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t extraction powers generative
modeling in focused chemical spaces†
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and Rafael Gómez-Bombarelli *a

Deep generative models have emerged as an exciting avenue for inverse molecular design, with progress

coming from the interplay between training algorithms and molecular representations. One of the key

challenges in their applicability to materials science and chemistry has been the lack of access to

sizeable training datasets with property labels. Published patents contain the first disclosure of new

materials prior to their publication in journals, and are a vast source of scientific knowledge that has

remained relatively untapped in the field of data-driven molecular design. Because patents are filed

seeking to protect specific uses, molecules in patents can be considered to be weakly labeled into

application classes. Furthermore, patents published by the US Patent and Trademark Office (USPTO) are

downloadable and have machine-readable text and molecular structures. In this work, we train domain-

specific generative models using patent data sources by developing an automated pipeline to go from

USPTO patent digital files to the generation of novel candidates with minimal human intervention. We

test the approach on two in-class extracted datasets, one in organic electronics and another in tyrosine

kinase inhibitors. We then evaluate the ability of generative models trained on these in-class datasets on

two categories of tasks (distribution learning and property optimization), identify strengths and

limitations, and suggest possible explanations and remedies that could be used to overcome these in

practice.
1 Introduction

The efficient navigation of chemical space for the design of
novel candidate molecules has long been of interest to chemists
and materials scientists. With the rapid surge in interest for
data-driven approaches, deep generative models have emerged
as an exciting avenue for inverse molecular design.1,2 Progress
in this eld has come from the interplay between training
algorithms and molecular representations. Over the last few
years, approaches have used autoregressive, latent variable and
reinforcement learning (RL) algorithms to generate string,3–7

and graph8–11 representations of molecules. While fully unsu-
pervised models can be trained on large unlabeled data (for
instance the 100+ million known, individually synthesized
molecules from PubChem), inverse molecular design requires
some form of supervision to steer generation towards high-
ngineering, Massachusetts Institute of
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assachussets Institute of Technology,

d, Switzerland
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tion (ESI) available. See DOI:

6–1015
performance molecules at the extremes of the property distri-
bution.12 One of the key challenges in the applicability of such
inverse design models to materials science and chemistry has
been the lack of accessibility to sizeable labeled training data-
sets in these elds.13

Published patents are an important source of scientic
knowledge since the discovery of new materials and molecular
candidates are disclosed in patents, years before their publica-
tion in scientic journals.14,15 Patent authorities such as the
United States Patent and Trademark Office (USPTO), European
Patent Office (EPO), Japanese Patent Office (JPO), and World
Intellectual Property Organization (WIPO) make published
patents accessible through their web interfaces. In the past
decade, there has been signicant progress in extracting and
collating information from these sources programmatically to
create large databases of chemical compounds,16 and reac-
tions.17 This large body of extracted knowledge has immense
potential in feeding ‘data hungry’ deep learning models, but
has remained relatively untapped in the eld of molecular
design.

Since patents are led seeking protection within a given
application, they are thematically labeled into domains. This
makes it relatively simple to extract domain-specic molecular
structures. Moreover, they are likely to be high-performance
since they merited the investment of a patent application,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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which allows us to create domain-specic generative models by
training exclusively on molecules known to belong to the
desired class. Our hypothesis is that training generative models
on these smaller, but more meaningful datasets can automati-
cally steer generation towards in-class high-performance
molecules.

