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Microbial interactions are one of the major topics of current research due to their great societal relevance. It
is now established that biofilms—associations of microorganisms, exchanging various chemical
compounds, including proteins and nucleic acids—are capable of promoting horizontal transfer of
resistance genes. However, our understanding of the processes occurring in biofilms is rather limited. A
possible method to partly overcome this problem is the implementation of highly efficient imaging and
mapping of these structures. This work proposes a combination of automated scanning electron
microscopy (SEM) and a comprehensive software system that uses deep neural networks to perform an
in-depth analysis of biofilms. Time-dependent, high-throughput mapping of biofilm electron microscopy
images was achieved using deep learning and allowed microscale data analysis of visible to the eye
biofilm-covered area (i.e., at the macroscale). For this study, to the best of our knowledge, the first
matrix and cell-annotated biofilm segmentation dataset was prepared. We show that the presented
approach can be used to process statistical data investigation of biofilm samples in a volume, where

automation is essential (>70 000 separate bacterial cells studied; >1000 times faster than regular manual
Received 21st March 2023

Accepted 29th August 2023 analysis). To evaluate the approach, multiple time steps of biofilm development were analyzed by first-

to-date kinetic modeling of biofilms with SEM, revealing the complex dynamics of biofilm formation.
DOI: 10.1039/d3dd000A6 Moreover, it was shown that the described procedure is capable of capturing differences between

rsc.li/digitaldiscovery antibiotics and antimicrobial compounds applied to studied biofilms.

The implementation of high-tech innovations in biological
research is currently making a significant contribution to the

Introduction

There is a growing crisis of antibiotic resistance that is causing
several health issues worldwide. The reason for this may be
both the irrational use of antimicrobials and their application
to prevent a combined bacterial-viral infection. One of the ways
for bacteria to endure antibiotic treatment is to form biofilms.>?
Understanding the mechanisms of biofilm formation and the
contribution of these processes to increasing levels of antibiotic
resistance are critical public health priorities in developing new
antibiofilm agents and methods to combat antimicrobial
resistance.
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development of life science.* Digital biology solutions provide
insights into various scientific problems, such as climate
change,” genome annotation,® biological image analysis,”®
protein folding,® drug discovery,* cancer detection,"** biology
laboratory virtualization,” and the problem of antibiotic
discovery."*** In fact, the combination of models, that predict
antimicrobial activity of molecules or generate novel
compounds with the high-throughput mapping of experimental
microscopic data may become a powerful strategy for the
accelerated discovery of antibiofilm agents in the near
future.***®

There are several definitions of biofilms.*** Generally, bio-
films are highly structured associations of microorganisms
attached to the surface (which can be both biotic or abiotic) or
forming floating mats on liquid surfaces.”” These associations
are contained within a self-producing matrix of extracellular
polymeric substances (EPS) consisting of proteins, lipids,
nucleic acids, and polysaccharides. These compounds play an
important role in enhancing adhesion to the surface,
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aggregating microorganisms, and ensuring the structural
integrity of the biofilm.>**

Biofilms form on industrial production lines, heat
exchangers, and work surfaces, leading to corrosion and
damage to mechanisms and contamination of raw materials
and products.”® For the food industry, contamination with
biofilms can lead to much more severe effects,> contributing to
outbreaks of foodborne infections.”®* Biofilms are among the
drivers of the growing antibiotic resistance crisis and account
for two-thirds of all infections.’* The National Institute of
Health estimates that biofilms cause 65-80% of all microbial
infections and 80-90% of all chronic infections, making bio-
films a major public health problem.** Diseases associated with
biofilms include upper and lower respiratory tract diseases,
endocarditis, chronic otitis media, eye infections, chronic
wounds, diabetic foot ulcers, urinary tract infections, and
periodontitis.*** Bacterial colonization of medical devices such
as intravascular and urinary catheters, pacemakers, heart
valves, contact lenses, breast implants, endotracheal tubes, and
orthopedic implants can lead to device-associated
infections.****

