#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online
View Journal | View Issue,

TUTORIAL REVIEW

Recent advances in the self-referencing embedded
strings (SELFIES) library

Alston Lo, © *2 Robert Pollice, 2 2°° Akshatkumar Nigam,® Andrew D. White, © ¢
Mario Krennf and Alan Aspuru-Guzik?9"

i ") Check for updates ‘

Cite this: Digital Discovery, 2023, 2,
897

String-based molecular representations play a crucial role in cheminformatics applications, and with the
growing success of deep learning in chemistry, have been readily adopted into machine learning
pipelines. However, traditional string-based representations such as SMILES are often prone to syntactic
and semantic errors when produced by generative models. To address these problems, a novel
representation, SELF-referencing embedded strings (SELFIES), was proposed that is inherently 100%
robust, alongside an accompanying open-source implementation called selfies. Since then, we have

generalized SELFIES to support a wider range of molecules and semantic constraints, and streamlined its
Received 17th March 2023 derlyi We h imol ted thi dated tati . b t) ¢
Accepted 23rd June 2023 underlying grammar. We have implemente is updated representation in subsequent versions o
selfies, where we have also made major advances with respect to design, efficiency, and supported

DOI: 10.1035/d3dd00044c features. Hence, we present the current status of selfies (version 2.1.1) in this manuscript. Our library,

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1. Introduction

In recent years, machine learning (ML) has become a powerful
tool to tackle challenging problems in chemistry. Machine
learning pipelines involve three crucial elements: data, repre-
sentations, and models. Choosing the proper representation is
important as it defines the space of models available to work
with the data, as well as impacting directly model performance.
For molecules, one of the more widely-used classes of repre-
sentations encode molecules as strings (i.e., the string-based
molecular representations). These representations are popular
since they can leverage the rich collection of ML tools that have
been developed for sequential data.* Historically, the most
employed string representation is the Simplified Molecular
Input Line Entry System (SMILES), which was introduced by
Weininger in 1988.° Currently, SMILES has become the de facto
standard representation in cheminformatics and has histori-
cally been a key component of central applications in the field,
such as chemical databases. The main appeal of SMILES is its
simple underlying grammar, which allows for the rigorous

“Department of Computer Science, University of Toronto, Canada. E-mail: alston.lo@
mail. utoronto.ca; r.pollice@rug.nl; alan@aspuru.com

*Chemical Physics Theory Group, Department of Chemistry, University of Toronto,
Canada

°Stratingh Institute for Chemistry, University of Groningen, The Netherlands
“Department of Computer Science, Stanford University, California, USA

“Department of Chemical Engineering, University of Rochester, USA

/Max Planck Institute for the Science of Light (MPL), Erlangen, Germany

#Vector Institute for Artificial Intelligence, Toronto, Canada

"Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, Canada

© 2023 The Author(s). Published by the Royal Society of Chemistry

selfies, is available at GitHub (https://github.com/aspuru-guzik-group/selfies).

specification of molecules in a manner that can be parsed effi-
ciently, and which is readable for humans at least for small
molecules.

However, in an ML setting, this grammar can carry two
intrinsic weaknesses. First, many strings constructed from
SMILES symbols are syntactically invalid due to the rigidity of
the SMILES grammar, i.e., the strings cannot be interpreted as
molecular graphs.*® In particular, SMILES requires branch
brackets and ring numbers to appear in matching pairs (e.g,
C(CC and C1C are invalid), so a single misplaced or missing
token could ruin the validity of a SMILES string. This is prob-
lematic because ML models that produce SMILES strings,
especially generative models, can be prone to these syntactic
errors, rendering a significant fraction of their output mean-
ingless. One strategy is to constrain the ML architecture to
reduce the number of invalid structures, which has been
demonstrated successfully in the literature.®® This approach, of
course, needs significant computational effort and cannot be
transferred directly to other systems without model retraining,
model architecture adjustments, or domain-specific design
considerations. An alternative and more fundamental solution
is to define representations that are inherently robust. A first
step towards this direction was taken by DeepSMILES,”® a string-
based representation derived from SMILES that reworked some
of its most syntactically susceptible rules. While DeepSMILES
solves most of the syntactical errors, it does not address the
second weakness of SMILES, namely, that even syntactically
valid strings may not necessarily correspond to a physical
molecule. Typically, this occurs when a string represents
a molecular graph that exceeds normal chemical valences, in

Digital Discovery, 2023, 2, 897-908 | 897

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00044c&domain=pdf&date_stamp=2023-08-05
http://orcid.org/0000-0003-1744-1446
http://orcid.org/0000-0001-8836-6266
http://orcid.org/0000-0002-6647-3965
https://github.com/aspuru-guzik-group/selfies
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002004

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

which case we call the string semantically invalid. For example,
the SMILES string CO=C is semantically invalid because it
erroneously specifies a trivalent oxygen atom, which is chemi-
cally unstable and reactive.

To eliminate both syntactic and semantic invalidities in
string-based molecular representations on a fundamental level,
an entirely new representation termed SELF-referencing
Embedded Strings (SELFIES) has been proposed by some of
us.'® By construction, SELFIES is 100% robust to both syntactic
and semantic errors. That is, any combination of SELFIES
symbols specifies a molecular graph that obeys chemical
valences. This is achieved through a small Chomsky type-2,
context-free grammar' that is augmented with self-
referencing functions to handle the generation of branches
and rings. Since its release, SELFIES has enabled or improved
numerous applications, ranging from molecular design*>** to
interpretability'® to image-to-string and string-to-string trans-
lations,"”*®* and has been extended to incorporate functional
groups and other fragments.' For an extensive summary of its
applications and opportunities, we refer readers to the recent
community paper on SELFIES.*®

Herein, we introduce selfies 2.1.1, the latest version of the
open-source Python implementation of SELFIES. In particular,
we provide a detailed look into its history, developments,
underlying algorithms, design, and performance. Together with
the community, we have recently overviewed potential exten-
sions and formulated 16 concrete future projects for SELFIES
and other robust molecular string representations.”® We hope
that this manuscript will also help in developing some of these
extensions and ideas. Our software package selfies can be
installed with “pip install selfies” and is available at GitHub
(https://github.com/aspuru-guzik-group/selfies) under the
Apache 2.0 license, along with comprehensive documentation
and tutorials.

2. Timeline and advances

The selfies library version that implemented the representation
from Krenn et al.'® was first released as selfies 0.2.4 in 2019. This
older version provided an API of two translation functions
where a restricted subset of organic, uncharged, nonaromatic
SMILES strings could be converted to and from SELFIES strings.
In addition, the internal algorithms behind selfies relied heavily
on direct string manipulations, so they were computationally
inefficient and difficult to maintain. Since then, selfies has
undergone several major redesigns that have significantly
advanced the algorithmic handling of both SMILES and SELF-
IES. Most importantly, the underlying grammar of selfies has
been streamlined and generalized in subsequent versions. We
will now describe the changes up until selfies 2.1.1, the most
recent version of selfies at the time of publication of this work.