All post-2001 chemistry patents published by the USPTO
contain ChemDraw CDX, MDL, and TIFF les of chemical
structures, as required by the Complex Work Unit (CWU) Pilot
Program.18 This makes chemical structures more accessible in
a computer readable format for large scale mining and
screening efforts. In our work, we attempt to bridge the gap
between these bulk data sources and data-driven chemical
design, by developing an automated pipeline to isolate chemical
structures from USPTO patents based on relevance to user-
dened keywords, and demonstrating their utility as training
data for deep generative models for molecular design. We
choose three model types JTVAE,9 RNN + SELFIES,19,20 and
REINVENT + SELFIES7 to explore a variety of representations
(graph, SELFIES,21 and SELFIES respectively) and training
algorithms (latent variable, autoregressive, and RL respectively),
and show their applicability to learn data distributions in two
patent-mined datasets that explore very different areas of the
chemical space, i.e., organic photodiodes (OPD) and tyrosine
kinase inhibitors (TKI).

We then test the ability of these models to perform property
optimization in each of the following cases: (1) the property
being optimized can be predicted accurately and cheaply, (2)
oracle property predictor is expensive, so we only have access to
a proxy neural network predictor trained on oracle property
data.22–24 In the TKI case, we optimize for high structural simi-
larity to held-out, FDA-approved TKI molecules. This is a means
to test the ability of models to optimize a robust, well-dened
objective function with a relatively narrow solution space.
This is an example of case 1 since we can calculate the similarity
between molecules cheaply without the need for an
Fig. 1 Diagram of the workflow. Patents are downloaded from USPTO
performed to filter relevant patents and corresponding SMILES strings. A
labeled with properties. Generative models are trained to model the dat

© 2023 The Author(s). Published by the Royal Society of Chemistry
approximator. In the OPD case, we choose our optimization
objective to be the identication of organic molecules with low
optical gaps. This is an example of case 2 since we approximate
expensive DFT-computed optical gaps with a neural network
predictor. Materials with low optical gaps, especially those that
are sensitive to wavelengths of light in the near infrared (NIR)
region of the spectrum have seen a growing interest due to their
ability to utilize a larger portion of the solar spectral range
which was previously difficult to access. Their applications are
diverse ranging from military equipment to biomedical and
semi-transparent devices.25–28

The key observations we make through our experiments are
summarized as follows: (1) we identify that patent-mined
datasets offer the ability to create focused in-domain datasets
of high-performing molecular structures. Training generative
models on these datasets allows us to create in-domain gener-
ators that can generate novel candidates that model property
distributions of the training data well. This offers a way to
bootstrap focused domains of chemical space with limited
human intervention. (2) Property optimization towards the
edges of the training data distribution can be effective if we have
access to a cheap oracle predictor, but is challenging when
proxy neural network approximators are used. Proxy predictors
are brittle (have the tendency to be adversarially attacked in our
RL experiments), and difficult to train accurately end-to-end
(learning properties from compressed latent space in JTVAE is
difficult).
2 Methods
2.1 Pipeline overview

Our overall pipeline consists of six steps: (1) download patents
from USPTO, (2) parse chemistry patents, (3) shortlist patents
based on keywords, (4) standardize data and add to our in-
house database, (5) property labeling for supervised property
optimization tasks (DFT calculated optical gaps for OPD, and
, and chemistry patents are isolated. Keyword-based search is then
subset of molecules chosen based on computational budget are then
a distribution, which can be sampled to suggest novel candidates.

Digital Discovery, 2023, 2, 1006–1015 | 1007
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similarity to FDA-approved drugs for TKI), and (6) generative
modeling for distribution learning (unsupervised) and property
optimization (semi-supervised). Fig. 1 shows a diagrammatic
illustration of all steps involved. We make publicly available the
code utilized in steps 1, 2, 3 and 6 along with this paper (URLs
provided in Data availability section). Step 4 involved storage of
all data in a database, followed by de-duplication of SMILES
strings29 and simple post-processing steps as described in
Section S2 in the ESI.† A detailed description of procedures used
in step 5 are provided in Section 2.3. These steps can be
replaced by any form of data storage and property labeling
technique depending on the chosen domain. An open source
database framework similar to the one we used can be found at
ref. 30.
2.2 Patent extraction

