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Organic non-aqueous redox flow batteries (O-NRFBs) are emerging devices for storing intermittent
renewable energy in the electric grid. For this application, redox-active organic molecules (redoxmers)
are required that have suitable redox potentials, excellent solubility in electrolytes, and adequate stability
in all states of charge. Due to the large available design space of redoxmers, machine learning is useful
to identify optimal molecules that combine these properties. In this contribution, we propose
a probabilistic algorithm that simultaneously expands structural diversity in a molecular library of
redoxmer derivatives and limits it to synthetically accessible structures. A Bayesian optimization-based
active learning algorithm is then used to discover promising molecules with a minimal number of
computationally expensive quantum chemistry calculations. To demonstrate the power of this approach,
we investigated derivatives of a redox active molecule, 2,1,3-benzothiadiazole. A library of 35500

molecules was explored, and a new class of tricyclic derivatives with unusually low reduction potentials
Received 24th March 2023 di d W | d t th lati bet | ducti tential l
Accepted 10th July 2023 was discovered. We analyze and repor e correlation between low reduction potentials, cyclic
moieties, and positional specificity of functional groups. In addition, we report the electrochemical
DOI: 10.1039/d3dd00050h stability of selected molecules that display low reduction potentials and suggested molecules for the

rsc.li/digitaldiscovery experimental validation of their promising electrochemical properties.
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1 Introduction

Organic non-aqueous redox flow batteries (O-NRFBs) are
promising energy storage devices for integrating intermittent
renewable energy sources into the electric grid. The attractive
features of these devices include their relatively low materials
cost, scalability, wider electrochemical stability windows
compared to aqueous electrolyte solutions, and large design
space of organic redox-active molecules (redoxmers)."?
However, their adoption on a commercial scale is hindered by
low energy density and short battery cycle life.> That, in turn,
can be traced to the difficulty of finding redoxmers that satisfy
numerous requirements imposed on the materials that include,
but are not limited to, the synthetic ease, high solubility in
electrolytes, exceptional stability in all states of charge, and the
extreme redox potentials that take advantage of the wide elec-
trochemical windows. Such requirements can be difficult to
harmonize and require exhaustive screening of large chemical
spaces.
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The volumetric energy density of the O-NRFB is determined
by the cell voltage and the molar concentration of redoxmers.®
The open circuit voltage is given by the difference in the redox
potentials of the catholyte (positive charge storage) and anolyte
(negative charge storage) molecules.>* Thus, one way to achieve
a higher energy density is to lower the reduction potential of the
anolyte and increase the oxidation potential of the catholyte.
Generally, these extreme redox potentials decrease the stability
of charged molecules.” Radical ions of organic molecules react
with each other, parent molecules, and other species in solu-
tion,® and these side reactions decrease the cycle life of
a battery. Further loss of capacity involves the crossover of
redoxmer molecules through the membranes that separate cell
compartments.’ For these reasons,”*'*"" finding redoxmers that
have extreme redox potentials and stable charged states is
a major challenge for O-NRFB development.

In the literature, the redox potential, solubility, and stability
of various all or partially organic-derived redoxmers such as
metallocene,** dialkoxy benzene,*'>'® nitroxide radicals,"”>*
and other molecules* have been modified through derivatiza-
tion of core molecules, which are typically aromatic rings with
pi-systems that can accommodate extra charges. Polar substit-
uents improve the solubility of these molecules in electrolytes
while electron-donating or electron-withdrawing substituents
tune the redox potential. Thus, for each core molecule there
exists a large space of derivatives to explore. One promising
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discovery strategy is high-throughput screening using compu-
tational methods such as density functional theory (DFT)
calculations to compute the properties of interest.>*>* However,
such calculations can be expensive and time-consuming. To
further accelerate materials screening, machine learning (ML)
models have been employed for extremely fast property evalu-
ation. Several recent studies have developed ML models to
predict material properties such as adsorption energies®**” and
melting temperature.”®** However, the accuracy of such
methods depends on the diversity, quantity, and quality of the
data used for model training, so massive experimental data and/
or computations are still required to train the ML models for
reliable predictions.****

Among various ML methods, active learning (AL) algorithms
are particularly promising for problems in which data sampling
is limited.”*** The AL algorithm uses a surrogate model and
a global optimization routine to explore a search space with the
minimal number of evaluations.”** Several studies have
applied the AL to the discovery of new materials with optimal
properties. For example, Kim et al** and Jablonka et al*
discovered polymers with optimal physical properties, Bassman
et al.** have identified layered materials with optimal band gaps,
Xue et al.’” suggested shape-memory alloys with low thermal
hysteresis, and Janet et al* identified transition metal
complexes for aqueous redox flow batteries. Recently, Doan and
co-workers,”®* used the AL algorithms to discover high-
potential redoxmers and optimize multiple properties such as
reduction potential, solvation free-energies, and absorption
wavelength of redox active materials. Despite these pertinent
demonstrations of the AL methods for molecules (and mate-
rials) design, we find the lack of constraints on structural
complexity and synthesizability in the AL algorithm often leads
to discovered species of limited practical interest because of the
complex structure and complex synthesis route.****

One approach to overcome this problem is to use AL algo-
rithm with a constraint such as synthesizability scores (retro-
synthetic accessibility score (RAScore)*® or synthetic Bayesian
accessibility (SYBA) score*”) to discover molecules that are more
likely synthesizable as shown by Hickman et al** Other
approach is to apply the AL algorithm to a search space that
contains synthetically accessible molecules. Generative algo-
rithms are shown to be promising methods to generate novel
molecules and can be used to create a molecular search space
besides molecular enumeration. However, generative methods
often generate molecules that are not synthesizable.**"*