One major modification we made is that selfies now uses
directed molecular graphs to internally represent SMILES and
SELFIES strings. This has afforded selfies greater efficiency and
flexibility, and enabled a number of additional extensions to be
made. For example, we added support for aromatic molecules
by kekulizing SMILES strings with aromatic symbols before they

898 | Digital Discovery, 2023, 2, 897-908

View Article Online

Tutorial Review

Table 1 A timeline of the various releases of selfies

Version Year(s) Description

o Initial release of selfies

o Release of selfies that implements the
representation from Krenn et al.*

¢ Expanded the support of selfies to a greater
subset of SMILES strings, including strings with
aromatic atoms, isotopes, charged species, and
certain stereochemical specifications. To do so,
the underlying grammar used by selfies was
both streamlined and generalized

e Added support for the customization of the
semantic constraints used by selfies

e Significantly improved the efficiency of
translation between SELFIES and SMILES

o Added a variety of utility functions to make the
handling of SELFIES strings convenient

e Updated the SELFIES alphabet to be more
human-readable and standardized

e Improved handling of stereochemical
specifications in SELFIES involving ring bonds
o Added support for explaining translations
between SELFIES and SMILES through
attributions

0.1.1
0.2.4

(Jun) 2019
(Oct) 2019

1.0.x 2020-21

2.0.x 2021

2.1.x 2022

are translated into SELFIES. Furthermore, we handle species
with partial charges, radicals, explicit hydrogens, non-standard
isotopes, and stereochemical definitions in a fully syntactically
and semantically robust way. Besides the standard constraints
for the number of valences, users can now specify their own
constraints and we provide built-in relaxed and stricter
constraint presets that can be selected conveniently. Most
recently, we introduced the ability to trace the connection
between input and output tokens when translating between
SELFIES and SMILES. Table 1 gives a brief changelog of the
major releases of selfies and their associated advancements.

While the ideas outlined in the initial publication™ that
ensure the validity of the representation remain at the core of
selfies, the manifold implementation improvements and
extensions are the novelties that we detail in this paper. Here-
after, unless specified otherwise, we will use selfies to refer to
selfies 2.1.1 in particular and SELFIES to refer to the represen-
tation that selfies 2.1.1 implements. We will provide a complete
and formal description of the updated representation in Section
3 and describe the API of selfies in Section 4.

3. SELFIES specification

Being 100% robust, every string of SELFIES symbols corre-
sponds to a SMILES string that is both syntactically and
semantically valid. Recall that we call a SMILES string seman-
tically valid if it is syntactically valid and represents a molecular
graph that obeys normal chemical valences.

Within SELFIES, these chemical valences are encoded as
a constraint function » : A—N,, where A is a finite universe of
the atom types (e.g, A= {C,N,O,F,...}) of interest and
Np = NU{0}. The valences represented by » dictate that an
atom A must assume »(type(4)) incident bonds in total. Note

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/aspuru-guzik-group/selfies
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

that if a SMILES string obeys the valences k, each of its atoms A4
makes at most »(type(4)) explicit bonds within the string. There
is a possibly-strict inequality in this case due to the way SMILES
automatically adds implicit hydrogens until chemical valences
are satisfied. In practice, the mapping » is rationally chosen to
align with both physical considerations and established
cheminformatics packages such as RDKit.*® For example,
a plausible setting might map

»(C) = 4, »(N) = 3, n(0) = 2, (F) = 1 1)

which is the default behaviour of selfies (see Section 4.3).

We formulate chemical valences in this manner to empha-
size that although SELFIES depends on v, it is not fixed to any
particular setting of ». That is to say, SELFIES can enforce rule
sets induced by any arbitrary mapping » : A—Np, even if they
are not chemically meaningful. To highlight an absurd
example, the uniform constraints »(-) = 1000 can be used in
principle, which corresponds to effectively having no semantic
constraints at all. In this sense, SELFIES can be thought of as
a general framework for an adjustable set of constraints ». In the
ensuing discussion, we will describe SELFIES under the
assumption that some constraint function v is fixed
beforehand.

3.1. Syntax

Before explaining the SELFIES specification, we make a brief
aside and give an overview of the form of SELFIES strings.
Simply, a valid SELFIES string is any finite sequence of SELFIES
symbols joined together. For ease of visual partitioning, all
SELFIES symbols are enclosed by square brackets. Hence,
a generic SELFIES string is of the form

S)

where the ... is a placeholder for a symbol-specific token. We
can further categorize SELFIES symbols into four main types,
namely, atom, ring, branch, and miscellaneous, and charac-
terize the syntax of each in the following. Throughout, let ¢ be
the empty string and given n strings (¢;)7_,, let o4, 0y,...,0,
denote their concatenation.

3.1.1. Atom symbols. The general SELFIES atom symbol
has the form

[50‘] (3)

O = Qjso Kelem Xchiral KH X+

where 8 € {¢, =, #,/, \} is a SMILES-like bond symbol and

Ciso e{e1,2,3,...}
Qe € {element symbols}
Qchiral € {87 @> @@} (4)

ay e{e, HO,HI,...,H9}
o e{e,+1,-1,4+2,-2,43...}

collectively specify an atom type type(a) in a SMILES-like
fashion (the atom's isotope number, atomic number, chirality,
number of attached hydrogens, and charge, respectively, and
sometimes optionally). Notably, each SELFIES atom symbol is

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

semantically unique, i.e., different atom symbols are not inter-
changeable. This is not the case in SMILES due to shorthand
abbreviations in how attached hydrogens and charge can be
represented. For example, the SMILES atom symbol pairs
([Fe++], [Fe+2]) and ([CH], [CH1]) are interchangeable. To create
a more standardized alphabet of symbols, we remove this
redundancy in SELFIES.

3.1.2. Branch symbols. The general SELFIES branch
symbol has the form

[6Branch/] (5)
where 8 € {¢, =, #} is a SMILES-like bond symbol and ¢ €
{1, 2, 3}.

3.1.3. Ring symbols. SELFIES ring symbols can be further

subdivided into two sub-types. These are of the form

[BRing/]
5, B.Ring) (©)

where 8 € {¢, =, #} and
81,82 € {—,/,\}, and not both 8; = 8 = — 7)

are SMILES-like bond symbols and ¢ € {1, 2, 3}, similar to
branch symbols. The second ring symbol type (eqn (6)) is used
to handle stereochemical specifications across ring bonds (see
Section 3.5).

3.1.4. Miscellaneous symbols. SELFIES has a few auxiliary
symbols that are not core to the representation. These symbols
still have common use cases and are specially recognized by the
functions in selfies that translate between SELFIES strings and
SMILES strings (see Section 4.1):

e The dot symbol, which can be used to express multiple
disconnected fragments in a single SELFIES string, similar to its
role in SMILES. The dot symbol is interpreted by treating it as
delimiter and splitting the SELFIES string across the symbol.
Then, each token is treated as an independent SELFIES string.

e The [nop] (for “no-operation”) symbol, which is a special
padding symbol ignored by selfies.