All granted USPTO patents from 2001 onward are available for
download in weekly archives from the agency's Bulk Data
Storage System (BDSS) at https://bulkdata.uspto.gov/data/
patent/grant/redbook/<YEAR>/. We downloaded all of these
archives from the BDSS using Python scripts by March 1,
2022. The compressed le size of all downloads was
approximately 1.83 TB, including between 30 and 200 GB for
each individual year. Next, we ltered out all patents that did
not contain molecular structures in the form of CDX les. We
encountered some difficulties in this ltering step with
a subset of patent years due to inconsistent formatting and
directory structures in the USPTO data (please refer to Section
S1 for details†). For the remaining chemistry-related patents,
we used RDKit31 to convert MOL les to SMILES strings. The
number of new, unique SMILES strings extracted per year using
this method are shown in Fig. 2(a). We queried all chemistry-
related patents by searching for keywords in each XML le.
The TKI molecules shown in Fig. 2(b) were found using the
keywords “tyrosine kinase inhibitor”, and the OPDmolecules in
Fig. 2(c) are the result of querying for “organic electronic”,
“photodiode”, and “organic photovoltaic”. Any Markush struc-
tures in the dataset were lled in with ethyl groups because the
Fig. 2 Bar charts depicting number of SMILES strings extracted as a f
between 2005 and 2022 (a) before keyword-based filtering, (b) after app
based keyword search. SMILES were de-duplicated after sanitization by
molecule counted in a given year will not be counted in any future years.
due to inconsistencies in patent formatting (see Section S1 for details†).

1008 | Digital Discovery, 2023, 2, 1006–1015
particular substituents for each core molecule are not stored in
a structured format that could be accessed without natural
language processing; this included 17% of molecules from the
OPD query and 11% of molecules from the TKI query. Thus, we
generated a list of domain-relevant SMILES strings related to
each set of keywords. More details on post-processing/ltering
applied to the data are provided in Section S2.†
2.3 Property labeling

2.3.1 TD-DFT calculations of optical gaps for OPD. Initial
conformations were generated with the ETKDG approach as
implemented in RDKit, with at least 1500 attempts, up to 20
unique conformers were retained, ranking by their MMFF94
energies.32 These geometries were rened using semi-empirical
tight-binding density functional theory (GFN2-xTB)33 in ORCA.34

Next, geometry optimizations were done at the BP86 (ref. 35)-D3
(ref. 36)/def2-SVP37 level of theory on the lowest-energy xTB
conformer. Finally, TD-DFT calculations were performed with
the Tamm–Dancoff approximation (TDA)38 at the uB97X-D3
(ref. 39)/def2-SVPD level of theory in ORCA version 4.2.1. Re-
ported optical gaps are the lowest-energy (reddest) singlet
vertical excitation energies from the TD-DFT calculations.

2.3.2 Similarity calculation for TKI. Each TKI molecule was
labeled with its Tanimoto similarity to Erlotinib, a held-out
FDA-approved inhibitor. The Tanimoto similarity was
computed over Morgan ngerprints of size 2048 and radius 2.
The implementation for similarity and ngerprinting were both
obtained from RDKit. While Erlotinib is the primary running
example showed in this work, we also labeled molecules with
similarity to the other 26 held-out inhibitors for similar exper-
iments involving them (for e.g. see Fig. S1†).
2.4 Generative modeling

2.4.1 Evaluation tasks.We prepared two datasets: (1) OPD –

Organic Photodiodes and (2) TKI – Tyrosine Kinase Inhibitors,
covering two different chemical spaces. Models trained on these
datasets were evaluated on two categories of tasks: (1)
unction of publishing year. Strings extracted from patents published
lication of TKI-based keyword search and (c) after application of OPD-
RDKit, such that all molecules within a given year are unique, and any
Years 2001–2004 are not shown and years 2008–2010 are incomplete

© 2023 The Author(s). Published by the Royal Society of Chemistry
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distribution learning – the ability of models to learn the training
data distribution, and (2) property optimization – the ability of
models to generate in-domain molecules that are optimized for
a property of interest. Good performance on the latter task
would require some or all of the generated samples to be
superior in properties in comparison to the training data
distribution.