Various methods carry out the detection of biofilms: staining
with further detection using photometric methods; various
methods of microscopy, including staining, using fluorescent
labels; molecular genetic techniques for detecting the expres-
sion of biofilm-forming genes, etc.** There are several estab-
lished techniques for the automated computational analysis of
biofilm images using confocal microscopy,*”** some of which
can even handle statistical area analysis.*® Automated detection
of stalked bacteria is also available.** However, there is currently
no single method or test system for the comprehensive Al-based
automatic detection of biofilms and their conditions with
Scanning Electron Microscopy (SEM), which can perform
statistical analysis on a vast amount of imaging data, where
manual analysis cannot be performed (including single cell
counting and matrix quantification). In fact, there are prior
studies that have measured cellular properties inside biofilms**
and the matrix distribution®® based on fluorescence images.
However, the mechanisms and processes of biofilm formation
are not well understood, and studies that detail the morpho-
logical changes in the bacterial population in the process of
bacterial colonization are still limited.

With the development of automation techniques in electron
microscopy, it has become an appealing imaging method.
Currently, SEM imaging is widely used as a quality control
method in semiconductor manufacturing and steel produc-
tion.** Furthermore, the combination of energy-dispersive X-ray
spectroscopy with automated SEM imaging can be used for the
elemental analysis of materials** or pharmaceutical products.*®
Contaminant identification, surface topography investigation,
and defect detection are also offered with electron microscopy
and find application in different areas of science and tech-
nology, e.g., solar panels.*

Microbiology is the area where electron microscopy can also
be employed.**** SEM has been shown to be a suitable tool for
tracking bacterial adhesion and biofilm formation on biotic>*
and abiotic surfaces.”»* SEM has the levels of magnification
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and resolution required to visualize individual cells of micro-
organisms and their communities or biofilms, as well as their
spatial organization.** In addition, SEM is a valuable tool for
studying the effect of antimicrobial agents on the cell
morphology of bacterial populations in various biofilms.*® The
in-depth method to study biofilms would allow in silico high-
throughput mapping and detection of the key features of the
studied systems: separate cells, channels, and matrix (Fig. 1a).
To the best of our knowledge, there are still no computer-aided
solutions for SEM image analysis of biofilms that can provide
the recognition of matrix and single cell detection without
preliminary data annotation with similar or above quality.

The data acquisition rate is currently very high and would
not allow a manual analysis of images without increasing
research budgets and potential loss of analysis quality due to
human errors. Recently, a solution to this problem—the appli-
cation of deep learning algorithms—has become increasingly
widely adopted. Examples of usages include biomedical appli-
cations,’® analysis of pharmaceutical powders,*” protein nano-
wires,*® catalysts,* and analysis in a liquid phase.*® Besides
segmentation and detection tasks, deep learning-based image
inpainting has also performed.®* Despite the active application
of deep learning algorithms in cell imaging,**”® there is
a significant lack of knowledge in Al-based biofilm SEM image
analysis. State-of-the-art techniques only perform segmentation
of whole biofilms without recognition of the matrix™ with the
Trainable Weka Segmentation plugin,”> segmentation of
cellular compartments,””* and cell segmentation on SBF-SEM
images.”® The main reason for this small coverage of possible
objects is most likely the unavailability of well-annotated large
amounts of data for researchers compared to other types of
microscopy.”” With the development of frameworks for semi-
automatic microbiological data annotation”®* or advanced
segmentation deep learning architectures,® ** it is possible to
partially reduce the bottleneck with image annotation.
However, higher quality data still significantly improve the
results and allow other researchers to train their models more
effectively.