Table 2 provides examples of SELFIES atom, branch, and
ring symbols.

3.2. The SELFIES grammar

Now, we return to explaining the practical algorithm used to
derive SMILES strings from their corresponding SELFIES strings.
To do so, we first introduce the notion of a context-free grammar.
A context-free grammar G is a tuple G = (V, X, R, S), where V and
X are disjoint finite sets of nonterminal and terminal symbols,
respectively, R = V x (V U X)* is a finite relation, and S € Vs
a so-called start symbol. Under G, strings of terminal symbols
can be derived by performing a finite sequence of replacements
starting with the single-symbol string o, = S. At each step ¢, if the
current string ¢, contains a nonterminal symbol A4 € V (ie., o, =

T The Kleene star of a finite set of symbols A4, denoted A*, is the set of all strings
formed by concatenating finitely-many symbols from 4, which includes the empty
string.

Digital Discovery, 2023, 2, 897-908 | 899

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Table 2 Example SELFIES symbols, by symbol type

Type Examples

Atom [#13C], [=0], [C@@H1], [N + 1]
Branch [Branch3], [#Branch1], [=Branch2]
Ring [=Ring1], [/\Ring3], [Ring2]

Misc. ., [nop]

0:4p, for py, po € (V U X)*) and there is an (4, «) € R, then we
replace A with « to get the next string o.,; = piap,. For this
reason, tuples (4, a) € R are called production rules, and are
suggestively notated A — «. The derivation terminates once only
terminal symbols remain. The derivation of SMILES strings
under SELFIES is similar to the preceding process. In fact,
a context-free grammar underlies SELFIES, which we call the
SELFIES grammar.
Specifically, the SELFIES grammar takes

V:{S7X17X27X37-~-7Xmaxy(A)} (8)
XY = {SMILES symbols,e.g.,C,=, (,...}

where maxv(A) is the maximum valence of all atom types. The
production rules R will be characterized later. Given a SELFIES
string, its corresponding SMILES string is then derived through
a trajectory of replacements starting from S, as previously
described. However, there are two further modifications that
provides SELFIES its strong robustness. First, the replacements
that are performed are not chosen arbitrarily, but are instead
dictated by the SELFIES string of interest. At each derivation
step, the next symbol of the SELFIES string is read off and fully
specifies which production rule is applied. We systematically
design this symbol-to-rule mapping such that the final derived
SMILES string will always be valid. Second, SELFIES augments
the grammar with self-referencing functions. These self-
referencing functions manipulate the derivation process in
more complicated ways than simple replacements, so they are
not production rules. However, as before, the manner in which
these self-referencing functions are applied is also dictated by
the symbols in the SELFIES string. Thus, a SELFIES string can
be viewed as a recipe of instructions (the symbols) that guides
string derivation under the SELFIES grammar.

3.3. Simple chain derivation

Herein, we begin by considering the simplest type of SELFIES
strings, those that correspond to simple chains of atoms. In
SMILES, simple chains of atoms are represented by sequences
of alternating atom and bond SMILES symbols, the latter of
which can sometimes be left implicit by convention. Examples
of such SMILES strings include CCCC (n-butane) and O=C=0
(carbon dioxide). Analogously, in SELFIES, simple chains are
represented by sequences of SELFIES atom symbols, which can
be understood as playing a similar role as a grouping of
a SMILES atom symbol and its preceding SMILES bond symbol.
Simple chains are the easiest to derive in SELFIES, because the
process occurs only through mere replacements, as in regular
context-free grammars.

900 | Digital Discovery, 2023, 2, 897-908

View Article Online

Tutorial Review

The derivation of a simple chain starts with the initial string
0o = S. Recall that the SELFIES symbols dictate how production
rules are applied. For simple chains, this is achieved by having
each pair of SELFIES atom symbol and nonterminal symbol 4
V determine a production rule of the form A — « A’, where a €
X* is a terminal string and A’ € V U {e}. Then, a sequence of
replacements is iteratively performed by treating the SELFIES
string as a queue Q of SELFIES symbols. At each step, the head
of Q is popped} and, with a nonterminal symbol in the current
string o, is used to select and apply a production rule to get the
next string ¢,,,. Note that o, = S is itself a single nonterminal
symbol, and each rule induced by a SELFIES atom symbol
replaces one nonterminal symbol by another. Hence,
throughout the derivation, the current string o, will always
contain at most one nonterminal symbol and there is never any
ambiguity as to how or which production rule is applied. Once
the current string has only terminal symbols or Q is empty, the
process ends (since SELFIES strings are finite, termination
necessarily occurs). The final derived SMILES string is read off
by dropping all nonterminal symbols.

We now fully enumerate the SELFIES atom symbol to
production rule mapping. Let [f«] be a generic atom symbol, as
described in eqn (3). Based on this symbol, we first define the

terminal string
a=1{%
o,

where O = {B,C,N,O,S,P,F,Cl,Br,I} are the symbols of
elements in the SMILES organic subset. The string & can be
thought of as transforming « into the SMILES syntax. Then [«]
together with the nonterminal symbol S € V specifies the
production rule:

if acO
otherwise

)

S — &Xg (10)
where ¢ = v(type(a)) is the valence of the atom type specified by
«, and we hereafter define X, = ¢ to be the empty string to
handle the case where ¢ = 0. The atom symbol [B«] together with
the symbol X; € V, where 1 =i =< maxv(A), specifies a produc-
tion of the form:

B, (do)aX,—qy, if €>0
‘&*{a Yot r=0 (11)
where d, = min(¢, i, d(8)). Here, d(0) is a function that returns
the order of the bond type represented by £:

I, if Be{e, /,\ }
dp)=12, ifp==
3, iff=#

(12)

and g (n) is a function that demotes § into a SMILES token
representing a bond of lower order n < d(g):

1 To pop or dequeue the head of a queue Q means to fetch and then remove the
oldest item in Q.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

B, ifdB)=n
B,(n)=<K¢ ifdB)#n=1 (13)
=, ifdB)#=n=2

In eqn (10) and (11), the nonterminal symbols X, are intuitively
memorizing the maximum number of bonds that the most
recently derived atom can adopt; the nonterminal symbol X,
can be understood as encoding that the last atom can make at
most m bonds. When the next atom is derived, the bond con-
necting it to the preceding atom has its order decreased mini-
mally such that the bond constraints are always satisfied.

Examples: To show these production rules in a concrete
setting, we will translate the SELFIES string

Q= [= CJ[O][#C][F][C] (14)

along with the constraints in eqn (1). The derivation of its corre-
sponding SMILES string would proceed step-wise as follows:

S =CX, (=Q)
=CoX; ([0))
—COCX; ([#C)) (15)
=COCFe¢ ([F))
=done

where each line g, = 0,4 ([fa]) is used to denote a step of the
derivation process induced by the SELFIES symbol [Ba]. The
final derived SMILES string in this case is COCF. Now, for
a more complicated example, consider the SELFIES string

Q = [CH3][13CH1][#O] (16)
under the same constraints. The derivation proceeds as
X =[CH3X, ([CH3))
= [CH3][13CH1]X, ([13CH1)) 17
— [CH3|[13CHI]= 0¢ ([=O]) (17)

=done.

producing the final SMILES string [CH3][13CH1]=0. Note that
isotopes are assumed to share the same valence, and when
hydrogen atoms are specified in an atom type, its valence is
decremented accordingly.