For distribution-learning tasks, we evaluated models on the
GuacaMol distribution learning benchmark metrics: validity,
uniqueness, novelty, KL divergence and Frechet ChemNet
distance.40,41 We also visualized the ground-truth property
distribution of the sampled data and compared it with that of
the training data. A close match between the two is an indicator
of success in learning the training data distribution. For prop-
erty optimization, we performed a similar visualization. Here,
a shi in distribution towards higher values of the objective
function is an indicator of good performance. Finally, to test the
value of domain-focused training on property optimization, we
compared the patent-trained models against baseline models
that were trained on the ZINC dataset42 but optimized for OPD
and TKI properties. It is considered good performance if the
domain-trained models generate molecules with more optimal
properties than the generic model trained on the ZINC dataset.
This would suggest that the structural priors imposed on the
models by training on the domain-specic patent datasets
reect in more optimal properties for that domain. More
specics on the task formulation for each dataset are given
below.

For OPD tasks, the patent-mined OPD molecules were used
as the training dataset. The property of interest in the distri-
bution learning tasks was the DFT-computed optical gaps of
sampled molecules. Since our aim was to generate molecular
candidates with low optical gaps, the negative of the optical
gaps as predicted by a proxy neural network predictor was used
as the objective function which was maximized in the property-
optimization tasks.

For TKI tasks, the patent-mined TKI dataset was used as the
training dataset. The property of interest in the distribution
learning tasks was the similarity between sampled molecules
and Erlotinib, an FDA-approved inhibitor, to gauge the model's
ability to optimize a robust, well-dened objective function with
a relatively narrow solution space. This quantity was also used
as the objective function which was maximized in the property-
optimization tasks. In addition to the tasks described earlier in
this section, an additional distribution learning task was
introduced for this dataset. Molecules sampled from models
trained on TKI and ZINC datasets, and 27 held-out FDA-
approved TKI molecules were projected on a 2-dimensional
space with Principal Component Analysis (PCA). Samples from
TKI-trained models lying closer than the ZINC-trained samples
to the held-out molecules, would indicate that the models have
accurately learned information about molecular structure from
the training dataset. It is a way to test the utility that training on
domain-focused data (TKI-patents) has over training on publicly
accessible large databases (ZINC) that have a similar chemical
space (drug-like molecules) but are less-focused on the domain
© 2023 The Author(s). Published by the Royal Society of Chemistry
of interest. Morgan ngerprints of size 2048 and computed with
radius 2 was the molecular representation used during PCA.

2.4.2 Generative models. We evaluated two categories of
generative models, i.e. (1) text-based and (2) graph-based, on
these tasks. RNN + SELFIES and REINVENT + SELFIES fall
under the rst category while JTVAE falls under the second.
RNN + SELFIES was only used for distribution learning tasks,
REINVENT + SELFIES was used for only property optimization
tasks, and JTVAE was used for both. SELFIES was used as the
string representation of choice to ensure validity of structures
generated.21 We go over some of the implementation choices for
each below.

Recurrent Neural Networks (RNNs) have been shown to be
simple but powerful text-based models for distribution
modeling tasks in molecules.43 They are trained using an auto-
regressive training strategy where the next token is predicted at
every time-step. The implementation from the MOSES Bench-
marking platform19 was used with some modications per-
taining to change in representation from SMILES to SELFIES.
The trained RNN can be sampled by feeding a BOS (beginning
of sentence) token, and sampling the probability distribution
predicted by the model autoregressively. An LSTM20 network
with 3 hidden layers and dropout probability of 0.2 between
layers was used, with a nal linear layer to transform the LSTM
output into the required output sequence size. All LSTM hidden
layers and the nal linear layer were of size 768, and a learning
rate of 1 × 10−3 was used for the Adam optimizer.