An alternative method to study biofilm structures is using
fluorescence confocal microscopy.*® Unlike SEM, it allows 3D
visualization of biofilm architecture and can distinguish
between living and dead microbial cells. Although spatial
organization of bacterial cells and EPS in the biofilms can be
determined by confocal laser scanning microscopy (CLSM), only
SEM can show the architecture of biofilms at a single bacterial
cell resolution level.** In addition, CLSM lacks the necessary
magnification and resolution for detailed observation of indi-
vidual cells in a biofilm and their morphology.* It also requires
fluorescent dyes to evaluate biocide effects, which can affect
biofilm physiology (e.g. reduction levels of resazurin that
sometimes used in CLSM®® can be decreased in the presence of
antibiotics,*” improve the breakthrough of cell membranes,®®
affect the viability,* lead to decrease of elongation rates®) or
even damage living cells.*”” Precise cell counting is a limiting
factor for confocal microscopy, as most protocols, which use
fluorescent pigments, allow only semiquantitative analysis.”>*’
Since only 2D imaging with SEM is available, it is possible to
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Fig. 1 Biofilm formation and image analysis: (a) biofilm development process; each phase is characterized by key parameters, which can be
automatically determined with computer vision techniques; (b) brief comparison of SEM and confocal microscopy for biofilm imaging. Yellow
star highlights one of the aims of the research: novel software development for quantitative biofilm analysis with SEM; (c) a typical workflow for
deep neural network analysis; a combination of models and algorithms offers ample research opportunities.
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calculate only the area density of cells. Nevertheless, it is likely
to correlate with the bulk cell density, allowing evaluation of
growth and biocidal effect (see “Kinetic modeling of biofilm
growth” and “Automated mapping of large volumes of SEM
images for the investigation of antimicrobial compound
impact” in the Results and Discussion section for more infor-
mation). A comparison of SEM and confocal microscopy is
shown in Fig. 1b. Both methods have their own pros and cons®*
and are often used together.”” However, there is much more
software for quantitative analysis using confocal microscopy
compared to electron microscopy.

Despite the fact that deep learning-based approaches are
more efficient than the popular image thresholding, neural
network solutions are not common at the moment. It slows
down the digital transformation in biofilm studies. Imple-
mentation of novel computer vision techniques allows fast
calculation of cells and matrix on images making possible to
evaluate biofilm growth and biocide effects with a greater
statistical accuracy.

Therefore, the main purpose of this work is to propose
a digital approach to studying biofilm structures with SEM. It
combines automated scanning electron microscopy with deep
neural network analysis (Fig. 1c). As a result, it became possible
to analyze biofilms with the use of machine intelligence at the
macroscale and derive conclusions about their composition
(cell, matrix, and channel area calculation) and morphology
(cell size distribution, number, and size of cell clusters in the
biofilm formation area, total number and density of bacterial
cells in the area visible to the human eye). These data were used
to study biofilm growth dynamics from SEM images. The
composition of biofilms after antibiotic and antimicrobial
compound application was also investigated with neural
network image segmentation. This work not only proposes
a method to perform automated image analysis but also shows
how it can be implemented on case studies, where the analysis
of large volumes of microscopic data is required.

Results and Discussion
Object of study

Staphylococcus aureus was chosen as a model microorganism, as
it is one of the main etiological agents of nosocomial infections
and is well known for its ability to form biofilms on host tissues
and implants.”® Biofilm formation of S. aureus often leads to
chronic infections in patients suffering from osteomyelitis,
endocarditis, cystic fibrosis, or in patients undergoing medical
procedures such as catheterization.®*** All of the above makes S.
aureus one of the main human pathogens and the major
microorganism for biofilm research. Moreover, Staphylococcus
is a convenient object of study due to its cell shape, which
facilitates its image processing (Fig. 2a and b).

To demonstrate differences between nascent and mature
biofilms, Fig. 2c shows biofilms formed by the S. aureus ATCC
6538 strain at different cultivation times. After 24 hours of
cultivation, spherical cell conglomerates with a small amount of
matrix and clearly visible channels were observed. After 72
hours of biofilm cultivation, the cells were observed to be

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

almost completely covered with matrix, and the outlines of
individual cells were blurred.