Our approach to finding synthesizable molecules with AL
algorithm is to engineer a search space that mostly contains
structurally diverse yet simple molecules. The approach
resembles planning like a synthetic chemist in which larger
structures are built sequentially by the addition of chemical
blocks or synthons, and the growth of a molecule is interrupted
by cyclization of the growing chains. Thus, we propose
a synthesis-aware rule-based molecule generation algorithm
(SRMGA) that probabilistically generates a large library of pre-
optimized derivatives. We use this library to identify promising
redoxmer candidates in a minimal number of DFT calculations
with AL.
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To demonstrate the effectiveness of this approach, we chose
2,1,3-benzothiadiazole (BTZ), a promising anolyte that has been
extensively studied because of its low reduction potential, low
molecular weight, high solubility, and outstanding electro-
chemical cycling stability.”*>** In this study, we aimed to find
synthetically accessible BTZ derivatives with the lowest one-
electron reduction potentials. Here we report how the
combined use of SRMGA and AL methods led us to the discovery
of a new class of tricyclic BTZ molecules with anomalously low
reduction potentials. We also show that low reduction potential
molecules are associated with extra cyclic moieties and
a specific placement of functional groups at benzene ring of
BTZ molecule. In addition, we evaluate the electrochemical
stability of 15 selected molecules using the first and second
reduction potentials, and proton affinities of radical anions,
and show the tradeoff between the low reduction potential and
electrochemical stability of molecules.

The remainder of this paper is organized as follows. In
Section 2, we provide details of DFT calculations, SRMGA, and
the AL workflow. In Section 3, we discuss BTZ molecular library
generation with SRMGA, exploration of a molecular library with
AL algorithm, the correlation between reduction potential and
chemical structure of low reduction potential molecules, elec-
trochemical stability of 15 selected anolyte candidates, and
provide retrosynthetic analysis of a promising scaffold mole-
cule. Finally, in Section 4, we provide a summary of our work
and concluding remarks.

2 Methods

2.1. Density functional theory (DFT) computations

The calculations were performed using the Gaussian 16 soft-
ware package® at the B3LYP/6-31+G(d,p) level of theory.***® The
acetonitrile solvent was simulated using the conductor-like
polarizable continuum model (CPCM).*”*® Geometry optimiza-
tion and vibration frequency calculations of neutral and
charged molecules were performed in the solvent dielectric to
calculate the electronic energies at T = 0 K and Gibbs free
energies at 7= 298 K. The first reduction potential of a molecule
with or without the vibration frequency corrections (designated
Egear and Ep 4, respectively), and the second reduction potential
(Ereaz) were calculated using eqn (1)-(3),

Redl

Egeg = —5.09 — AE 1)
AGRedl

Eren = —5.09 — —— (2)
AGRedz

ERedQ = -5.09 — F (3)

where Fis the Faraday constant, and the —5.09 V is the potential
difference between the standard hydrogen electrode (SHE,
—4.29 V) and the Ag/Ag" redox couple (+0.80 V).** In these
expressions, AER®" and AGR*? are the differences between the
DFT energies and the Gibbs free energies of the reduced
molecule and the neutral molecule (in eV), respectively. AGR®??

© 2023 The Author(s). Published by the Royal Society of Chemistry
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is the Gibbs free energy difference between the doubly reduced
and neutral molecules. Hereafter, all computed redox potentials
are given in Vvs. Ag/Ag" reference electrode in acetonitrile. For
convenience, the reduction potential gap between the 1e”~ and
2e” states are defined as AEreq = Ered1 — Eredz- The free energy
of protonation of the radical anion, AGy-+, is computed from:

AGH+ = GAH — GA — GH+, (4)
where Gay, Ga-, and Gy+ are the Gibbs free energies for the
protonated radical anion (AH), the radical anion (A™), and the
proton, respectively.

2.2. The molecular library generation

The schematic of molecular generation from a core structure,
development of a database and molecular discovery with AL is
shown in Scheme 1. Specifically, it shows how a core molecule
(or a molecular scaffold) and building blocks are combined by
a generator complemented with a Metropolis type sampler that
biases the process to simpler molecules. After the molecular
generation, AL is used to identify the promising molecules with
the minimum number of DFT calculations.

View Article Online
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To populate the molecular library, we devised the SRMGA
illustrated in Fig. 1, in which the functional groups and
chemical building blocks are added randomly to a molecular
scaffold (or core molecule), with a bias to smaller building
blocks. The SRMGA starts with a molecular scaffold (BTZ
molecule shown in Fig. 1), functional groups, and chemical
building blocks provided in Tables 1 and 2. The parent BTZ
molecule has four possible derivatization sites at carbons 4 to 7
in the benzene ring. As we seek to further reduce the redox
potential of this molecule, the substituents (provided in Tables
1 and 2) are chosen as electron donating or neutral groups, such
as the alkyl, amino, alkoxy, amide, and carboxylate, that are
known to decrease the reduction potential of molecules. The
structural casts of these groups are given in Table 1. All casts
and chemical building blocks are presented in the symbolic
Simplified Molecular-Input Line-Entry System (SMILES) format
so that the molecule building operations involve symbolic
manipulation of SMILES strings using a Python program based
on the standard RDKit routines.®® For example, the cast for an
amino group would be -NXY, where synthetic blocks X and Y are
growth points shown by orange circles in Fig. 1 and chosen from
Table 2. This set includes the H atom, straight and branched

Core Molecule Redoxmers
o ‘O e
o N,
i ¢ %.‘oén
G\g&d N Library GOee
Molecule Metropolis /| @i ) :‘S'
Generator - | - ¢
e o Hastings | = ) - P
e O Sampling | | W ~.&,¢’9.~
o, 0 ® o a Active Learning b"O‘
Chemical_/ ¢ q%&‘
Building Blocks R ¢

Scheme 1 Discovery of promising molecules using a Bayesian optimization-based active learning (AL) algorithm and quantum chemistry DFT
calculations. The scaffolds and building blocks are combined by molecule generator complemented with a Metropolis type sampler that biases
the process to simpler molecules. AL is then used to identify the promising molecules with the minimum DFT calculations.