Junction Tree Variational Autoencoder (JTVAE) is a graph-
based generative model that learns to sequentially decode
graph substructures using Message Passing Neural Networks
(MPNNs), and combine them to form complete molecular
structures.9 It maintains a vocabulary of substructures decom-
posed from the training data, that are used during the decoding
step to ensure validity of generated molecules. The model is
trained by training the encoder, decoder and property predic-
tors end-to-end with a multi-task loss function. Once trained,
the latent space can be either randomly sampled or optimized
by utilizing gradients from the property predictors. In both
cases, the sampled latent vectors are passed through the
decoder to obtain molecular candidates. A graph Message
Passing Network (MPN) with 3 layers was used in the graph
encoder, and a graph GRU44 network with 20 layers was used in
the tree encoder, to form a concatenated latent vector of size 56.
A learning rate of 1 × 10−3 that was set to decay exponentially
during the course of training was used for the Adam opti-
mizer.45 More details given in Section S4.†

REINVENT is a policy based Reinforcement Learning (RL)
approach that learns to generate molecular structures opti-
mized with a chosen objective function.7 Training is performed
in two steps: (1) a Prior RNN is pre-trained on a language
modeling task, i.e., learning to predict the next token of the
sequence by maximizing the likelihood on the training dataset.
(2) Then, an augmented likelihood function is dened to be the
sum of the prior likelihood and a score indicating the desir-
ability of the sequence. The agent, which is initialized with the
prior RNN weights, is then ne-tuned to minimize the squared
difference between the agent likelihood and the augmented
Digital Discovery, 2023, 2, 1006–1015 | 1009
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likelihood on samples drawn from the agent RNN. Sampling
from the trained model is performed in identical fashion to
RNN (described in previous paragraph). We once again use
SELFIES representations of molecules. The agent RNN was
composed of three GRU cells,44 each of size 512, followed by
a linear output layer. Pre-training and ne-tuning were carried
Table 1 GuacaMol distribution learning benchmarks for 1000 samples
drawn from RNN + SELFIES and JTVAE, on OPD and TKI datasets.
Closer to 1.0 indicates better performance

Model Metric

Dataset

TKI OPD

RNN + SELFIES
(random sample)

Validity 1.00 0.99a

Uniqueness 0.99 0.99
Novelty 0.55 0.58
KL divergence 0.98 0.96
Frechet ChemNet distance 0.60 0.61

JTVAE
(random sample)

Validity 1.00 1.00
Uniqueness 1.00 0.99
Novelty 1.00 0.89
KL divergence 0.75 0.87
Frechet ChemNet distance 0.32 0.28

a While rdkit does not process one generated molecule as valid, it is
formally valid with bivalent lithium forming two covalent bonds.

Fig. 3 Results on distribution learning tasks. (a) and (b) show the propert
data properties, onOPD and TKI datasets respectively. (d) and (e) show the
(f) show PCA projections of molecules randomly sampled from TKI-traine
JTVAE and RNN + SELFIES respectively.

1010 | Digital Discovery, 2023, 2, 1006–1015
out using an Adam optimizer with learning rates of 1 × 10−4

and 5 × 10−4 respectively. We retained the same architectural
choices used by Olivecrona et al. since our task of similarity-
based optimization is nearly identical to the similarity guided
structure generation experiments described in their work.
3 Results and discussions
3.1 Distribution learning

Table 1 compares the scores of the RNN + SELFIES and JTVAE
models on the GuacaMol distribution learning benchmarks.
Both models were able to generate molecules with relatively
high validity, uniqueness and KL divergence scores. We
however found that JTVAE is superior to RNN + SELFIES in
novelty scores, and both models perform relatively poorly on
Frechet ChemNet distance scores. These observations may both
be characteristics of the training datasets that we use being
smaller and more domain-focused than the larger and more
diverse drug datasets that have been benchmarked on these
metrics in the past.

