectively.

(c and d) The structural formulae for only two molecules with the highest and lowest E
0
Red, respectively. The redox potentials in V vs. Ag/Ag+ in

acetonitrile are shown near the structures.
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calculation but instead executes a look-up function. To test the
method convergence within 75 iterations, the AL algorithm was
repeated 20 times using different initial training sets (Fig. S5†).
In 9 out of 20 runs, the AL algorithm found the global minimum
in less than 75 iterations; in the remaining 11 trials, the AL
algorithm nished within 0.1 V from the global minimum.
Hence, we found 75 iterations are sufficient for the AL algo-
rithm to reach close to the global minima in this data. Fig. 5b
shows one of the AL runs. In the initial training set, the E

0
Red

varied between −2.89 and −2.11 V. In the AL-selected dataset of
75 molecules, the E

0
Red varied between −3.07 and −2.33 V, with
Fig. 6 (a) The boxplot shows the spread of E
0
Red of 10 molecules in the i

(orange) from a library of 34 000 molecules. The blue dashed horizont
boxplots are as in Fig. 5b. (b and c) Two S1 molecules with the lowest red
shown in plot.

© 2023 The Author(s). Published by the Royal Society of Chemistry
a median E
0
Red of−2.70 V which shows that AL algorithmmostly

selected molecules with low E
0
Red from a narrow window of

−3.07 V # E
0
Red # −2.70 V (lowest 10% of E

0
Red, Fig. 5a). The AL

algorithm also found the global minimum of −3.07 V in just 14
iterations (Fig. S5(a)†). Structural formulae for the found
molecules with the highest and lowest E

0
Red are shown in Fig. 5c

and d, respectively.
3.3. Searching a larger molecular space

Encouraged by these results, we used the AL approach for
searching low E

0
Red molecules from remaining library (34 000
nitial training set (blue) and 75 molecules selected by the AL algorithm
al line corresponds to the E

0
Red of the parent BTZ molecule, and the

ox potentials. (d–g) Four other low-potential molecules with their E
0
Red

Digital Discovery, 2023, 2, 1197–1208 | 1203
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unevaluated compounds) in smaller number of iterations.
Again, we randomly selected 10 molecules from this library as
the initial set and subsequently completed 75 iterations. In this
run, each iteration requires the DFT evaluation of the suggested
molecule. The mean and minimum values for E

0
Red of the AL-

selected molecules are ∼0.5 V smaller than in the initial set
(Fig. 6a). The structures of the molecules with the smallest
redox potentials are shown in Fig. 6, panel (b)–(g). Among the 75
molecules selected by the AL algorithm, 43 (∼57% of 75) species
have S1 scaffolds that display 0.45 to 0.76 V (or 21.03% to
35.51%) smaller E

0
Red values compared to the BTZ molecule.

Remaining molecules show a modest decrease of 0 to 21% in
E

0
Red values relative to the BTZ molecule. Overall, AL algorithm

mostly selected molecules with low E
0
Red values like Fig. 5b. Low

E
0
Red values of S1 scaffold-basedmolecules among 75 AL-selected

molecules and the observation from Fig. 5a that the molecules
with the lowest 10% of the E

0
Red in 1500 dataset almost exclu-

sively had the S1 scaffolds indicates that the S1 scaffold-based
molecules are more promising molecules in the library.

To further explore the S1 class molecules, we calculated the
redox potentials for all remaining S1 molecules in our library to
give the total of 1400 S1molecules (Fig. 7). Thesemolecules were
then compared with 1362 non-S1 molecules in our original
library of computed molecules (complemented with the mole-
cules generated during AL searches) that included 198 S2, 141
S3, 81 S4, 93 S5, 58 S6, and 791 generic BTZ molecules (Fig. 7).

Fig. 7a shows the spread of redox potentials for each scaffold
class shown in Fig. 3, and Fig. 7b–h show themolecules with the
lowest redox potentials in these classes (more examples are
given in Fig. S6–S12†). It is clear from this examination that 5,6-
diamino derivatives with S1 and S2 scaffolds have the lowest
redox potentials, both in the absolute sense (yielding the
molecules with the lowest E

0
Red values) and on the average (as

a class).
Fig. 7 (a) The boxplot shows the spread of E
0
Red of 1400 S1 (orange), 198 S

generic BTZ molecules (blue). The blue dashed horizontal line correspo
correspond to the quartile positions. Panels (b)–(h) show the molecules
structures of B, S1 to S6 are shown in Fig. 3.