Functional
groups added

Daisy chain growth,
branching

Growth N

oints
P _N,
S /S

New growth points

Core molecule (BTZ)

Structure growth.

Cyclization

Termination

Structure completion

Generate another molecule

Fig. 1 Workflow of SRMGA. In the example shown above, a core molecule (BTZ) has two sites tagged for substitution (orange circles). Groups
listed in Table 1 (in this case, the amine groups, —NXY) are added to these points at random. Each cast adds two more growth points (blocks X and
Y). Subsequent growth with chemical building blocks (Table 2) elongates the groups through recursive daisy chain growth, branching or
cyclization. This growth stops when all growth points are terminated with blocks containing no growth points. A molecule satisfying all user-
defined rules is added to the library, otherwise the process is repeated. In the diagram, HMW is the molecular weight (g mol™) of non-hydrogen

atoms in a molecule, and p(CS) is defined in egn (5).
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Table 1 SMILES casts for substitution groups in the core scaffolds

Cast Comment

H Hydrogen atom

X Growth point (any chemical block in Table 2)

Y Growth point (any chemical block in Table 2 except H
atom)

NX)(Y) Amine cast with growth points

oY Alkoxy cast with growth points

\[N+](X)= Amide cast (zwitterionic form) with growth points

oy

OC(=0)Y Carboxylate cast with growth points

Table 2 Chemical building blocks (X and Y in Table 1) and their
probability for random drawing (Py). Py is provided to the SRMGA to
bias the selection of simple building blocks for structure growth.
Smaller and simple chemical building blocks (like H, and C) were given
higher P4 than larger chemical building blocks (like CCN(Y)(Y) and
CCQY), to ensure that simple blocks get selected more frequently for
structure growth than the larger blocks with low Py

SMILES Py
H 0.47
C 0.24
cc 0.12
cce 0.04
c(c)c 0.04
ccce 0.02
c(c)ce 0.02
cc(c)c 0.02
CCOoY 0.02
CCN(Y)(Y) 0.01

alkyl groups, and functional groups such as polyethylene oxide
(CCOX) or amines (CCNXY) that are added to make a molecule
more soluble in acetonitrile. These blocks contain new growth
points (orange circles in Fig. 1), so the chains can elongate and
branch out (Fig. 1). The probability of randomly drawing
chemical building blocks (Pg4) from Table 2 is provided for each
chemical building block. The SRMGA uses the P4 values to bias
the selection of simple chemical building blocks for structure
growth. The chemical building blocks with the higher P4 get
selected more frequently than the chemical building blocks
with smaller Py values. Therefore, smaller (and simple) chem-
ical building blocks (like H, C, and CC) were given higher P4
than larger (and complex) chemical building blocks (like
CCN(Y)(Y) and CCOY). By recursively adding (“daisy chaining”)
the synthetic blocks, the growth points are terminated or
substituted further until no such points remains (Fig. 1).
Provisions are made so that the chains can “recombine” with
one of the initial growth sites making cycles (Fig. 1). We want to
highlight that additional cycles generated by the SRMGA are
saturated and not aromatic, therefore in this work the molec-
ular search space does not include BTZ molecules with an
additional aromatic or unsaturated cycle. Although additional
aromatic or unsaturated cycles may modify the BTZ properties,
we do not study them here and it will be discussed elsewhere.
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The blocks and chains are added either non-symmetrically or
symmetrically (as the non-symmetric molecules could be more
difficult to synthesize). The functional groups and synthetic
blocks are chosen at random from Tables 1 and 2, i.e., therefore
the generator is probabilistic. For that reason, duplicates can
occur and need to be removed by comparing the canonical
SMILES. As the generation is fast, this duplication is a minor
computational expense compared to DFT calculations.

The SRMGA keeps track of all additions to a molecular
scaffold with the complexity score (CS). The core molecule has
a CS score of zero (CS = 0). The CS value is incremented by one
each time a non-hydrogen (non-H) substituent (for example -
CHj;, or -OCH3;) is added to the molecule. In this fashion, the CS
provides a crude estimate for the synthetic complexity of
a molecule. It is important to note that the value of CS is
determined by the order in which substituents are added to
a core molecule. Additionally, it is possible to derive a molecule
from the core molecule through multiple routes as the selection
of chemical blocks and functional groups is random. As a result,
a given derivative molecule may have different CS values in
different independent runs of SRMGA, even if using the same
core molecule.