3.4. Branch derivation

So far, we discussed chains of atoms, and their connectivity.
However, most molecules are more complex than simple linear
chains. Therefore, now, we talk about the derivations of branches
(followed by rings in the subsequent section). In SMILES,
branches are specified by enclosing a SMILES substring in
parentheses, which can be recursively nested; for example, CC(=
0)O (acetic acid) and C(=0)(C(=0)0)O (oxalic acid). In SELFIES,
branches are specified by SELFIES branch symbols, and similar
to atom symbols, every pair of SELFIES branch symbol and
nonterminal symbol determine some rule on how to modify the
current string. We can encode branched trees of atoms in
SELFIES by sequences of atom and branch symbols.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Table 3 The symbols succeeding a branch or ring SELFIES symbol are
sometimes overloaded with a numeric index, which is determined by
the following symbol-to-index mapping

Index Symbol Index Symbol

0 [C] 8 [#Branch2]
1 [Ring1] 9 [0]

2 [Ring2] 10 [N

3 [Branch1] 11 [=N]

4 [=Branch1] 12 [=C]

5 [#Branch1] 13 [#c]

6 [Branch2] 14 [S]

7 [=Branch2] 15 [P]

All other symbols are assigned index 0

The derivation process extends that for simple chains (in
Section 3.3), where we pop SELFIES symbols step-by-step off of
a queue Q. We only add an additional rule for when we dequeue
a branch symbol from Q. Let this symbol be [fBranch/], as in
eqn (5), and let A be a nonterminal symbol in the current string
o. If A € {S, Xi}, then this specifies the application of the
production rule A — A. Effectively, the branch symbol is ignored
in this case. If A = X; for i = 2, then we perform a replacement:

A — pXi_q, (18)
where d, = min(i — 1, d(8)), and p € X* is a SMILES substring
obtained through the following recursive process.

First, ¢ symbols are popped from Q and converted into integer
values by the mapping summarized in Table 3. Let ¢;--+, ¢, be the
indices in first-to-last order of retrieval. In the event that Q
contains fewer than ¢ symbols, the missing indices are set to have
a default value of 0. Next, these indices are identified with
a natural number Ne N by treating them as hexadecimal digits:

{
N=1+) 16"¢ (19)
k=1

Then, N symbols from Q (or all symbols in Q, if fewer exist) are
consumed to form a new SELFIES string, and with start symbol
S = Xy, (instead of S = S as before), this substring is recursively
derived into a SMILES string p,. We take p = ¢ if py = ¢, and p =
(po) otherwise.§

Examples: To provide an overview of branch derivation, we
translate a SELFIES string representing acetic acid:

Q = [0][C][= Branch1][C][= O] = C] (20)

Processing the first two SELFIES symbols [O][C] results in the
string OC X;, after which the symbol [=Branch1] is dequeued.
Since ¢ = 1, we consume the next symbol [C] in Q and identify it
with N = 1. Hence, we create the SELFIES substring [=O] from

§ A minor technicality occurs if p, starts with a branch parentheses (, in which case
p is of the form ((a4),...,(&n)tn1) fOr strings a; € E* that do not start with (. This
would result in an invalid SMILES string because branches cannot start with other
branches in SMILES. To amend this, we naturally interpret and replace p with the

string (o), .-y(0m)(Qnr1)-

Digital Discovery, 2023, 2, 897-908 | 901

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

popping the next symbol in Q and, with start symbol X,,
recursively derive it into the SMILES substring p = (=O0). Then,
performing the replacement in eqn (18) gives the string OC(=0)
X1, and processing the last symbol [=C] in Q finally produces
a SMILES string OC(=O)C for acetic acid. Another SELFIES
string that corresponds to OC(=O0)C is:

Q = [0][C][= Branch2][C][Ringl][= OJ[F][=C] (1)

The derivation is largely similar to that before. The major
difference is that when the branch symbol is dequeued, the next
¢ =2 symbols [C][Ring1] are identified with N=1 +16(0) + 1 =2,
and then, the SELFIES substring [=O][F] is used to again derive
p = (=0).

3.5. Ring derivation

The final feature that is necessary to capture the diverse variety
of molecules is the ability to encode ring closures. In SMILES,
this is achieved by paired numeric tags that indicate two sepa-
rate atoms are joined together; for example, CC1CCC1 (meth-
ylcyclobutane). By adding bond characters before the numbers,
SMILES can also specify ring closures of higher bond orders,
such as C=1CCCC==1 (cyclopentene). In SELFIES, ring closures
are specified by ring symbols, which behave similarly to branch
symbols. The derivation process extends that in Section 3.4.
Per eqn (6), there are two forms of SELFIES ring symbols. To
simplify the ensuing discussion, however, we will begin by only
considering the first form. When a ring symbol [§ Ring /] is
popped from the queue of SELFIES symbols Q, a nonterminal
symbol A in the current derived string is used to specify
a production rule. If A = S, then we apply the rule A — 4, and the
ring symbol is effectively skipped. If A = Xi, then we replace:
A = Xiomini.apy (22)
In addition, we consume the next ¢ symbols of Q (or all symbols in
Q, if fewer exist) to specify a number Ne N by eqn (19). Then, the
ring symbol would indicate that a ring closure should be formed
between the ring-initiating atom and the N-th atom previously
derived from it (or simply, the first atom if less than N such atoms
exist). Here, the derivation order is the order in which atoms are
realized through the production rules in eqn (10) and (11). By ring-
initiating atom, we also mean the atom at which bonds would be
made if the ring symbol were instead an atom symbol. Often, this
coincides with the last-derived atom, as is the case in:
NC(C)COC*t X, (23)
where the ring-initiating and last-derived atoms are marked with
an asterisk and dagger, respectively. However, this is not the case
when the last-derived atom lies within a fully-derived branch:
NC(C)COC*CO)(CTH)X, (24)
For brevity, we will refer to the ring-initiating atom as the right
ring atom and its counterpart the left ring atom, as the latter
precedes the former in a SMILES string under derivation order.

902 | Digital Discovery, 2023, 2, 897-908

View Article Online

Tutorial Review

Although a ring symbol specifies a closure between the left
and right ring atoms, such a bond cannot be naively added since
it may cause valences to be violated for the left ring atom
immediately (e.g, consider the case where this atom has already
attained its maximum valence) or in the future. Hence, SELFIES
postpones the creation of ring closures to a final post-processing
step. Instead, the ring closure candidates are pushed to
a temporary queue R, and once all the SELFIES symbols have
been processed, the items in R are revisited in first-to-last order.
Based on the state of the ring atoms, a candidate may be rejected
(and no ring bond is made) or executed.