1204 | Digital Discovery, 2023, 2, 1197–1208
We also note that in a set of 1400 S1 molecules, 14 molecules
have E

0
Red # � 2:90 V, with −3.07 V as the global minimum.

However, 12 out of these 14 S1 molecules are part of the 1500
molecules that are randomly selected to test the AL algorithm
(Fig. 5a) while the remaining 2 molecules with E

0
Red equal to

−2.96 V and −2.90 V are part of the larger library of 34 000
molecules, therefore the global minimum in the library of 34
000 molecules is −2.96 V. With the AL algorithm, we discovered
a molecule with E

0
Red ¼ �2:90 V and nished within 0.06 V from

the global minimum of −2.96 V in only 75 iterations or by
sampling under 0.25% of the 34 000 molecules. This demon-
strates the effectiveness of the AL algorithm in nding optimal
data points in a minimal number of evaluations from a large
search space.
3.4. Identication of optimal molecular scaffolds

Given that amino groups have strong electron donating prop-
erties, it is not surprising that BTZ molecules in these two
classes (S1 and S2) have lower redox potentials. The surprising
feature is the positional specicity and the strong effect of
cyclization.

To better understand the positional specicity, we investi-
gated rst atoms bonded to carbons 4 to 7 in the benzene ring of
BTZ molecule (Fig. 1) and found 130 unique congurations of
atoms (X1X2X3X4) in calculated molecules, where X1, X2, X3, and
X4 are the symbols for rst atoms bonded to carbons 4 to 7 in
the benzene ring of BTZ, with the symmetry taken into account,
so that X1X2X3X4 and X4X3X2X1 congurations are counted as
one. Further, we used one-hot-encoding method to create
feature vectors of 130 binary descriptors (i.e., 130 unique
X1X2X3X4 patterns in the library). The descriptor is 1 if the
conguration occurs in a BTZ molecule and 0 otherwise. We
also introduced a categorical descriptor xNNx to classify all BTZ
molecules that have two nitrogen atoms in the 5,6-positions and
2 (green), 141 S3 (red), 81 S4 (violet), 93 S5 (brown), 58 S6 (pink), and 791
nds to the E

0
Red of the parent BTZ molecule. The solid horizontal lines

with the lowest redox potentials in each class. Notes: the schematic

© 2023 The Author(s). Published by the Royal Society of Chemistry
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any atoms in the 4,7-positions. To study the dependence of E
0
Red

on these descriptors, a multivariate linear regression model was
trained on these custom descriptors along with the standard 1-
dimensional descriptors (such as atom type and ring counts)
from the Mordred package.65 A genetic algorithm described in
Section S4 of the ref. 66 was used to select 15 descriptors that
minimized the root square deviation of the predicted data. To
include more examples of acyclic 5,6-diamino substituted
molecules, 300 such molecules from the library were examined
and their DFT computed E

0
Red added to the library of computed

molecules. Among the various positional descriptors that we
introduced, the xNNx descriptor has the largest impact, sug-
gesting a very strong effect of 5,6-diamino substitution on the
redox potential (Fig. S13†). This effect is seen both in the cyclic
and acyclic structures, but it becomes amplied in the cyclic
structures. To show this amplied effect of substitutions in
cyclic structures, we examined the cyclic (S1 and S2) and acyclic
5,6-diamino molecules. We identied that the S1 molecules had
lower redox potentials followed by the S2 molecules followed by
Fig. 8 (a) The fifteen molecules selected for further analysis based on the
the molecules. (b) The computed 1e− redox potential ERed1 and (c) the
molecules for the molecules shown in (a).

© 2023 The Author(s). Published by the Royal Society of Chemistry
acyclic 5,6-diamino molecules like Fig. 7a (Fig. S14†). Based on
our analysis, the increase in the redox potentials is correlated
with the mean angle q between the nitrogen lone pair orbital in
the amino groups and the benzene ring (Fig. S14†). When this
custom descriptor was added to the standard 1- and 2- dimen-
sional descriptors from the Mordred package, it was consis-
tently selected as one of the main predictors for the redox
potential (Fig. S15†).