As can be seen in sub-gures (a), (b), (d), and (e) of Fig. 3,
both models generated molecules whose properties matched
well with the training dataset. It can also be observed that RNN
+ SELFIES is able to match the distributions better than the
JTVAE, which conforms with the observations made by ref. 43.
y distributions of JTVAE-sampled molecules in comparison to training
same distributions formolecules sampled fromRNN+ SELFIES. (c) and
d and ZINC-trained models, and held-out FDA approved inhibitors, for

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Additionally, sub-gures (c) and (f) show that samples from TKI-
trained models lie closer to held-out FDA-approved inhibitors
than ZINC-trained samples, which indicates that both models
have been able to learn structural information from the training
datasets.

From these results, we conclude that the deep generative
models explored in this work are effective tools to model
property distributions of arbitrary small, chemically focused,
training datasets automatically extracted from the patent liter-
ature. The models can thus sample novel, in-distribution
molecular structures that resemble the training data in terms
of structure and properties. Furthermore, this suggests that
domain-specic, focused chemical spaces can be boostrapped
automatically from the literature without user-dened
Fig. 4 Results on property optimization tasks. (a)–(e) show results for JT
OPD property distributions of molecules sampled by gradient descent
properties. (c) shows the property distribution obtained by applying an OP
(e) are analogous to (b) and (c) but on TKI instead of OPD. (f) and (g) are

© 2023 The Author(s). Published by the Royal Society of Chemistry
heuristics for the domain, as evidenced by the GuacaMol
distribution learning benchmarks in two very distinct chemical
spaces.

3.2 Property optimization

We evaluated generative models trained on patent-extracted,
domain-focused datasets for property optimization. We evalu-
ated REINVENT + SELFIES, which uses reinforcement learning
and a string-based representation and JTVAE, which performs
optimization in the latent space and decodes locally optimal
molecules, under this category of tasks. We identied that
property optimization tasks towards edges of the training data
distribution are challenging for a variety of reasons. We
observed from our RL experiments that optimizers may push
VAE, while (f) and (g) show results for RNN + SELFIES. (a) and (b) show
(GD), and post hoc filter respectively in comparison to training data
D post hoc filter to samples drawn from a ZINC-trained model. (d) and
analogous to (b) and (d) but on RNN + SELFIES instead of JTVAE.
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the designs out of the training domain which was particularly
acute when a neural network predictor was used as a proxy for
the oracle property. Here, the generative model can be thought
of as performing an adversarial attack on the poorly-covered
areas of the predictor. From our VAE experiments, we
observed that it is sometimes challenging for proxy predictors
to learn properties from compressed latent representations,
and the unreliable objective function thereby leads to chal-
lenges in latent space optimization.

Both these challenges arise from coupling generation and
property optimization end-to-end. By instead splitting these
into two separate steps of random sampling and post hoc
ltering, we observed better shis in property histograms. More
details on the post hoc ltering approach are provided below in
Section 3.2.1.

3.2.1 post hoc lter. We use the term “post hoc lter” to
refer to a property screen conducted on molecules that were
randomly sampled from trained models. It can use either the
predictions of a proxy predictor when the oracle property is
expensive as in OPD tasks, or the oracle itself when it is cheap to
compute as in TKI tasks. The degree of the lter applied (which
we chose to be top 20%) can be chosen based on the extent of
screen to be performed. As a proxy predictor for OPD tasks, we
trained a Chemprop MPNN model46 on the patent-mined OPD
dataset to predict DFT-calculated optical gaps (see Section S3†).
A random train-val-test split (60 : 20 : 20) was used to train, tune
and evaluate the model.

