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adaptive subsampling with active learning†

Yujing Wen, Zhixiong Li, Yan Xiang and Daniel Reker *

Data subsampling is an established machine learning pre-processing technique to reduce bias in datasets.

However, subsampling can lead to the removal of crucial information from the data and thereby decrease

performance. Multiple different subsampling strategies have been proposed, and benchmarking is

necessary to identify the best strategy for a specific machine learning task. Instead, we propose to use

active machine learning as an autonomous and adaptive data subsampling strategy. We show that active

learning-based subsampling leads to better performance of a random forest model trained on Morgan

circular fingerprints on all four established binary classification tasks when compared to both training

models on the complete training data and 16 state-of-the-art subsampling strategies. Active

subsampling can achieve an increase in performance of up to 139% compared to training on the full

dataset. We also find that active learning is robust to errors in the data, highlighting the utility of this

approach for low-quality datasets. Taken together, we here describe a new, adaptive machine learning

pre-processing approach and provide novel insights into the behavior and robustness of active machine

learning for molecular sciences.
I. Introduction

Machine learning algorithms are increasingly deployed to
predict the properties of small molecules to hasten and de-risk
the discovery and development of new drug candidates and
materials.1,2 Although advances in computing power and algo-
rithms have improved machine learning capabilities, the
quality and characteristics of the available training data remain
major determinants of machine learning performance.3–6

Therefore, careful dataset curation continues to be a key step in
model development to ensure high-quality models and reliable
predictions.5,6

One of the classic challenges for machine learning is biases
in the training dataset, such as class imbalance.7–9 A signicant
difference in the number of datapoints with specic labels
biases the model towards the majority class, leading to poor
performance of the machine learning model on the minority
class.10 This is a critical challenge for molecular machine
learning since many of the utilized datasets are highly imbal-
anced and the minority class is commonly the more important
category for many molecular classication tasks. For example,
hit rates in high-throughput screens can be as low as 0.01%,11

meaning that large molecular screening datasets can contain up
to 10 000-fold more inactive than active compounds and only
ke University, Durham, North Carolina

tion (ESI) available. See DOI:

–1142
a few hits that could be developed into life-saving therapeutics.
Näıve training of machine learning methods on such imbal-
anced datasets results in models that predominantly predict
molecules as “inactive”, which can create models that appear to
be highly predictive (with accuracy values >99%) but do not
actually facilitate drug discovery tasks given a poor ability to
predict the desired “active” compound class. In molecular
machine learning, additional biases, such as limited scaffold
diversity and skewed distribution of protein targets, can
adversely affect predictive performance.12–15 Therefore, exten-
sive parameter optimizations or dataset curation are performed
to enable the development of more powerful predictive
models.10

One of the state-of-the-art approaches for data curation is
sampling of the training data, i.e., algorithmic selection of
training data to reduce class imbalances. The community
mainly distinguishes two types of sampling methods, over-
sampling and subsampling (also called “undersampling”). In
oversampling, datapoints are duplicated from the minority
class or new synthetic datapoints are created to increase the
number of minority class samples. In subsampling, the number
of majority samples and other biases are reduced to mitigate
imbalances in the training data. While subsampling is oen the
method of choice since it does not articially create new or
duplicated samples, subsampling can lead to a loss of infor-
mation as datapoints are removed from the training data.
Therefore, hundreds of different subsampling strategies have
been conceived and implemented to minimize the amount of
information loss.10 The performance of different subsampling
© 2023 The Author(s). Published by the Royal Society of Chemistry
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methods depends on the underlying dataset and model,
requiring extensive benchmarking to identify the best-
performing strategy per machine learning task.