The total biofilm formation dynamics are shown in Fig. 2d.
After 3 hours of cultivation, single cells or groups of cells (cell
clusters) were observed. After 6 hours, cell clusters connected by
intercellular bridges appeared. After 12 hours of cultivation,
connected cell layers formed multilayer structures with a clearly
distinguishable matrix. A complex multilevel structure with
a large amount of matrix was observed the following day. After
72 hours, the formed biofilm became a multidimensional
structure, where numerous channels were observed. Cells
immersed in the extracellular matrix were clearly distinguish-
able. Visible differences in biofilm morphology at different
cultivation times allow us to recognize biofilm morphology
without additional methods.

As an example of a typical biofilm development process, area
analysis of example biofilm images was performed (see section
“Model predictions” in the ESIt for the segmentation results).
The results showed a sharp increase in bacterial area and
a decrease in cell-free area. Matrix enlargement did not occur
until 12 hours after the start of cultivation and reached
a plateau after three days. Channel areas also showed an
increase after 24 hours; however, their area share was insig-
nificant compared with 2 dominant classes: cells and matrix.

Deep learning methodology

As mentioned above, deep learning is actively used in pattern
recognition tasks, such as semantic segmentation and object
detection. Convolutional neural networks have made remark-
able progress in computer vision.*® They are based on convo-
lution operations, which convert the original image into a set of
feature maps. This set stores correlation information between
closely located pixels and provides detection of distinctive local
motifs, making it easier to train the model. Moreover, the
nature of the convolution operation makes it easy to use
graphical processing units to speed up the training process.
Convolutional neural networks dominate computer vision tasks
over classical machine learning and image processing
algorithms.

A typical neural network-aided computer vision pipeline
includes the following steps: labeling the data, preprocessing
the images, optimizing the network hyperparameters, and
training the final model. Data labeling is a step of identifying
specific objects in research data. SEM images of biofilms were
manually labeled into masks using a special platform by
research scientists with good domain knowledge (Fig. 2a).
Segmentation masks included bacteria, matrix, channels, and
support areas without cells (cell-free zone) (Fig. 2b). Channel
zone differs from cell-free zone by relatively small size and
specific location inside large clusters of cells (see section
“Channel zone recognition” in the ESI{ for detailed explana-
tion). The main task of the segmentation network is to predict
the areas of each class on images (Fig. 3a). The training dataset
size was equal to 72. Although, it is possible to train a segmen-
tation model using only 4 dissimilar high-resolution training
images and proper augmentations with less than 10% loss in
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Fig. 2 SEM images of biofilms: (a) neural network training data preparation process; (b) examples of annotated data on different images; (c) S.
aureus ATCC 6538 biofilms; biofilm obtained after 24 hours of cultivation on the surface of a dense nutrient medium (left); biofilm obtained after
72 hours of cultivation on the surface of a dense nutrient medium (right); (d) S. aureus biofilm formation dynamics with cell, matrix, channel, and
cell-free zone area statistics; results are obtained with a U-Net segmentation neural network.

quality. High resolution and rich content of training images
leads to convergence of the IoU score (Fig. 3b) vs. training
dataset size curve despite the seeming lack of training images
(see “Neural network implementation and training” in the
Methods section for more information). It is worth mentioning
that bacterial image labeling is not a clearly defined task.

1526 | Digital Discovery, 2023, 2, 1522-1539

Different specialists can obtain different results, impacting the
performance of the model. Image preprocessing includes
modification techniques to facilitate model training (normali-
zation, resizing, augmentations, etc.). Hyperparameter optimi-
zation is a step of choosing the best combination of
hyperparameters (model architecture, encoder, learning rate,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Training and inference results: (a) predicted images and interpretation; (b) Intersection over Union (loU) score explanation; (c) model
results grouped by segmentation masks with channel loU vs. cells-free zone IoU scatter plot and optimization plot of binarization threshold.

etc.) for the neural network. The final step is to train a neural
network with optimal hyperparameters by minimizing the
chosen loss function using a backpropagation algorithm (see
“Neural network implementation and training” in the Methods
for detailed information).