Thus, the scaffolds S1 and S2 are chosen by our AL algorithm
for two reasons. One is that amino groups have strong electron
donating properties, and second the placement of two amino
groups into the 5,6-positions decreases the redox potential of
a BTZ molecule more efficiently than practically any other
placement of electron donating groups. This trend becomes
amplied when there is a cyclization that forces the pi-system of
the benzene ring to extend to these two nitrogen atoms. This can
be demonstrated explicitly by using symmetry preserving rota-
tion of 5,6-amino groups in acyclic molecules (Fig. S16†). The
more the N 2p orbitals are rotated out of the plane of the benzene
ir lowest computed redox potential for each number of heavy atoms in
potential gap DERed between the singly and doubly reduced anolyte

Digital Discovery, 2023, 2, 1197–1208 | 1205
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ring, the greater is the reduction in the redox potential
(Fig. S16†). It is this trend that we observed statistically in
Fig. S14 and S15.† Thus, using our methods, we have inadver-
tently discovered BTZ scaffolds that minimize the redox potential
through the interplay of cyclization-induced strain and orbital
structure. While we were able to rationalize this AL discovery
a posteriori, we failed to anticipate it with our own intelligence.
3.5. The stability of low-potential radical anions

In Fig. 8, we focus on the BTZ molecules that have the lowest
redox potentials among all molecules with the given number of
heavy atoms (Fig. S17†). As there are relatively few such mole-
cules, we can compute properties that would be too expensive to
compute for all molecules in the data set. The rst quantities of
interest are the redox potentials (with vibrational correction
unlike E

0
Red) shown in Fig. 8b. The highest 1e− redox potential

ERed of−2.05 V is for the parent BTZmolecule 1while the lowest
(−3.01 V) is for molecule 12 in Fig. 8b. As the 1e− redox potential
decreases, the potential gap DERed between the singly and
doubly reduced anolyte molecules decreases from 0.65 V to
0.27 V (Fig. 8c). From electrochemical studies,7,10 it is known
that BTZ dianions are very unstable, decaying on the time scale
of cyclic voltammetry (<1 s). The proximity of such unstable
dianion states to the radical anion states in energy is prob-
lematic in two ways. First, it requires tight control of the cell
potential or voltage during electrochemical reduction, which
could be impossible due to overpotentials arising from kinetic
limitations. Second, DERed corresponds to the free energy of
disproportionation of two radical anions. Even though this
reaction is endergonic (DERed > 0), the equilibrium is shied by
the decomposition of dianion, and it leads to slow decompo-
sition of the radical anion in the equilibrium with the unstable
form. The narrower the DERed gap, the more efficient is the
shiing of this equilibrium, causing faster decay of the radical
anion at higher concentrations.

It is precisely such side reactions that cause the general trend
for reduced chemical stability of low-potential anolyte mole-
cules noted in the introduction. Such intrinsic limitations are in
full display in our data (Fig. 8c). While in silico molecular
engineering can lower the redox potential signicantly, we
found it impossible to decrease this potential without narrow-
ing the energy gap between the two reduced states, which
means likely lower stability of the radical anion. Such tradeoffs
are inherent in the redoxmer optimization, therefore, the
molecules such as 6, 7 and 14 (Fig. 8a) that straddle the middle
ground can be preferable to molecules 11 and 12 despite their
higher redox potential.

While the disproportionation reaction requires two species,
the stability of a radical anion in dilute solution is mainly
determined by the facility for protonation that correlates with
the proton affinity of the radical anion. We have identied the
likely protonation sites (Fig. S18†), and computed proton
affinities (Fig. S19†) for molecules shown in Fig. 8.8,67,68 Unsur-
prisingly, as the redox potential decreases, the proton affinities
increase by 0.5–1.1 V. This is another indication that decreasing
the redox potential is likely to lower electrochemical stability,
1206 | Digital Discovery, 2023, 2, 1197–1208
both in dilute and concentrated solutions, and a compromise
needs to be struck between this tendency and the desire to lower
the redox potential. The AL algorithm implemented in this
study can be used to negotiate such compromises by mini-
mizing the redox potential while maximizing the energy gap
and/or minimizing the proton affinity, but these more complex
optimizations are beyond the scope of this study.
3.6. Chemical synthesis of tricyclic BTZ derivatives