Active machine learning has become an increasingly popular
strategy in machine learning model development, in which
a model can request additional data to further improve the
performance of the employed machine learning models.16

Although active learning was originally developed for prospec-
tive applications to guide the acquisition of novel data, the
retrospective application of active learning on datasets with
known labels has become an established strategy to benchmark
different active learning strategies.16 Most recently, studies have
shown that active machine learning can also be applied retro-
spectively as a subsampling method to maintain high predictive
performance of machine learning models while reducing the
amount of necessary training data by up to 10-fold.14,17–20

With the increasing pervasiveness of machine learning
methods and the growing amount of available, complex, and
biased datasets, there is an unmet need for novel automated
data curation strategies that can further boost the predictive
performance of machine learning models without the need for
manual benchmarking and intervention of data sampling
strategies.10 We hypothesize that active machine learning-based
subsampling can serve as an autonomous and adaptive data
curation strategy to signicantly improve machine learning
model performance compared to training on the complete
dataset or using other state-of-the-art data sampling strate-
gies.21 The primary objective of the here presented study is to
quantify the performance of machine learning models trained
on data subsampled using active learning compared to models
trained on the full datasets. Furthermore, we contextualize the
performance of our novel approach to 16 state-of-the-art data
sampling approaches. Additionally, we investigate the reasons
for model improvements and study the robustness of our
approach when introducing errors into our datasets. We expect
our developed pipeline to be generalizable to other machine
learning and optimization tasks to boost performance based on
automated data curation and to provide further insights into
the performance and behavior of active machine learning.

II. Methods and materials
Datasets

All four single-task binary classication datasets from the
MoleculeNet AI benchmarking repository9 were accessed via
DeepChem.22 These datasets are “BBBP” (molecules annotated
for their ability to cross the blood–brain barrier, accessed 1/11/
22), “BACE” (molecules annotated for their ability to inhibit
human b-secretase 1, accessed 12/29/21), “ClinTox” (molecules
annotated according to whether they exhibited toxicity in clin-
ical trials, accessed 1/11/22) and “HIV” (molecules annotated
for their ability to inhibit HIV replication, accessed 10/24/21).
Molecules were described as Morgan ngerprints with radius
2 and 1024 bits using RDKit.23 Additionally, we extracted the
“Breast Cancer” dataset24,25 from scikit-learn26 (accessed 2/15/
22) as a non-molecular, established machine learning bench-
marking dataset.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Active machine learning

For all datasets, we employed scikit-learn's (version 0.24.2)
Random Forest (RF) classier with default parameters (100
trees, Gini impurity).26 At the beginning of the active learning
process, the dataset is split into an active learning set A and
a validation set n. We carried out a 50 : 50 scaffold split (as
implemented in DeepChem22) for the molecular datasets and
a 50 : 50 stratied split for the Breast Cancer dataset since this
dataset does not contain molecular structures and can therefore
not be split based on scaffold groups.

We then followed established protocols for active learning
(see pseudocode in Algorithm 1).27 Briey, we randomly selected
one positive datapoint d1˛Aþ and one negative datapoint
d2˛A�, where Aþ is the positive data and A� is the negative
data in A ¼ AþWA�. The iterative active learning is then star-
ted with the training set T 1 ¼ fd1; d2g and the pool set
P1 ¼ A\T 1. In each iteration i˛f1; 2; .; jAj � 2g, a RF
classier is trained using the training set T i, and the resulting
RF model is then used to predict the class of every datapoint in
the pool set P i and to quantify the predictive uncertainty of
every prediction as the disagreement among the decision trees
of the RF model (ensemble-based uncertainty, variance of the
output of “predict_proba” function in sklearn)

ui ¼ predict_uncertaintyðdiÞcdi˛Pn

The datapoint dk with the highest uncertainty (maximum
disagreement among the trees) is selected

k = argmaxi(ui)

The selected datapoint dk is then removed from the pool set

P iþ1 ¼ P infdkg
and added to the training set

T iþ1 ¼ T iWfdkg

Active learning terminates aer jAj � 2 iterations, at which
point all data has been added to the training dataset

T jAj�1 ¼ A

and the pool set is empty

P jAj�1 ¼ B

such that there is no further data to select. The performance of
active learning is evaluated by making predictions on the vali-
dation set n at each iteration aer training the RF model on
training data T i. Performance is quantied using four metrics:
Mathews Correlation Coefficient (MCC), F1 score, accuracy, and
balanced accuracy.