Specifically, given a potential ring closure indicated by
symbol [8 Ring /], let m; and m, be the number of additional
bonds that the left and right ring atoms can make, respectively.
If my = 0 or m, = 0, we must reject the candidate since adding
the ring closure would exceed one of the valences of the ring
atom. The candidate is also rejected if its left and right ring
atoms are not distinct, to avoid unphysical self-loops. Other-
wise, the candidate is accepted, and, assuming there is no pre-
existing bond between its two ring atoms, we form a new bond
of order d, = min(d(8,), my, m,) between them. If a prior bond
does exist (e.g:, if a duplicate ring closure is specified earlier in
R), then we increment the order of this existing bond as
necessary. That is, if the existing bond is of order d,, then we
promote it to a bond of potentially-higher order min(3, d; + d,).

Examples: We translate a SELFIES string representing
methylcyclobutane:

Q = [CJ[C][C][C][C][Ringl][Ring?] (25)

The first five symbols produce the string CCCCC X,, after which
the ring symbol [Ring1] is dequeued. Since ¢ = 1, the next and
final symbol [Ring?2] specifies a single ring bond between the final
C and its N = 3rd preceding atom. This produces the SMILES
string CC1CCC1. Note that incrementing the indexing symbol:

Q = [C][C[C][C)[C][Ring]|[Branchl] (26)

increments the distance of the ring closure, hence producing
a SMILES string for cyclopentane C1CCCC1. Appending a copy
of the ring and index symbols:

Q= [C][C[C][C][C]

[Ringl][Ring2][Ringl][Ring2] (27)

increments the bond order of the ring closure and produces the
SMILES string CC=1CCC=1.

The second ring symbol form [8; 8, Ring ¢] in eqn (3) behaves
nearly identically to [Ring /], and is used to support specifica-
tion of stereochemistry across single ring bonds. The only
difference occurs when a ring closure candidate produced by [84
B, Ring ¢] is accepted, and a new ring bond is added between the
two ring atoms. In this case, if 8; € {/, \}, then we add the bond
character (§; before the numeric ring tag on the left ring atom,
and similarly with 8, and the right ring atom. For instance, if
the example eqn (25) used the symbol [/—Ring1] instead of
[Ring1], then the derived SMILES string would be CC/1CCC1.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

4. Library design

The selfies library is designed to be fast, lightweight, and user-
friendly. A small but nice feature of selfies is that it also requires
no extra dependencies. At its core, there are two functions that
facilitate the interconversion between SELFIES strings and
SMILES strings. For more advanced usage, we provide functions
to customize the underlying semantic constraints that selfies
enforces and operates upon. The default constraints are given
in Table 4, and are intended for organic molecules with single,
double, or triple bonds. Finally, we also provide a variety of
utility functions for manipulating SELFIES strings. The
following describes each type of function in more detail and
provides potential use case examples. All code snippets are
written in Python, with selfies being a Python library.

4.1. Core functions

SELFIES strings can conveniently be created from and turned
into SMILES strings using the functions encoder() and decoder(
), respectively. The latter derives a SMILES string from a SELF-
IES string, using the procedure described in Section 3. The
former performs the translation in the reverse direction such
that passing a SMILES string through the composition deco-
der(encoder()) is always guaranteed to recover a SMILES string
that represents the same molecule (but not necessarily the
original SMILES string itself). The recovered SMILES string will
also maintain the molecular traversal order (i.e., the specifica-
tion order of the atoms) of the original string. The following
excerpt defines a toy function roundtrip() that illustrates this:

1 import selfies as sf

; def roundtrip(smiles):
1 try:
5 selfies = sf.encoder(smiles)

6 return sf.decoder(selfies)

7 except sf.EncoderError:

8 return None

9

10 benzene = roundtrip("clcccccl")

11 # -> [C]l[=c][c]l[=Ccl[c]l[=C][Ringl][=Branchil]
12 # -> C1=CC=CC=C1

Line 5 translates the SMILES string for benzene into the SELF-
IES string in Line 11. Notably, SELFIES does not support

Table 4 The default constraints used by selfies. All atom types other
than those explicitly listed below are constrained to 8 maximum
bonds, which acts as a catch-all constraint

Maximum bonds

Element Charge 0 Charge +1 Charge —1
H, F, Cl, Br, I 1 — —
B 3 2 4
C 4 5 3
N 3 4 2
(@) 2 3 1
P 5 6 4
S 6 7 5

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

aromatic atom symbols (e.g., ¢) in the same way as SMILES, so
encoder() performs an internal kekulization if it is passed an
aromatic SMILES string. Line 7 guards against errors raised by
encoder() when being passed SMILES strings that are syntac-
tically invalid, semantically invalid (i.e., violate the constraints
described in the next subsection), or unsupported. An unsup-
ported SMILES string uses features of SMILES that are not
implemented in SELFIES, such as the wildcard * and quadruple
bond $ symbols; the API reference of selfies further details
which SMILES strings are currently supported. Line 10 applies
the roundtrip() function to a SMILES string clcccecl for
benzene. Indeed, this round-trip translation recovers a SMILES
string C1=CC=CC=C1 that is different than the original
string, but still specifies the (kekulized) benzene molecule.

In greater detail, given an input SMILES string, encoder()
first performs a kekulization if it contains any aromatic atom
symbols, as was in the example above. Next, the actual trans-
lation process begins. In the simplest case, if the input repre-
sents a simple atom chain, then a translation to SELFIES is
performed by essentially grouping each atom symbol with its
preceding bond symbol, if any. For example, the SMILES string
O=[13CH]JC#N would be partitioned into O, = [13CH], C, #N
and turned respectively into SELFIES symbols [O][=13CH1][C]
[#N]. Branches are recursively translated and the result is used
to work backwards to find the appropriate branch and indexing
symbols to prepend. If there are multiple plausible choices, we
use the one in which the branch symbol [fBranch/] has ¢
minimized and 8 representing the bond connecting the branch
to the parent chain. For instance, C(=0)O is encoded as [C][=
Branch1][C][=0][O] instead of [C][#Branch2]C][C][=0][O],
despite both SELFIES strings producing C(=0)O under the
derivation process. Finally, ring closures are handled similarly
in that we work backwards to find the appropriate ring and
indexing symbols. If there are multiple choices, we use the one
in which the ring symbol [Ring ¢] (or [8; B, Ring ¢]) has ¢
minimized and @ (or 84, 6,) representing the bond of the ring
closure.

4.1.1. SELFIES and SMILES. The core functions of selfies
interconvert between SELFIES and SMILES; and in Section 3, we
present the method of interpreting SELFIES strings by deriving
SMILES strings under a simple augmented grammar, following
the previous SELFIES paper.'® However, it is important to note
that SELFIES is not conceptually reliant on SMILES, and we may
just as naturally interpret SELFIES strings through deriving
molecular graphs. In fact, before version 2.0.0, both encoder()
and decoder() were implemented as direct string-to-string
translations. We have since refactored the functions to
convert the input string to an intermediate graph-based repre-
sentation, which is subsequently transcribed in the target
representation. Future work could then expose this graph
representation with a clean interface, allowing users to use
selfies in a SMILES-independent manner.