As mentioned earlier, the goal of the SRMGA is to bias
molecular search towards less complex molecules. While
providing explicit bias towards smaller building blocks in Table
2 helps to reduce complexity, there is still overabundance of
synthetically inaccessible structures with high CS. While we
need complex structures in the library, they can overrun the
search space with these molecules. Taking inspiration from the
Metropolis-Hastings sampling® mentioned in Fig. 1, we define
a condition, p(CS), to accept (p(CS) = 1) or reject (p(CS) = 0)
a molecule in the library based on its complexity score,

CS—CS,

S|
pcs)={1, ife (CS“‘“ CS°)>g 5)

I

0, otherwise

Here CSpax is the maximum CS allowed in the molecular library,
CS, is the minimum CS below which all molecules are allowed
in the molecular library, and £ a computer generated random
number uniformly distributed between 0 and 1. The SRMGA
rejects all molecules with CS > CS;,,ax, accepts all molecules with
CS = CS,, and accepts some molecules with the intermediate CS
between CS, and CS.. that satisfy the condition

( CS—CS, )

- CSmax—CSo . o . .
e >¢£. In eqn (5), B is the penalizing factor that is
analogous to the Boltzmann factor 1/kT in thermodynamics.
The higher is the “temperature” (the smaller is 8 > 0), the
weaker is the penalization of molecular complexity.

Besides the p(CS), the SRMGA can also check if a new
molecule satisfies other user-defined rules (see Section 3.1). For
example, we can limit the number of atoms and/or molecular
weight of a molecule. The latter is important as larger molecules
(due to their excessive molar volume) cannot satisfy volumetric
energy density requirements in O-NRFBs.">'® If a new molecule
satisfies all user-defined rules, the SRMGA checks for duplicates
and adds it to the library, otherwise, it starts the process over

© 2023 The Author(s). Published by the Royal Society of Chemistry
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again until we get desired number of molecules in the library
(Fig. 1).

2.3. The active learning (AL) methodology

The next step is using machine learning to navigate the large
library generated by SRMGA. To this end, we used the Bayesian
optimization-based active learning algorithm illustrated in
Fig. 2. In this algorithm, each molecule is first represented by
a vector of 49 descriptors (consistent with ref. 37 and 38) which
was generated from its canonical SMILES using the RDKit
software (see Table S171).%° To train a surrogate model faster with
a reasonable accuracy we reduced the number of descriptors
using the principal component analysis. Specifically, we used 16
principal components as features (Fig. S31), X/, that explain at
least 99% variance in the data, where X/ is the /™ principal
component of molecule j. To start the algorithm, we select at
random 7 molecules (e.g., n = 10) from the SRMGA library and
use DFT to compute their properties of interest here reduction
potential E, 4. From eqn (1) and (2), we note that Eg.q and Eged;
differ only by the vibrational frequency and entropy corrections,
and our calculations show the value of these corrections
(Ered1 — Egeq) has an average value of 0.1 eV with a small vari-
ance (Fig. S20f). Thus, we omitted vibrational frequency
calculation and used E;Qed instead of Ereq; for computational
efficiency and faster screening of molecules.

Using Eg.q values as labels (the dependent variable) and 16
principal components of 49 molecular features (as independent
variables) of these n molecules, we train a surrogate model (a
Gaussian process regression model, or GPR) to predict the
mean (u) and standard deviation (o) of the Ej.4 values for the
remaining molecules in the library. Further, we use an acqui-
sition function (eqn (6)) to select, based on GPR predicted u and
o values, the next molecule(s) to be evaluated for Eg., calcula-
tion and to optimize the objective function (minimize Eg ) in
the labeled data set (molecules with DFT calculated Ep,).
Among several acquisition functions, we selected the expected
improvement (EI), which has been successfully used for
redoxmer discovery.***® We calculate the EI of each molecule in
the library and select the molecule with the highest EI for the
next DFT calculation. After this DFT calculation, we add the

X
Feature U.I
Molecular ;
Descriptors Reductiofil —— Numl
(PCA) —
AF of N-n
molecules

[

Library of N molecules
(AF)

Acquisition
function

View Article Online
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selected molecule to the labeled dataset to complete one itera-
tion of the AL algorithm.

In subsequent iterations, we use the updated labeled dataset
to retrain the GPR model and predict the EI of all molecules to
select another unlabeled molecule. With more iterations of the
AL algorithm, we add new data points in the labeled data set
that typically improve the accuracy of GPR model predictions so
that the AL algorithm finds more optimal molecules for labeling
(next DFT calculations). We stop the AL algorithm iterations
when we either obtain several molecules with the Eg.4 in the
desired low range or use up our computational resources. For
a more detailed description of this AL algorithm, we refer
readers to Agarwal and Doan et al.>**

Here, we used GPR models®* with the Matérn kernel with the
smoothness parameter () equal to 1.5 (Fig. S41) by utilizing
GPyTorch package.® The EI acquisition function is given by,**

EI(x) = { (4) /(7)) + ale2). T o) >0
)
o e722/2 ]
1 ‘ 2 /2
W) ~f () — e
== 9)

where u(x) and o(x) are the GPR predicted mean and standard
deviation for unlabeled dataset x. In eqn (6)-(9), flx') is the
optimal property value in the labeled dataset x*, ®#(Z) and ¢(2)
are the cumulative-density function and probability-density
function, respectively, the variable Z is defined in eqn (9), and
the parameter ¢ determines the extent of exploration during the
optimization. We used ¢ = 0.01 to obtain an optimal trade-off
between the exploration and exploitation regions during the
AL optimization based on the recent works from our research
group.38,39

Select n molecules

Redox potential
(DFT)

Select a molecule
with highest AF

C e D

Predict Ezqq of
N-n molecules

E'req Of N
molecules

Surrogate model
(GPR)

Fig.2 The AL algorithm to discover promising redoxmers with optimal redox potential in a library of N molecules. AF is the acquisition function
(egn (6)), DFT is the density functional theory calculations, PCA is the principal component analysis, and GPR is the Gaussian process regression.
X/ are the reduced features (principal components with the index i) associated with a molecule with the index j.
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Fig. 3 The 2,1,3-benzothiadiazole (BTZ) scaffolds. R;_s are the substitution sites.