The active learning pipeline is repeated 20 times using
different initial training sets T 1 by randomly selecting different
initial datapoints (d1, d2) from A. We use the Kolmogorov–
Smirnov test to assess the normality of the performance
distribution. The results of the 20 runs are averaged, and the
Digital Discovery, 2023, 2, 1134–1142 | 1135
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Algorithm 1 Pseudocode of active learning-based subsampling for single active learning run. For statistical assessment, the algorithm is
repeated 20 times and the maxIter is instead defined using the maximum average performance across all runs
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iteration nmax with the highest average MCC on n across all 20
active learning repeats is dened as “maxIter”. The “maxIter
models” refers to the RF models trained at maxIter using T nmax

in every of the 20 active learning trajectories. We compare the
performance of these “maxIter models” to the “full models”,
which refers to the RF models trained at the end of the active
learning trajectory, i.e., the full active learning set A ¼ T jAj�2 is
the training data and a RF model is trained 20 times on this full
training dataset.
1136 | Digital Discovery, 2023, 2, 1134–1142
For further comparison and contextualizing of the learning
process (i.e., the changes of the model performance as
measured through the MCC on n), we also implemented
a “random selection” process in which datapoints are selected
from the pool set Pn randomly without considering the
predictive uncertainty. For both active learning and random
selection, we track the predictive performance on n and the
number of positive datapoints in the training data Ti (“positive
© 2023 The Author(s). Published by the Royal Society of Chemistry
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selection ratio”) at every iteration i of the active learning sub-
sampling process.
Error introduction

To assess the robustness of models to errors in the data, we
incorporated pre-specied ratios of corrupted labels in our
learning data. To this end, we randomly selected a subset of
data from the active learning set Asub4A without replacement
and ipped the class labels for all datapoints in Asub (i.e., the
annotation of “active” compounds was switched to “inactive”
and vice versa). This was done before the rst datapoints d1, d2
are selected to be added to T 1, meaning that the complete active
learning run (including the initial training data for the rst
model) was potentially affected by this erroneous data. We
repeated this experiment using different ratios of corrupted
data, from 0% (none of the data is affected) to 50% (half of the
learning data has been inverted, and all machine learning
models collapse because all information has been deleted) in
increments of 10%.
Other subsampling strategies

Sixteen established subsampling algorithms are used in this
study to contextualize our performance. “Balanced” uses
random supervised subsampling to create a training data
subset with an equal number of instances belonging to either of
the two binary class labels. The “diverse” sampling strategy uses
the MaxMin selection algorithm (RDKit) based on the Tanimoto
similarity of molecules to select a diverse training set. We also
implemented “balanced-diverse” and “diverse-balanced”,
which apply both the “balanced” and the “diverse” strategies in
sequence to sample training data that is both diverse and
balanced, emphasizing diversity or class balance depending on
which sampling method was selected rst. Additionally, we
used all 12 established sampling strategies from the imblearn
Python library (version 0.8)28 with default parameters. Imblearn
is a Python library that provides various imbalanced learning
techniques to address the issue of imbalanced datasets. Some
of the implemented undersampling methods in imblearn
include AllKNN, which applies the k-NN algorithm to every
sample to remove majority class samples, and Con-
densedNearestNeighbour, which uses 1-NN to reduce majority
class samples while retaining all minority class samples.
Another approach, EditedNearestNeighbours, removes majority
class samples based on the k-NN algorithm's classication
errors. InstanceHardnessThreshold removes samples that are
misclassied by a classier with high hardness scores. Near-
Miss selects majority class samples based on distance to
minority class samples, while NeighbourhoodCleaningRule
removes noisy samples by applying k-NN to every sample.
OneSidedSelection uses TomekLinks to remove noisy samples,
and RandomUnderSampler randomly removes samples from
the majority class. RandomOverSampler duplicates samples
from the minority class. SMOTEN as an extension of SMOTE
that works with categorical data creates synthetic examples of
the minority class. We note that we excluded SMOTE and its
© 2023 The Author(s). Published by the Royal Society of Chemistry
extensions except for SMOTEN since it does not intrinsically
support categorical or binary features as used in this study.