3.2.2 Approximate objective. All OPD optimization tasks
required the use of a proxy neural network model since DFT
simulations are computationally expensive and are typically not
autodifferentiable, so it is not possible to train end-to-end
generation and property scoring.47,48 In the JTVAE case,
a Multi Layer Perceptron (MLP) was used as a proxy predictor to
predict oracle DFT-calculated optical gaps from the latent
space. As can be seen from Fig. 4(a), gradient descent over the
latent space in JTVAE has almost no effect in shiing property
distributions away from the OPD training data towards lower
optical gaps. To improve the optimization performance, we
utilized the Chemprop post hoc lter to selectively isolate
decoded candidates having predicted optical gaps below the
20th percentile. This was useful in shiing the distribution
towards lower optical gaps as can be seen from Fig. 4(b). The
justication behind this approach was that learning properties
from the latent space is a more challenging task than learning
directly from the molecular graph.49 The MLP predicting the
optical gap from the latent space achieves an RMSE of 0.56 eV
on the test set while the Chemprop model achieves an RMSE of
0.38 eV on the test set, which follows our intuition. The fact that
JTVAE learns from a multi-task loss function composed of
reconstruction and property terms, makes it a constrained
optimization task that reduces the degrees of freedom of the
MLP during training, and can hence make convergence more
challenging. We observed similar challenges with coupling
generators and property optimizers while training the REIN-
VENT + SELFIES on the OPD dataset, where the Chemprop
model described above was used as the proxy predictor
modelling the reward function. Here, the generator could be
1012 | Digital Discovery, 2023, 2, 1006–1015
thought of as performing an adversarial attack on the proxy
predictor and converged at molecular candidates that opti-
mized the proxy objective but were structurally unphysical.
More details on JTVAE + MLP training are provided in Section
S4† and details on REINVENT results on OPD data are provided
in Section S3.2.†

Apart from the described issue pertaining to the poor
predictive performance of the MLP, there could be other
potential reasons for the failure of gradient descent on the
latent space. One possibility is the presence of cascading effects.
The unreliability of the MLP could have caused the points
reached by gradient descent (on the latent space) to be outside
the data distribution that the decoder saw during training,
causing the decoder to be unreliable and collapse to a distri-
bution more similar to the training data. One way to investigate
this failure mode in the future could be the use of decoder
uncertainty estimation techniques to identify such points and
restrict samples to low-uncertainty regions of the decoder.50

Another possibility is that the latent space manifold of the
trained model was “rough” with respect to the MLP-predicted
property, rendering optimization techniques such as gradient
descent challenging. This could be investigated in more depth
by evaluating the ‘roughness' of the latent space with metrics
such as roughness index (ROGI).23 Therefore, it should be noted
that the coupled interactions between generators and property
predictors is a complicated problem, and utilizing approaches
such as the post hoc lter could be relatively simple remedies to
these pitfalls even without a detailed knowledge of the failure
mode. Demonstration of post hoc lter with another model
(RNN + SELFIES) is shown in Fig. 4(f), which can be used as
a remedy for the adversarial attack issues observed in the
REINVENT example again arising from coupling of generators
(RNN) and property optimizers (RL).

Finally, Fig. 4(c) is a baseline where training was performed
on the ZINC dataset and post hoc lters on the OPD target was
applied. It can be clearly seen that sub-gure (b) is more shied
towards optimal properties than the ZINC baselines which
suggests that the structural priors imposed by training on the
domain-specic OPD patent dataset offers signicant value in
achieving optimal properties for that domain. For example,
molecules incorporating structural priors such as conjugated
rings have more potential in achieving low optical gaps than
drug-like structures.

3.2.3 Oracle objective. In TKI optimization tasks, the
property of interest was similarity to a chosen query structure,
which is a cheap and oracle property estimate that can be
calculated at every step of optimization. In such cases where we
have access to the oracle predictor, we observed better perfor-
mance on optimization tasks. Fig. 5(c) shows the Erlotinib
similarity distribution of samples generated during training of
REINVENT + SELFIES, which are clearly shied towards higher
values than the training data. (a) shows sample candidates
along with their similarity scores, and (b) shows the improve-
ment of similarity score as training progresses.