3 Results and discussion

3.1. Molecular library generation

We constructed a diverse library of BTZ based molecules using
SRMGA. The parent molecule (B in Fig. 3) is decorated with
cyclic and acyclic functional groups. Additionally, in Fig. 3, we
show additional scaffolds S; to Se, (SMILES in Table S2t) that
were originally identified among the cyclic structures origi-
nating from the parent molecule (B in Fig. 3) and were selected
to generate new molecules for closer scrutiny to understand the
effect of adding extra cyclic moieties on the reduction potential.
In our molecular library, the BTZ derivatives were accepted if
they satisfied the following conditions:

(1) p(CS) = 1, where CSy = 3, CSpax = 8, and 8 = 5 in eqn (5).

(2) Molecular weight of non-hydrogen atoms =< 300 g mol .

(3) No hydroxylamine, hydroxyl, and carboxyl groups.

Regarding rules 3, we excluded the molecules that can
protonate BTZ radical anions.®>***

In Fig. 4, the “bird's-eye” view of a diverse library of 35 500

molecules is shown. In this library, 78% molecules are
(a) B (b) CS=7
78.0% 21.3%
Ccs=8
SEeG 1.7%
28.5% _Cs<3
55, 6.3% 28%
\\55,0.6% CS=4
\ ¥ o cos  139%
7.0% 21.8%
\ Sz 29%
51, 4.0%
(©) e (@ =2
32.9% 56%
Ny
12.5% ny=3
1.9%
N8 NRing24
=7 1.3% 10%
13.2% i
Ny=6 Rigg_
38.2% e
Fig. 4 The bird's-eye view of our molecular library (35500

compounds). The fractions of (a) each scaffold that are shown in Fig. 3,
(b) the complexity score (CS) of the molecules, (c) the number of
hetero atoms (nyy), and (d) the total number of aliphatic and aromatic
rings (Nging)-
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generated using the original BTZ core, B (Fig. 4a), while 22% of
the molecules are generated from other scaffolds. In the library,
fractions of S; to S¢ molecules are smaller than B, because
SRMGA is biased towards simpler molecules that satisfy all
three rules mentioned in the preceding paragraph, hence many
S, to S¢ derivative molecules were rejected by SRMGA. The heavy
atom molecular weight varies between 132 and 298 g mol .
Complexity wise, 33% molecules have CS > 6, while 3% mole-
cules have CS = 3 (Fig. 4b). The number of heteroatoms (7)
ranges from three (as in the parent molecule) to nine; 97%
molecules have four to seven heteroatoms (Fig. 4c). While most
of these molecules (56%) are bicyclic (Fig. 4d), 34% molecules
are tricyclic and 10% are polycyclic.

3.2. Application of the active learning (AL) method to
a library of computed molecules

We first applied the AL algorithm to a subset of 1500 randomly
selected molecules from our library of 35500 to demonstrate
that the AL algorithm can find the global minimum in Ej,4 in
a small number of iterations and exclusively select molecules
with low E4. To this end, using DFT, we calculated the Ej4 for
all 1500 molecules. A summary of the DFT calculations
including distribution of computed reduction potentials and
selected BTZ molecules is shown in Fig. 5. We note that the
SMILES and Eg for these 1500 molecules are provided in the
ESI,f and additional analyses of properties were shown in
Fig. S1 and S2.t The computed Ej 4 of the parent BTZ molecule
is —2.14 V; the computed Ej4 (redox potentials) span —3.07 V to
—1.98 V (see the histogram in Fig. 5a and the map plot in
Fig. S2(c)).t From Fig. 5a, the molecules with the lowest 10% of
the Epey (Egeq = — 2.70 V) almost exclusively had the S, scaf-
folds, precisely ~87% (142 out of 164). Using the RDKit
package,® we generated molecular descriptors for each mole-
cule (Table S11) and then selected 16 principal components
(PCs) that accounted for 99.3% of the cumulative variance in the
DFT data (Fig. S37). These PCs were used as features in the AL
search as described in Section 2.3.

We started the AL algorithm by randomly sampling 10
molecules from the dataset of 1500 molecules and performed 75
iterations to sample new molecules from the remaining set of
1490 molecules. Note that since all 1500 molecules have been
evaluated for Eg.,, each iteration does not invoke a DFT

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00050h

Open Access Article. Published on 20 July 2023. Downloaded on 10/20/2025 5:43:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
2004 ' —t -2.0 : :
(a) ] 0 ]
150- Tl | N "
= W\ E > —2.4+ N r
3 100 A L 3 s
] ‘
g ! N | W — | |
50 i ‘ \! L 2.8 . !
4 ! N, ¢
0 - A . i :\ e | 000 [EEssssmETee==EeT —————
-3.0 -2.5 -2.0 = — T
E'req, V Training set AL selected
e® Molecules
(c) | (d)
N _N \\\ \\(
0 N [ .
s wy™ (s CXrCs
0 N H N N N N
0]
233 [ 24 jz.w r3.07
Fig.5 (a) The histogram of E'Red (V vs. Ag/Ag*) for 1500 randomly selected BTZ molecules. The orange and black dashed vertical lines correspond

to the mean Eg.y and the Ex., for the parent BTZ molecule, respectively. (b) The boxplot shows the spread of Ex.y for 10 molecules in the initial
training set (blue) and 75 molecules selected by the AL algorithm (orange). The solid horizontal lines correspond to the quartile positions. The
blue and red dashed horizontal lines correspond to the Eg.y of the parent BTZ molecule and the global minimum of Eg.q = —3.07 V, respectively.
(c and d) The structural formulae for only two molecules with the highest and lowest E’Red, respectively. The redox potentials in V vs. Ag/Ag* in

acetonitrile are shown near the structures.