III. Results and discussion
Active learning subsampling outperforms training on full
dataset

We downloaded all single task classication datasets from
MoleculeNet9 using DeepChem22 and described them using
Morgan ngerprints (RDKit.org).23 The datasets are “BBBP”,
“BACE”, “ClinTox”, and “HIV”. “BBBP” contains 2039
molecular structures annotated for whether they can cross the
blood–brain-barrier. “BACE” is a dataset of 1513 molecules
annotated for their ability to inhibit human beta-secretase 1. A
total of 1478 molecules are annotated in “ClinTox” for whether
they caused toxicity in clinical trials. “HIV” is the largest dataset
in our benchmark and contains 41 127molecules annotated for
their ability to inhibit HIV replication. Importantly, our datasets
thereby cover a range of different sizes (from 1478 for ClinTox
up to 41 127 for HIV), different class imbalances (e.g., 76%
positive for BBBP, balanced for BACE, 4% positive HIV), include
both in vitro and in vivo readouts, and are of different modelling
complexity based on previously published benchmarking
results.9 We split our data into train and test sets of equal size
based on molecular scaffolds using DeepChem.22 Training
random forest models with default parameters on the training
data and evaluating their performance on the test data gave the
expected performance according to the published benchmark
values.9

We then investigated how active learning performed on
these datasets by providing two random data points from the
training data for model initialization and then letting the active
learning algorithm select additional data from the training data
iteratively based on uncertainty sampling until the complete
training data had been selected. Corroborating previous
studies,14,18 active learning yielded good predictive performance
based on only a fraction of the data for all the ve datasets used
in this study (Fig. 1A).

In contrast to previous studies,14,18,29,30 we observed
a “turning point” at which a global maximum performance is
reached and aer which the performance of the model
decreases when more data is added. This was consistent using
different evaluation metrics (Fig. S1†), indicating that this effect
was not simply an artifact observed for a single performance
metric. Previous active learning implementations had shown
that actively trained models rapidly converge to a maximum
predictive performance value and then stagnate.14,18,29,30 The
main differences between our work and previous studies are: (1)
previous studies commonly terminate active learning before
adding the full learning data,14,17–20 i.e., they may have stopped
active learning before identifying a “turning point”; and (2) we
used scaffold-based splitting to quantify the model's ability to
generalize across different chemotypes, and previous studies
have tracked training data performance or used random train-
test splitting,14,17–20 which means that the training set and the
test set were drawn from the same molecular distribution.
When using random stratied splitting instead of scaffold
Digital Discovery, 2023, 2, 1134–1142 | 1137
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Fig. 1 (A) Active learning curves track the performance of models on the validation set. (B) Boxplots of the distribution of theMCC improvements
(DMCC) of the “maxIter models” using the active learning subsample of the data and the “full models” trained on the complete training data,
compared to the averageMCCof the “full models”. (C) Relationship between the fraction of datapoints labeled as “positive” and the percentage of
data selected by active learning (orange curve) or selected by random sampling (gray curve). Note that the random sampling will be initialized in
the same way as the active learning algorithm, with one positive and one negative example – therefore all curves start at 50%. (D) Boxplots show
the distribution of the absolute MCC values on the validation split for models trained on the active learning-based subsample of data (“maxIter
models”, blue), for models trained on randomly selected subsamples of data (red), and for models trained on data that was randomly subsampled
into balanced training data based on class labels (“balanced control models”, orange). (E) Colorbar showing the p values for Student's t-tests
comparing the MCC values at every active learning iteration with the average MCC values of “maxIter models” (top) and for comparing the
positive selection ratio at every active learning iteration with the most balanced positive selection ratio achieved during active learning (bottom).
Darker color indicates higher p value and therefore values more similar to the maximum performance and the maximum dataset balance,
respectively.
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splitting, we observed a less pronounced benet of active
learning-base subsampling (Fig. S2†), suggesting that the
generalizability of the actively trained model is at least in-part
responsible for the observed “turning point”. This implied
that long active learning runs on the same, constrained training
set improve or maintain performance but might lead to over-
tting and decreasing generalizability of the model.