As observed above, one of the most interesting outcomes of this
study is the discovery of a new class of low-potential BTZ deriv-
atives. In SRMGA, the complexity score does not fully reect the
synthetic effort going into molecular synthesis that can only be
determined by an experienced organic chemist. In Fig. S21,† we
present a retrosynthetic analysis of the S1 molecular scaffold. The
nal benzoimidazolidine is rst decyclized to an N-alkylated
ortho-substituted BTZ, which is further deconstructed to 1,2,4,5-
tetraaminobenzene. The parent BTZ derivatives are primarily
synthesized by reaction of o-diaminobenzene with thionyl chlo-
ride.69 In our design, the two ortho amino groups fused to the
2,1,3-thiadiazole ring would be alkylated followed by an aldehyde
condensation reaction to complete the imidazolidine ring.70

While this synthetic route is more complex compared to the
simpler BTZ derivatives, it is not much more complex than other
redoxmer syntheses in the literature. In this sense, low CS scores
for S1 molecules did reect their synthetic accessibility.
4 Conclusion

A priori identication of improved redoxmers based on simula-
tions and machine learning can enable cost efficient develop-
ment of redox ow batteries. For redoxmers, structural
complexity is doubly penalized: complex molecules are prohibi-
tively expensive to synthesize in bulk quantities (which are
implicit in grid size storage) and large molecules cannot reach
volumetric energy density required for RFB competitiveness. Here
we show how to populate search spaces with structurally simple
yet diverse molecules, negotiating the compromise between the
molecule complexity and the desired redox potential. In this
contribution, we proposed a Metropolis-like algorithm with built-
in penalization of structural complexity. The resulting search
space has robust (for the smallest structures, exhaustive) repre-
sentation of smaller structures while keeping the “typical” larger
molecules. Further, we used this pre-optimized set to apply
a Bayesian optimization-based active learning (AL) algorithm to
discover promising anolyte molecules. By searching through 35
500 structures, we needed to compute < 10% of these structures,
with most of the DFT computations used either to initiate the
algorithm (1500 structures) or to rationalize our search results;
the AL search itself included DFT computations of <100 (0.3% of
35 000) structures. The method surpassed our expectations by
identifying two heretofore unknown classes of tricyclic BTZ
molecules with unusually low redox potentials, which is exciting
for electrochemical experiments.

While this success is gratifying, our study highlights the
fundamental difficulty of nding redoxmers that satisfy all
© 2023 The Author(s). Published by the Royal Society of Chemistry
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requirements posed by the application. For BTZ derivatives,
lowering of the redox potentials has narrowed the gap between
the 1e− and 2e− reduction states (that facilitates dispropor-
tionation of radical anions in solution) and increased proton
affinity of radical anions. It follows from our computational
results that in this anolyte family it may be impossible to
simultaneously achieve the lowest redox potentials and the
exceptional stability of radical anions no matter how the BTZ
molecule is derivatized. Fortunately, the AL methods not only
provide a means of identifying the necessity of compromise but
also a means of reaching this compromise through multiple
property optimization. As new redox-active core molecules are
identied, the space of their derivatives can be rapidly exam-
ined with such expert systems to identify the strengths and
limitations of these new scaffolds. Given the generality of our
approach, we hope that our methods will become the standard
tool in the materials development in the battery sciences and
molecular discovery.

Data availability

We provide the SRMGA code (for a molecular library generation)
and data of different molecular libraries (SMILES, complexity
score and redox potentials in CSV les) on GitHub at https://
github.com/akashjn/MolGenerator. We provide the active
learning code on GitHub at https://github.com/akashjn/
Machine_Learning_Chemistry/blob/main/BTZ_1500_mols/
Active_Learning_for_1500_BTZmols.ipynb. Additionally, we
provide the ESI† which includes (i) a pdf le containing the
additional tables, gures and references, and (ii) zipped CSV
les containing SMILES, complexity scores, and redox
potentials for different libraries.
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