calculation but instead executes a look-up function. To test the
method convergence within 75 iterations, the AL algorithm was
repeated 20 times using different initial training sets (Fig. S57).
In 9 out of 20 runs, the AL algorithm found the global minimum
in less than 75 iterations; in the remaining 11 trials, the AL
algorithm finished within 0.1 V from the global minimum.
Hence, we found 75 iterations are sufficient for the AL algo-
rithm to reach close to the global minima in this data. Fig. 5b
shows one of the AL runs. In the initial training set, the Ej.4
varied between —2.89 and —2.11 V. In the AL-selected dataset of
75 molecules, the E., varied between —3.07 and —2.33 V, with

T

Trainihg set AL selected
L Molecules
(d ©° (e)
N 0
h =N /\I
C : 9
N
‘)-2.69 -2.38

Fig. 6

amedian Ep,4 of —2.70 V which shows that AL algorithm mostly
selected molecules with low Ep., from a narrow window of
—3.07 V = Egq = —2.70 V (lowest 10% of Ej4, Fig. 5a). The AL
algorithm also found the global minimum of —3.07 V in just 14
iterations (Fig. S5(a)f). Structural formulae for the found
molecules with the highest and lowest Ej.4 are shown in Fig. 5¢
and d, respectively.

3.3. Searching a larger molecular space

Encouraged by these results, we used the AL approach for
searching low Ei(ed molecules from remaining library (34 000

b) (c)
\\N N
= N N
¢ S =N
N =N <N - S
N
- N
) g
2.86 2.90
0 H
/N\ N /
_ S [
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(@) The boxplot shows the spread of E'Red of 10 molecules in the initial training set (blue) and 75 molecules selected by the AL algorithm

(orange) from a library of 34 000 molecules. The blue dashed horizontal line corresponds to the Eg4 of the parent BTZ molecule, and the
boxplots are as in Fig. 5b. (b and c) Two S; molecules with the lowest redox potentials. (d—g) Four other low-potential molecules with their E'Red

shown in plot.
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unevaluated compounds) in smaller number of iterations.
Again, we randomly selected 10 molecules from this library as
the initial set and subsequently completed 75 iterations. In this
run, each iteration requires the DFT evaluation of the suggested
molecule. The mean and minimum values for Eg.y of the AL-
selected molecules are ~0.5 V smaller than in the initial set
(Fig. 6a). The structures of the molecules with the smallest
redox potentials are shown in Fig. 6, panel (b)-(g). Among the 75
molecules selected by the AL algorithm, 43 (~57% of 75) species
have S, scaffolds that display 0.45 to 0.76 V (or 21.03% to
35.51%) smaller Ep.q values compared to the BTZ molecule.
Remaining molecules show a modest decrease of 0 to 21% in
Epeq Values relative to the BTZ molecule. Overall, AL algorithm
mostly selected molecules with low Eg4 values like Fig. 5b. Low
Ereq Values of S, scaffold-based molecules among 75 AL-selected
molecules and the observation from Fig. 5a that the molecules
with the lowest 10% of the Ey., in 1500 dataset almost exclu-
sively had the S; scaffolds indicates that the S, scaffold-based
molecules are more promising molecules in the library.

To further explore the S; class molecules, we calculated the
redox potentials for all remaining S; molecules in our library to
give the total of 1400 S; molecules (Fig. 7). These molecules were
then compared with 1362 non-S; molecules in our original
library of computed molecules (complemented with the mole-
cules generated during AL searches) that included 198 S,, 141
Sz, 81 S4, 93 S5, 58 Se, and 791 generic BTZ molecules (Fig. 7).

Fig. 7a shows the spread of redox potentials for each scaffold
class shown in Fig. 3, and Fig. 7b-h show the molecules with the
lowest redox potentials in these classes (more examples are
given in Fig. S6-S127). It is clear from this examination that 5,6-
diamino derivatives with S; and S, scaffolds have the lowest
redox potentials, both in the absolute sense (yielding the
molecules with the lowest Eg., values) and on the average (as
a class).

=311~ : . .
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We also note that in a set of 1400 S; molecules, 14 molecules
have Ej.4 = —2.90 V, with —3.07 V as the global minimum.
However, 12 out of these 14 S; molecules are part of the 1500
molecules that are randomly selected to test the AL algorithm
(Fig. 5a) while the remaining 2 molecules with E,.; equal to
—2.96 V and —2.90 V are part of the larger library of 34 000
molecules, therefore the global minimum in the library of 34
000 molecules is —2.96 V. With the AL algorithm, we discovered
amolecule with Ep 4 = —2.90 V and finished within 0.06 V from
the global minimum of —2.96 V in only 75 iterations or by
sampling under 0.25% of the 34 000 molecules. This demon-
strates the effectiveness of the AL algorithm in finding optimal
data points in a minimal number of evaluations from a large
search space.

3.4. Identification of optimal molecular scaffolds

Given that amino groups have strong electron donating prop-
erties, it is not surprising that BTZ molecules in these two
classes (S; and S,) have lower redox potentials. The surprising
feature is the positional specificity and the strong effect of
cyclization.