A post hoc lter using the oracle predictor can also be utilized
in this case as a way to generate a set of novel candidate
molecules that are optimized in comparison to the training data
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Results based on REINVENT + SELFIES model trained on the TKI dataset. (a) Candidates generated by REINVENT towards the end of
training, with structural similarity to Erlotinib being the reward function. Similarity scores are indicated below each candidate. (b) Tanimoto
similarity score computed between generated candidates and Erlotinib, as a function of training iterations. (c) Histograms showing properties of
candidates sampled during agent training, in comparison with the training data distribution.
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(Fig. 4(d) and (g) for JTVAE and RNN + SELFIES respectively).
Similar to the example described in Section 3.2.2, we also
compared with a ZINC-trained baseline optimized for the TKI
target, and observe minor improvements in shis for the TKI-
trained model in comparison to the ZINC-trained baseline
(see Fig. 4(d) and (e)). This difference is not as signicant as the
OPD-ZINC baseline since the chemical spaces of ZINC and TKI
datasets are fairly similar structurally.

3.2.4 An alternative interpretation. The above observations
from JTVAE and REINVENT + SELFIES can also be interpreted
with reference to terminology introduced by ref. 51. While
Kajino et al. primarily examine the existence of biases in rein-
forcement learning settings, the terminology can conceptually
be extended to other types of generative models as well. In our
tasks, both generative model and property predictor were
trained on the same patent-mined dataset. This could have
introduced reusing bias, which stems from effectively training
and evaluating our model with information drawn from the
same data source. In addition, during property optimization,
the property predictor oen sees unrealistic/nonphysical
molecules which are far away from its training data distribu-
tion. This results in a misspecication bias, caused by the
unreliability of the property predictor at points far away from
the training data distribution. These two components of bias
might have had a role to play in the observations we made in
cases where a proxy predictor was used. Oracle property models
on the other hand, are free from these two forms of bias.
4 Conclusions

In this work, we developed a framework to automatically extract
molecular structures from the USPTO patent repository based
on user-dened keyword searches, and generate datasets for
machine learning in chemistry. We demonstrate the utility of
the extracted datasets in training generative models for inverse
molecular design tasks. We show that these datasets can be
utilized to generate novel molecular structures with properties
similar to the training dataset, in a completely unsupervised
setting. We also evaluate model performance on supervised
© 2023 The Author(s). Published by the Royal Society of Chemistry
property optimization tasks, identify some limitations of exist-
ing models in shiing property distributions away from the
training data regime, and suggest some possible explanations
and remedies that could be used to overcome these in practice.
The key observations we make through our experiments are
summarized as follows: (1) we identify that patent-mined
datasets offer the ability to create focused in-domain datasets
of high-performing molecular structures and offers a way to
bootstrap focused domains of chemical space with limited
human intervention. (2) Property optimization towards the
edges of the training data distribution can be effective if we have
access to a cheap oracle predictor, but is challenging when
proxy neural network approximators are used.
Data availability

The code used to train models is publicly available. JTVAE:
https://github.com/wengong-jin/icml18-jtnn, REINVENT:
https://github.com/MarcusOlivecrona/REINVENT. The RNN
models were trained using the char-rnn code from https://
github.com/molecularsets/moses. A static version of the exact
forks used is available at https://doi.org/10.5281/
zenodo.7719958, and checkpoints of trained models and all
training data including DFT-calculated properties are
available at https://doi.org/10.5281/zenodo.7996464.52 Code for
the patent mining and ltering pipeline can be found at
https://github.com/learningmatter-mit/PatentChem. This
patent code is archived at https://doi.org/10.5281/
zenodo.7719675.53 GuacaMol benchmarking was performed
using https://github.com/BenevolentAI/guacamol.
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