Model inference results

The total IoU score on the test data is 77%. The disparity
between scores on validation (85%) and test is caused by the
variations between image sets. The IoU scores for each
segmentation class are shown in Fig. 3c. The best result of
82.4% is observed for bacterial cells, while channel areas are
predicted to be the worst, with a result of 48.2%. The matrix
obtained the second-best metric of 62%. It is worth noting that
the IoU score is sensitive to the imbalance of segmentation
classes, which can underestimate the true quality of the
network. As the channels on images are not clearly defined and
can easily be confused with areas without cells, the correlation
between channel and cell-free zone segmentation quality was
investigated with an IoU score scatter plot (Fig. 3c). Test data
are divided into three groups (low score, medium score, high
score):

1. The low-score group is distinguished from the others by
having no cell-free zones, which leads to many false positives.

© 2023 The Author(s). Published by the Royal Society of Chemistry

2. The medium-score group—lack of channel zones along
with a small area of support.

3. The high-score group tends to have a small channel area
and thus reduces false negatives associated with the predispo-
sition of the model to label segments as cell-free zones.

The relationship between the IoU score and binarization
threshold was investigated on validation images. As seen in
Fig. 3c, the optimal threshold has a value of 0.5.

The segmentation network also shows significantly better
results on test images compared to classical computer vision
algorithms (Table 1). In summary, this work's final model is

Table 1 Cell area segmentation results for CV algorithms on test
images

Algorithm 10U score
Global thresholding (v = 127) 36.3%
Otsu's thresholding 45.6%
Adaptive Gaussian thresholding 49.5%
Adaptive mean thresholding 49.5%
Adaptive mean thresholding + closing 51.2%
Edge-based segmentation 27.9%
CNN-based segmentation (our 82.4%

approach)
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devoid of significant systematic errors, making it a viable tool
for morphology analysis.

Microscale analysis of macroscale area

Microscopy is a local method, that is, the data obtained depend
on the choice of the site for image recording. The site chosen
may not be relevant to the characterization of the entire sample
nor statistically representative. In turn, subjective factors, such
as operator fatigue, aesthetic preferences, and many others, can
influence the choice of an area for recording an image. The
automatic digital operation mode has become available only
recently, which makes it possible to eliminate the human factor
and subjectivity in choosing the region for image registration.
Automated scanning allows the sequential recording of
multiple images according to a statistically relevant scheme.
After each recording, the imaging area is shifted in a software-
controlled manner (without human operator participation) to
the neighboring region, followed by automatic adjustment of
focus, brightness and contrast. The operator sets only the
recording scheme: the required number of images along the x-
axis and y-axis, as well as the overlapping of the recording areas,
which can be negative. In contrast to manual human operation,
software-controlled microscopy characterization can be per-
formed nonstop for sufficient time (24-96 h, for instance). This
is a great step forward, which opens new opportunities in
studying biofilms. Here, in the present study, we used auto-
matic image recording in connection with ML automation.

Thus, automated scanning with further SEM image stitching
provides the ability to scan macroscale areas (which are more
than 0.05 mm in width and distinguishable by the naked eye) at
the scale of 1 pixel being equal to 400 nm?®. The developed
neural network was used to characterize the morphology of the
biofilm. Image analysis of the 0.14 x 0.08 mm? area included
the following:

1. Matrix, cells, channels, and cell-free zone mapping
(Fig. 4a)

2. Cell detection (Fig. 5a and b)

3. Statistical analysis of bacterial cell size (Fig. 4b) and
population (Fig. 4c)

4. Cell clustering in the region of biofilm formation (Fig. 5¢)

The aim of the biofilm microscopy preparation in the work
was to maintain the biofilm's structure to the greatest extent
possible (see “Sample preparation” in the Methods section). But
this technique leads to reduction of cell size when water is
removed in the EM vacuum and to an underestimation of the
amount of matrix in the biofilm.?” However, this distortion is
invariant to biofilm samples. Considering this, kinetic
modeling and biocide effect evaluation should remain valid,
since the decrease of the matrix as a result of dehydration will
be observed in all samples approximately equally. However, to
achieve higher accuracy with the developed approach, correc-
tion factor should be included.