To better understand the positional specificity, we investi-
gated first atoms bonded to carbons 4 to 7 in the benzene ring of
BTZ molecule (Fig. 1) and found 130 unique configurations of
atoms (X;X,X3X,) in calculated molecules, where X;, X,, X3, and
X, are the symbols for first atoms bonded to carbons 4 to 7 in
the benzene ring of BTZ, with the symmetry taken into account,
so that X;X,X3X, and X,;X3X,X; configurations are counted as
one. Further, we used one-hot-encoding method to create
feature vectors of 130 binary descriptors (i.e., 130 unique
X1X,X3X, patterns in the library). The descriptor is 1 if the
configuration occurs in a BTZ molecule and 0 otherwise. We
also introduced a categorical descriptor xXNNx to classify all BTZ
molecules that have two nitrogen atoms in the 5,6-positions and

B S; S, S3 S Ss Se B,-2.78 s,,-3.07 S,,-2.93
Molecules
(e) (f) (9) (h)
o NS
N I N
=N P
o HN \N/S /N\
N
C \S \N/S N o
=~/ HN |
(0] N L Oj)
S3,-2.70 Sy, -2.67 S5, -2.61 Sg,-2.54

Fig. 7 (a) The boxplot shows the spread of E’Red of 1400 S; (orange), 198 S, (green), 141 S3 (red), 81 S4 (violet), 93 Ss (brown), 58 Sg (pink), and 791
generic BTZ molecules (blue). The blue dashed horizontal line corresponds to the Eg y of the parent BTZ molecule. The solid horizontal lines
correspond to the quartile positions. Panels (b)-(h) show the molecules with the lowest redox potentials in each class. Notes: the schematic

structures of B, S; to Sg are shown in Fig. 3.
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any atoms in the 4,7-positions. To study the dependence of Ep 4
on these descriptors, a multivariate linear regression model was
trained on these custom descriptors along with the standard 1-
dimensional descriptors (such as atom type and ring counts)
from the Mordred package.®® A genetic algorithm described in
Section S4 of the ref. 66 was used to select 15 descriptors that
minimized the root square deviation of the predicted data. To
include more examples of acyclic 5,6-diamino substituted
molecules, 300 such molecules from the library were examined
and their DFT computed Ep, added to the library of computed
molecules. Among the various positional descriptors that we
introduced, the xXNNx descriptor has the largest impact, sug-
gesting a very strong effect of 5,6-diamino substitution on the
redox potential (Fig. S137). This effect is seen both in the cyclic
and acyclic structures, but it becomes amplified in the cyclic
structures. To show this amplified effect of substitutions in
cyclic structures, we examined the cyclic (S, and S,) and acyclic
5,6-diamino molecules. We identified that the S; molecules had
lower redox potentials followed by the S, molecules followed by
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acyclic 5,6-diamino molecules like Fig. 7a (Fig. S1471). Based on
our analysis, the increase in the redox potentials is correlated
with the mean angle # between the nitrogen lone pair orbital in
the amino groups and the benzene ring (Fig. S141). When this
custom descriptor was added to the standard 1- and 2- dimen-
sional descriptors from the Mordred package, it was consis-
tently selected as one of the main predictors for the redox
potential (Fig. S157).

Thus, the scaffolds S; and S, are chosen by our AL algorithm
for two reasons. One is that amino groups have strong electron
donating properties, and second the placement of two amino
groups into the 5,6-positions decreases the redox potential of
a BTZ molecule more efficiently than practically any other
placement of electron donating groups. This trend becomes
amplified when there is a cyclization that forces the pi-system of
the benzene ring to extend to these two nitrogen atoms. This can
be demonstrated explicitly by using symmetry preserving rota-
tion of 5,6-amino groups in acyclic molecules (Fig. S16t). The
more the N 2p orbitals are rotated out of the plane of the benzene
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(a) The fifteen molecules selected for further analysis based on their lowest computed redox potential for each number of heavy atoms in

the molecules. (b) The computed le™ redox potential Egeqr and (c) the potential gap AEreq between the singly and doubly reduced anolyte

molecules for the molecules shown in (a).
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ring, the greater is the reduction in the redox potential
(Fig. S167). It is this trend that we observed statistically in
Fig. S14 and S15.1 Thus, using our methods, we have inadver-
tently discovered BTZ scaffolds that minimize the redox potential
through the interplay of cyclization-induced strain and orbital
structure. While we were able to rationalize this AL discovery
a posteriori, we failed to anticipate it with our own intelligence.

3.5. The stability of low-potential radical anions

In Fig. 8, we focus on the BTZ molecules that have the lowest
redox potentials among all molecules with the given number of
heavy atoms (Fig. S177). As there are relatively few such mole-
cules, we can compute properties that would be too expensive to
compute for all molecules in the data set. The first quantities of
interest are the redox potentials (with vibrational correction
unlike Ep.4) shown in Fig. 8b. The highest 1e~ redox potential
Egeq of —2.05 V is for the parent BTZ molecule 1 while the lowest
(—3.01 V) is for molecule 12 in Fig. 8b. As the 1e™ redox potential
decreases, the potential gap AEgreq between the singly and
doubly reduced anolyte molecules decreases from 0.65 V to
0.27 V (Fig. 8c). From electrochemical studies,”" it is known
that BTZ dianions are very unstable, decaying on the time scale
of cyclic voltammetry (<1 s). The proximity of such unstable
dianion states to the radical anion states in energy is prob-
lematic in two ways. First, it requires tight control of the cell
potential or voltage during electrochemical reduction, which
could be impossible due to overpotentials arising from kinetic
limitations. Second, AEg.q corresponds to the free energy of
disproportionation of two radical anions. Even though this
reaction is endergonic (AEgeq > 0), the equilibrium is shifted by
the decomposition of dianion, and it leads to slow decompo-
sition of the radical anion in the equilibrium with the unstable
form. The narrower the AFEg.q gap, the more efficient is the
shifting of this equilibrium, causing faster decay of the radical
anion at higher concentrations.