4.1.2. Random SELFIES. Since every string of SELFIES
symbols can be derived into a valid SMILES string, we can
generate random but valid SMILES strings by passing random
SELFIES strings through decoder(). To sample these SELFIES
strings, we use the get semantic_robust_alphabet() utility

Digital Discovery, 2023, 2, 897-908 | 903

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Digital Discovery

function, which returns a subset of semantically constrained
SELFIES symbols:

1 import random

3 length = 10

| alphabet = sf.get_semantic_robust_alphabet ()
5 alphabet = list (alphabet)
7 symbols = random.choices(alphabet, k=length)

8 random_selfies =
random_smiles =

"",join(symbols)
sf.decoder (random_selfies)

Note that by changing the pool of SELFIES symbols from which
we sample from, we can change the distribution of produced
molecules.

4.2. Explaining translation

To explain translations between SELFIES and SMILES, both
encoder() and decoder() support an attribute flag that enables
attributions of the output string symbol(s) to symbol(s) in the
input string:

1 cyclobutane = "[C]J[C][C]I[C][Ringl][Ring2]"

> smiles, attributions = sf.decoder(
cyclobutane,

1 attribute=True,

5)

ciccc1

s # attributions is a length-4 list with:

o attributions [0] = AttributionMap (

0 index=0,

11 token="C",

12 attribution=[

Attribution (index=0,

7 # smiles =

i3 token="[C]")
14])

16 attributions [1] =
17 index=2,

18 token="C",
attribution=[

2 Attribution (index=1,

21 15

AttributionMap (

token="[C1")

23 # attributions[2] =
24 # attributions[3] =

AttributionMap (...)
AttributionMap(...)

The attributions are a list of AttributionMap objects, one for
each output symbol. Each AttributionMap contains the output
symbol, its index, and a list of Attribution objects, each of which
holds an input symbol (and its index) that is responsible for the
output symbol. Note that a single output symbol may be
attributed to multiple input symbols because it may be deter-
mined by both atom symbols and branch or ring symbols.
Tracing the relationship between symbols can enable alignment
between SMILES and SELFIES so that per-atom properties can
be connected on both sides of the translation.

4.3. Customization functions

The selfies library dynamically constructs its derivation rules
from a set of prespecified constraints, which dictate the
maximum number of bonds that each atom type in a molecule
may form. The derivation rules then ensure that each SELFIES
string corresponds to a molecular graph satisfying the set

904 | Digital Discovery, 2023, 2, 897-908

View Article Online

Tutorial Review

constraints. By choosing a set of constraints in accordance with
chemical valences, 100% robustness can be achieved. Specifi-
cally, selfies uses the constraints in Table 4 by default.
However, a limitation of the default constraints is that SELFIES
cannot represent existing molecules that violate them, such as
perchloric acid (which features a hypervalent Cl making 7 bonds).
Moreover, the catch-all constraint may be too relaxed to ensure the
validity of SELFIES strings containing atom types outside those in
Table 4 (e.g., Si, Se). Hence, users may wish to instead use custom
constraints that are tailored to the SELFIES strings being worked
with. To this end, selfies provides the key function set_se-
mantic_constraints(). The following provides a minimal example:

import selfies as sf

3 constraints = {
‘ "g: 4, "C+1": 5, "C-1": 3
5 wews 4. # catch—all

6 }
s sf.set_semantic_constraints (constraints)

Here, the constraints dictionary encodes a set of custom
constraints; specifically, explicit constraints on the neutral and
+1 charged variants of C (as in Table 4) and a catch-all constraint
(of 4 maximum bonds). Line 8 then sets constraints as the
underlying semantic constraints that selfies will operate under,
which changes the subsequent behaviour of encoder() and
decoder() appropriately. Note that the pre-existing constraints
are fully replaced in Line 8; any constraint that is not explicitly
specified in constraints would be thus removed.

For convenience, selfies provides a couple of preset
constraints to serve as templates that can be easily modified.
These can be obtained as follows:

1 c1 = sf.get_preset_constraints("default")
2 ¢c2 = sf.get_preset_constraints("octet_rule")
; ¢c3 = sf.get_preset_constraints("hypervalent")

The currently-set constraints can also be viewed by:

I curr_constraints = sf.get_semantic_constraints()

4.4. Utility functions

The selfies library provides a number of utility and convenience
functions. Two basic utility functions are len_selfies(), which
computes the number of symbols in a SELFIES string, and
split_selfies(), which tokenizes a SELFIES string into an iterable
of its constituent symbols:

1 import selfies as sf

; selfies = "[F]l[=Cl[=Cl[#N]"

1 length = sf.len_selfies(selfies) # 4

5 symbols = list(sf.split_selfies(selfies))
e # ["[F]1", "[=cl", "[=CI", "[#N]"]

Furthermore, selfies includes functions to extract a vocabulary
of symbols from a dataset of SELFIES strings, and to convert
SELFIES strings into label or one-hot encodings. Consider the
following example:

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

Table 5 An overview of selfies utility functions

View Article Online

Digital Discovery

Function

Description

len_selfies()

split_selfies()
get_alphabet_from_selfies()
selfies_to_encoding()

encoding to_selfies()
get_semantic_robust_alphabet()

1 dataset = [

2 "[cllolLel™,

3 % EFl el

! "[clfclfolCcl,

5]

7 alphabet = sf.get_alphabet_from_selfies(dataset)
s alphabet.add (" [nopl")

alphabet = list(sorted(alphabet))

) # [IV[C]II, II[F]II, YI[O]II, Il[nop]”]
2> pad_to = max(sf.len_selfies(s) for s in dataset)
3 stoi = {s: i for i, s in enumerate(alphabet)}

1
1
1
1
14
15 dimethyl_ether = dataset[0] # [C][0]([C]
16
17 label,

1 selfies=dimethyl_ether,
19 vocab_stoi=stoi,
20 pad_to_len=pad_to, # 4

21 enc_type="both",

one_hot = sf.selfies_to_encoding(

8

24 # label = [0, 2, 0, 3]
5 one_hot = [[1, 0, 0, 01,
26 # [, 04 105 015 [0

%)
**

[o, o, 1, 0],
0, 0, 1]]

Here, we are given a list dataset of SELFIES strings. Line 7 uses
a utility function of selfies to extract the set alphabet of SELFIES
symbols that appear in the dataset, which is used in Line 13 to
create a symbol to index mapping termed stoi. Next, lines 17-22
use another utility function selfies_to_encoding() to create
a label and one-hot encoding of the first SELFIES string in the
dataset. Under the hood, this function first pads the input string
to length pad_to_len by appending to it sufficiently many copies
of the symbol [nop] (for “no-operation”), which is a special
padding symbol in selfies that is automatically ignored by
decoder(). Then, the padded SELFIES string is tokenized, and
stoi is used to convert each of its symbols into integer labels and
one-hot vectors. Since the padded SELFIES string may now
contain [nop], this symbol must be added to stoi, which is done
through Line 8. Lastly, the reverse encoding can be performed
using the encoding_to_selfies() utility:

1 itos = {i: s for s, i in stoi.items()}

; # recover [C]J[0J[C][nop] from label encoding
i recovered = sf.encoding_to_selfies(

5 encoding=1label,

6 vocab_itos=itos,

7 enc_type="label",

s }

10 sf.decoder (recovered) 4 C0c

Table 5 summarizes the various utility functions introduced
within this section.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Computes the symbol length of a SELFIES string

Tokenizes a SELFIES string into its constituent symbols

Extracts a minimal vocabulary from a dataset of SELFIES strings
Converts a SELFIES string into a label and/or one-hot encoding
Recovers a SELFIES string from its label and/or one-hot encoding
Provides an alphabet of semantically-constrained SELFIES symbols

5. Results and discussion

The selfies library is quick and efficient in its translation,
despite being implemented in pure Python. To demonstrate
this, we provide some simple benchmarks of its core functions
encoder() and decoder(). The following experiments were run
on Google Colaboratory, which uses two 2.20 GHz Intel(R)
Xeon(R) CPUs.

5.1. Roundtrip translation

Here, we consider the roundtrip translation task, where a SMILES
string is translated to SELFIES and then back to SMILES (see
Section 4.1). Specifically, we translate the Developmental Thera-
peutics Program (DTP) open compound collection,>** which
contains a little over 300 k SMILES strings and is a set of mole-
cules which have been tested experimentally for potential treat-
ment against cancer and the acquired immunodeficiency
syndrome (AIDS).* Translating the full dataset into SELFIES
strings with encoder() takes 136 s, and recovering the SMILES
dataset using decoder() takes 116 s, for a total roundtrip trans-
lation time of 252 s. Fig. 2 plots how this roundtrip time scales
with molecular size. Notably, we obtain all of these times by
averaging over 3 replicate trials.

5.2. Random SELFIES

First, we sample 1000 fixed-length SELFIES strings and translate
them to SMILES, per Section 4.1. We try this experiment with
different symbol lengths and alphabets from which the SELFIES
strings are built. Fig. 1 shows the resulting distribution of SMILES
strings and the time it takes to decode each full batch of random
SELFIES strings. Performing this experiment reaffirms the
robustness of SELFIES and demonstrates the ease in which we can
create random valid molecules without applying any filters, pre- or
post-selection. In Fig. 1a, we show how SELFIES strings sampled
from a basic alphabet translate to random molecules; an impor-
tant observation is that the generated molecules are rather small,
independent of the SELFIES length chosen. That is mainly caused
by the inclusion of multi-bonds and low-valence atoms in the
considered alphabet, which exhaust the available valences of the
constituent atoms and then lead to an earlier termination of the
derivation. A simple workaround is to instead use an alphabet
without multi-bonds and low-valence atom types, as illustrated in
Fig. 1b. Here, the molecular size distribution is shifted signifi-
cantly towards larger molecules, especially when longer SELFIES
string are sampled. Hence, this showcases how to create very large
and valid random molecules.

Digital Discovery, 2023, 2, 897-908 | 905

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

(a) Basic Alphabet

71 r T T T 7]
10 Symbol Length
10
3 100
S 102t 250 1
@)
o]
S
E
% 1073 1
z
1074 E 1 1 1 1 1 F
0 50 100 150 200 250

Number of Atoms

View Article Online

Tutorial Review

(b) Filtered Alphabet

T T T T

71_ T |_
10 Symbol Length
10
8 100
S 102t 250 1
@)
o]
[P,
S
E
§ 1073 ¢ .
z
1074— 1 1 1 1 l_
0 50 100 150 200 250

Number of Atoms

(c) Translation Speed

Length |

Basic Filtered

10 0.082s 0.133 s

100
250

0.199 s 0.929 s
0.341 s 1.633 s

Fig.1 For a fixed alphabet A, 1000 SELFIES strings were generated by uniformly sampling L symbols from an alphabet. Then, we plot the size
distribution of the resulting molecules for varying symbol lengths L. (a) We take A to be the 69 symbols returned by get_semantic_robus-
t_alphabet() under the default semantic constraints. (b) We filter the alphabet in (a) to 19 symbols by removing all atom symbols [Ba] where 8 €
{=, #} or v(type(a)) = 1, and removing all branch and ring symbols except for [Branchl] and [Ringl]. This decreases the chance that the SELFIES
derivation process is terminated early, causing the derived molecules to be larger. (c) The time taken to translate each batch of random SELFIES
strings to SMILES using decoder(), measured by averaging over 20 replicate trials.

w
T
1

(V]
T
.
°
1

Roundtrip Time (ms)
—

g o8 '.,
-;.:"|iiiilll' lI"

..||

0c: . . . \ L]
0 10 20 30 40 50 60

Number of Atoms

Fig. 2 The roundtrip translation time of 1000 randomly-sampled
SMILES strings from the DTP open compound collection as a function
of size, measured in number of atoms.

6. Conclusions and outlook

Since its first release in 2019, the selfies library has undergone
significant changes and experienced a drastic transformation in
terms of both capabilities and code design. All of these modi-
fications were executed with two major premises, namely, (1)
extending its functionality and capability to support all features
of the SMILES representation and (2) retaining or even
improving upon its simplicity and user-friendliness. To achieve

906 | Digital Discovery, 2023, 2, 897-908

that, we implemented all necessary functionality in the library
itself so that it does not require any other packages. Addition-
ally, we added several utility functions to the library to support
common use cases. Apart from these two prime goals, we also
made significant efforts to make the implementation faster as
SELFIES has been employed in many performance-critical
applications and workflows.

Overall, the SELFIES community has grown rapidly and we
are actively engaging in constructive discussions about the
current implementation and future improvements. While self-
ies 2.1.1 supports almost all important features of SMILES,
there are still many new features on our agenda. We outlined
many of them in a recent perspective,” for example, extensions
to polymers, crystals, molecules with non-covalent bonds, or
reactions. Our vision is that SELFIES will become a standard
computer representation for molecular matter. We encourage
the community to implement it into their workflows, report
errors in the current implementation, and propose changes and
new features that will help them to succeed in their goals.

Data availability

The selfies library is available at GitHub (https://github.com/
aspuru-guzik-group/selfies). Our benchmarking scripts were
run on Google Colab and are also available at our repository
(https://github.com/aspuru-guzik-group/selfies/blob/

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/aspuru-guzik-group/selfies
https://github.com/aspuru-guzik-group/selfies
https://github.com/aspuru-guzik-group/selfies/blob/f38eeea4c8b60ce412fa917adb9258b89d4e8efc/examples/benchmark_v2_1_1.ipynb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Tutorial Review

f38eeea4c8b60ce412fa917adb9258b89d4e8efc/examples/
benchmark_v2_1_1.ipynb).