Mapping provides information on how matrix and bacterial
cells are distributed on the support. Two dominant segmenta-
tion classes are depicted: cells (43% of the total area) and cell-
free zones (49% of the total area). The slight presence of the

1528 | Digital Discovery, 2023, 2, 1522-1539
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matrix (2% of the total area) can be explained by the fact that
before the registration of images, the cells have not yet had time
to release a significant amount of matrix to form a cohesive
biofilm. An additional possible reason is the dehydration of the
obtained biofilm during sample preparation. Channels are
observed over a large area of the image, confirming the process
of incipient biofouling.

However, information about the total area of bacteria on the
image does not allow us to estimate how many cells are located
on support. Cell detection is a key problem for the statistical
characterization of biofilms. Unfortunately, single-cell image
annotation takes considerable time, as the density in biofilms
may reach 3.4 cells per um?. This disadvantage can be elimi-
nated by applying mask postprocessing, which solves the
problem of single-cell overlapping and obviates the need for
annotation of individual bacteria. The approach is based on
unsupervised edge detection with subsequent watershed algo-
rithm implementation, which is actively used for separating
different objects in an image, e.g., single cells®*® (Fig. 5a).

First, Canny edge detection with additional dilation was
employed to obtain an edge mask. Then, we inverted the mask
and applied a cell semantic segmentation mask obtained with
a neural network to ignore noncellular zones (matrix and
channel areas are also ignored).

The distance transform and subsequent local maxima
detection on the transformed image allows us to find the
geometric centers of cells. Finally, watershed segmentation was
used to estimate individual cell areas. The results for cell
detection of regions with different fields of view are shown in
Fig. 5b. Some cells are merged into one bounding box. This
outcome is probably due to the low difference in intensities at
the edges, which breaks the correct edge detection, or because
of incomplete cell division. The overall procedure makes it
possible to count the total number of cells in the biofilm and
collect statistics.

For example, bacterial cell size analysis in the biofilm can be
performed. It is important to avoid regions with severe cell
overlap to eliminate the bias caused by the superimposition of
one cell on another. The resulting histogram is shown in
Fig. 4b. The bacterial size was normally distributed with an
average of 660 nm.

Population density heat maps make it possible to estimate
the number of cells per unit area in different parts of the bio-
film. Automated creation of visualization maps may be useful
for future biofilm formation studies. In the example, the 3D plot
surface was constructed (Fig. 4c). The positive correlation
between area cell density and channel zones helps to establish
when and where the biofilm developed. The area cell density on
the image varies from 0 cells per pm?® (bare support areas) to 3.4
cells per um?® (central zones with an abundance of channels).
The total number of cells visible in the image reaches 19 064,
according to the model results.

Although computer-aided counting of cells gives a lower
bound, since it does not consider the multilayer structure of the
biofilm, the approach could be scaled to 3D images, so the error
will be corrected. Even though, the area and bulk cell densities
should correlate. Thus, the biofouling trend should remain

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Morphology analysis: (a) macroscale segmentation of biofilm with surface area calculation; (b) cell size distribution in the region of biofilm
formation; diameter sizes were calculated as the principal axes of ellipses, approximated on single-cell segmentation masks; (c) population
density heatmap. The z-axis corresponds to the density; the x-axis and y-axis are the image width and height, respectively.

unchanged. The differences in ratios of cells, matrix and cells-
free zone should have the same tendency either (see section
“Method limitations” in the ESIT).

The creation of techniques for mining statistical data in
microbiology research is important for the investigation of
biofilm evolution over time. Cell clusters (groups of cells located
close to each other) are initiators of biofilm creation, making

© 2023 The Author(s). Published by the Royal Society of Chemistry

their detection a particularly important task. The application of
clustering algorithms on top of preprocessed cell detection
allows the automatic calculation of the total number of cell
clusters and their size (number of cells in a cluster). The
approach in this work is based on DBSCAN (density-based
spatial clustering of applications with noise). Its main advan-
tage is that one does not need to specify a specific number of
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