It is precisely such side reactions that cause the general trend
for reduced chemical stability of low-potential anolyte mole-
cules noted in the introduction. Such intrinsic limitations are in
full display in our data (Fig. 8c). While in silico molecular
engineering can lower the redox potential significantly, we
found it impossible to decrease this potential without narrow-
ing the energy gap between the two reduced states, which
means likely lower stability of the radical anion. Such tradeoffs
are inherent in the redoxmer optimization, therefore, the
molecules such as 6, 7 and 14 (Fig. 8a) that straddle the middle
ground can be preferable to molecules 11 and 12 despite their
higher redox potential.

While the disproportionation reaction requires two species,
the stability of a radical anion in dilute solution is mainly
determined by the facility for protonation that correlates with
the proton affinity of the radical anion. We have identified the
likely protonation sites (Fig. S18f), and computed proton
affinities (Fig. S1971) for molecules shown in Fig. 8.%¢7% Unsur-
prisingly, as the redox potential decreases, the proton affinities
increase by 0.5-1.1 V. This is another indication that decreasing
the redox potential is likely to lower electrochemical stability,
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both in dilute and concentrated solutions, and a compromise
needs to be struck between this tendency and the desire to lower
the redox potential. The AL algorithm implemented in this
study can be used to negotiate such compromises by mini-
mizing the redox potential while maximizing the energy gap
and/or minimizing the proton affinity, but these more complex
optimizations are beyond the scope of this study.

3.6. Chemical synthesis of tricyclic BTZ derivatives

As observed above, one of the most interesting outcomes of this
study is the discovery of a new class of low-potential BTZ deriv-
atives. In SRMGA, the complexity score does not fully reflect the
synthetic effort going into molecular synthesis that can only be
determined by an experienced organic chemist. In Fig. S21,T we
present a retrosynthetic analysis of the S; molecular scaffold. The
final benzoimidazolidine is first decyclized to an N-alkylated
ortho-substituted BTZ, which is further deconstructed to 1,2,4,5-
tetraaminobenzene. The parent BTZ derivatives are primarily
synthesized by reaction of o-diaminobenzene with thionyl chlo-
ride.* In our design, the two ortho amino groups fused to the
2,1,3-thiadiazole ring would be alkylated followed by an aldehyde
condensation reaction to complete the imidazolidine ring.”®
While this synthetic route is more complex compared to the
simpler BTZ derivatives, it is not much more complex than other
redoxmer syntheses in the literature. In this sense, low CS scores
for S; molecules did reflect their synthetic accessibility.

4 Conclusion

A priori identification of improved redoxmers based on simula-
tions and machine learning can enable cost efficient develop-
ment of redox flow batteries. For redoxmers, structural
complexity is doubly penalized: complex molecules are prohibi-
tively expensive to synthesize in bulk quantities (which are
implicit in grid size storage) and large molecules cannot reach
volumetric energy density required for RFB competitiveness. Here
we show how to populate search spaces with structurally simple
yet diverse molecules, negotiating the compromise between the
molecule complexity and the desired redox potential. In this
contribution, we proposed a Metropolis-like algorithm with built-
in penalization of structural complexity. The resulting search
space has robust (for the smallest structures, exhaustive) repre-
sentation of smaller structures while keeping the “typical” larger
molecules. Further, we used this pre-optimized set to apply
a Bayesian optimization-based active learning (AL) algorithm to
discover promising anolyte molecules. By searching through 35
500 structures, we needed to compute < 10% of these structures,
with most of the DFT computations used either to initiate the
algorithm (1500 structures) or to rationalize our search results;
the AL search itself included DFT computations of <100 (0.3% of
35000) structures. The method surpassed our expectations by
identifying two heretofore unknown classes of tricyclic BTZ
molecules with unusually low redox potentials, which is exciting
for electrochemical experiments.

While this success is gratifying, our study highlights the
fundamental difficulty of finding redoxmers that satisfy all

© 2023 The Author(s). Published by the Royal Society of Chemistry
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requirements posed by the application. For BTZ derivatives,
lowering of the redox potentials has narrowed the gap between
the 1e” and 2e” reduction states (that facilitates dispropor-
tionation of radical anions in solution) and increased proton
affinity of radical anions. It follows from our computational
results that in this anolyte family it may be impossible to
simultaneously achieve the lowest redox potentials and the
exceptional stability of radical anions no matter how the BTZ
molecule is derivatized. Fortunately, the AL methods not only
provide a means of identifying the necessity of compromise but
also a means of reaching this compromise through multiple
property optimization. As new redox-active core molecules are
identified, the space of their derivatives can be rapidly exam-
ined with such expert systems to identify the strengths and
limitations of these new scaffolds. Given the generality of our
approach, we hope that our methods will become the standard
tool in the materials development in the battery sciences and
molecular discovery.

Data availability

We provide the SRMGA code (for a molecular library generation)
and data of different molecular libraries (SMILES, complexity
score and redox potentials in CSV files) on GitHub at https://
github.com/akashjn/MolGenerator. We provide the active
learning code on GitHub at https://github.com/akashjn/
Machine_Learning Chemistry/blob/main/BTZ_1500_mols/
Active_Learning for_1500_BTZmols.ipynb. Additionally, we
provide the ESIT which includes (i) a pdf file containing the
additional tables, figures and references, and (ii) zipped CSV
files containing SMILES, complexity scores, and redox
potentials for different libraries.
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