Author contributions

A. L.: conceptualization (equal), data curation (lead), formal
analysis (lead), investigation (lead), methodology (lead), soft-
ware (lead), validation (lead), visualization (lead), writing —
original draft (lead), writing - review & editing (lead). R. P.:
conceptualization (equal), funding acquisition (supporting),
methodology (equal), project administration (equal), software
(equal), supervision (equal), writing - original draft (equal),
writing - review & editing (equal). A. K. N.: conceptualization
(equal), funding acquisition (supporting), methodology (sup-
porting), software (supporting), writing - original draft (sup-
porting), writing - review & editing (equal). A. D. W.:
methodology (supporting), software (supporting), writing -
original draft (supporting), writing - review & editing
(supporting). M. K.: conceptualization (equal), methodology
(equal), project administration (equal), software (equal),
supervision (equal), writing - original draft (equal), writing -
review & editing (equal). A. A. -G: conceptualization (equal),
funding acquisition (lead), project administration (supporting),
resources (lead), supervision (supporting), writing - review &
editing (supporting).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

R. P. acknowledges funding through a Postdoc. Mobility
fellowship by the Swiss National Science Foundation (SNSF,
Project No. 191127). A. K. N. acknowledges funding from the
Bio-X Stanford Interdisciplinary Graduate Fellowship (SGIF). A.
A.-G. thanks Anders G. Froseth for his generous support. A. A.-G.
also acknowledges the support of Natural Resources Canada
and the Canada 150 Research Chairs program.

References

1 W. A. Warr, Representation of chemical structures, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2011, 1, 557-579.

2 D. S. Wigh, J. M. Goodman and A. A. Lapkin, A review of
molecular representation in the age of machine learning,
Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, 12, €1603.

3 D. Weininger, SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules,
J. Chem. Inf. Comput. Sci., 1988, 28, 31-36.

4 R. GoOmez-Bombarelli, J. N. Wei, D. Duvenaud,
J. M. Hernandez-Lobato, B. Sanchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,

R. P. Adams and A. Aspuru-Guzik, Automatic chemical
design using a data-driven continuous representation of
molecules, ACS Cent. Sci., 2018, 4, 268-276.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

5 B. Sanchez-Lengeling and A. Aspuru-Guzik, Inverse
molecular design using machine learning: generative
models for matter engineering, Science, 2018, 361, 360-365.

6 M. J. Kusner, B. Paige and]. M. Hernandez-Lobato,
Proceedings of the 34th International Conference on Machine
Learning, vol. 70, 2017, pp. 1945-1954.

7 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen,
Molecular de-novo design through deep reinforcement
learning, J. Cheminf., 2017, 9, 48.

8 M. Popova, O. Isayev and A. Tropsha, Deep reinforcement
learning for de novo drug design, Sci. Adv., 2018, 4, eaap7885.

9 N. O’'Boyle and A. Dalke, DeepSMILES: an adaptation of

SMILES for wuse in machine-learning of chemical
structures, ChemRxiv, 2018, DOI: 10.26434/
chemrxiv.7097960.v1.

10 M. Krenn, F. Hase, A. Nigam, P. Friederich and A. Aspuru-
Guzik, Self-referencing embedded strings (SELFIES):
a 100% robust molecular string representation, Mach.
Learn.: Sci. Technol., 2020, 1, 045024.

11 J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to
automata theory, languages, and computation, Addison-
Wesley, Boston, MA, 2006.

12 A. Nigam, R. Pollice, M. Krenn, G. dos Passos Gomes and
A. Aspuru-Guzik, Beyond generative models: superfast
traversal, optimization, novelty, exploration and discovery
(STONED) algorithm for molecules using SELFIES, Chem.
Sci., 2021, 12, 7079-7090.

13 C. Shen, M. Krenn, S. Eppel and A. Aspuru-Guzik, Deep
molecular dreaming: inverse machine learning for de-novo
molecular design and interpretability with surjective
representations, Mach. Learn.: Sci. Technol., 2021, 2, 03LT02.

14 L. A. Thiede, M. Krenn, A. Nigam and A. Aspuru-Guzik,
Curiosity in exploring chemical spaces: intrinsic rewards
for molecular reinforcement learning, Mach. Learn.: Sci.
Technol., 2022, 3, 035008.

15 P. Eckmann, K. Sun, B. Zhao, M. Feng, M. Gilson and R. Yu,
International Conference on Machine Learning, 2022, pp.
5777-5792.

16 G. P. Wellawatte, A. Seshadri and A. D. White, Model
agnostic generation of counterfactual explanations for
molecules, Chem. Sci., 2022, 13, 3697-3705.

17 K. Rajan, A. Zielesny and C. Steinbeck, DECIMER: towards
deep learning for chemical image recognition, J. Cheminf.,
2020, 12, 65.

18 K. Rajan, A. Zielesny and C. Steinbeck, STOUT: SMILES to
IUPAC names using neural machine translation, J.
Cheminf., 2021, 13, 34.

19 A. H. Cheng, A. Cai, S. Miret, G. Malkomes, M. Phielipp and
A. Aspuru-Guzik, Group SELFIES: a robust fragment-based
molecular string representation, Digital Discovery, 2023, 2,
748-758.

20 M. Krenn, Q. Ai, S. Barthel, N. Carson, A. Frei, N. C. Frey,
P. Friederich, T. Gaudin, A. A. Gayle, K. M. Jablonka, et al.,
SELFIES and the future of molecular string
representations, Patterns, 2022, 3, 100588.

21 G. Landrum, et al.,, RDKit: Open-Source Cheminformatics,
2006, https://www.rdkit.org/.

Digital Discovery, 2023, 2, 897-908 | 907

https://github.com/aspuru-guzik-group/selfies/blob/f38eeea4c8b60ce412fa917adb9258b89d4e8efc/examples/benchmark_v2_1_1.ipynb
https://github.com/aspuru-guzik-group/selfies/blob/f38eeea4c8b60ce412fa917adb9258b89d4e8efc/examples/benchmark_v2_1_1.ipynb
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.26434/chemrxiv.7097960.v1
https://www.rdkit.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 01 July 2023. Downloaded on 1/10/2026 4:55:33 AM.

(cc)

Digital Discovery

22 J. H. Voigt, B. Bienfait, S. Wang and M. C. Nicklaus,
Comparison of the NCI open database with seven large
chemical structural databases, J. Chem. Inf. Comput. Sci.,
2001, 41, 702-712.

23 W.-D. Thlenfeldt, J. H. Voigt, B. Bienfait, F. Oellien and
M. C. Nicklaus, Enhanced CACTVS browser of the Open
NCI Database, J. Chem. Inf. Comput. Sci., 2002, 42, 46-57.

908 | Digital Discovery, 2023, 2, 897-908

View Article Online

Tutorial Review

24 G. W. Milne, M. C. Nicklaus, J. S. Driscoll, S. Wang and
D. Zaharevitz, National cancer institute drug information
system 3D database, J. Chem. Inf. Comput. Sci., 1994, 34,
1219-1224.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00044c

	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library

	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library

	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library

	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library
	Recent advances in the self-referencing embedded strings (SELFIES) library