To determine whether the improvement in performance for
models trained at the “turning point” compared to performance
for models trained on the complete dataset was statistically
signicant, we repeated our active learning runs 20 times with
different initial training datapoints. The meanMCC value of the
20 models trained at the “maxIter” iteration (i.e., trained on
a subset of training data of size nmax which corresponds to the
point where the average MCC value was highest for the 20
models trained on data selected by each active learning run) was
signicantly higher than the mean MCC value of the models
trained on the full dataset for all our benchmarks (p < 5 × 10−7,
n = 20, paired t-test). We dened the absolute improvement in
performance for every active learning run compared to the
1138 | Digital Discovery, 2023, 2, 1134–1142
average performance of models trained on the full dataset as
DMCC and found that the mean improvements were signi-
cantly larger than zero (Fig. 1B). The improvements in perfor-
mance ranged from as little as 0.5% to as much as 139% of the
original performance value depending on the dataset and
performance metric used (Table S1†). Overall, this indicated
that active learning could identify a subset of data that leads to
reproducibly stronger performance compared to training the
machine learning models on the full training data – positioning
active learning as a useful subsampling approach.
Balancing data is a major feature but not the sole reason for
active learning performance

We then investigated the reason for the improved performance
of the models trained on the active learning-selected data
subsets. One of the known properties of active learning is its
ability to sample training data in a more balanced manner
compared to random sampling.14,21,27 Rebalancing imbalanced
data is a well-known strategy in machine learning to improve
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A) Bar chart shows the number of times a specific molecule was selected during the 20 repeated active learning runs. Every bar
corresponds to a specificmolecule andmolecules are sorted according to occurrence (from largest to smallest number of occurrences). X axis is
limited to show only molecules that occur at least once for easier readability. (B) Relationship between the average MCC values and rate of error
manually introduced in the training data for the “maxIter models” (blue) and the “full models” (gray). Shading corresponds to one standard
deviation. (C) Relationship between error rate and improvement of the “maxIter models” compared to “full models” trained on the same data
measured as difference in MCC values. (D) Ridgeplot showing the performance of the active learning subsampling approach and other state-of-
the-art sampling approaches on our datasets with error rates selected based on the maximum benefit of active learning compared to the full
model (cf. panel D). Note that the molecular diversity measures could not be implemented for the “breast cancer” dataset and were therefore
omitted.
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performance.10 We tracked the ratio of positive datapoints to
negative datapoints (positive selection ratio) across the
complete active learning campaign and noticed that active
learning sampled data in a more balanced manner than
random sampling on our data (Fig. 1C and Table S2†).

However, we also noticed that one of our benchmark data-
sets (“BACE”) was more balanced than the other datasets and
showed similar improvements through active learning-based
subsampling (Fig. 1B). Additionally, as a control experiment,
we trained RF models on balanced training data that we created
by randomly sampling balanced subsets of equal size as the
active learning-based subsampling strategies. The RF models
trained on these “balanced” datasets did not outperform the RF
model trained on the complete training data (p > 0.05, Fig. 1D),
except for the Clintox dataset, possibly due to its small size and
extreme class label imbalance. Additionally, when directly
comparing the performance of our models at different learning
© 2023 The Author(s). Published by the Royal Society of Chemistry
iterations with the positive selection ratio throughout the active
learning process, we noticed that the peak dataset balance and
the peak performance did not coincide (Fig. 1E). Based on these
three observations, we concluded that rebalancing the class
imbalance is a benet of active learning but is insufficient to
explain the full extent of the improved performance.
Active learning selects a core set of datapoints independent of
the starting point

We next wondered whether the set of molecules selected by
active learning would be consistent across different active
learning runs, even if the active learning campaign was started
on distinct initial training data. To this end, we extracted the
datapoints that were selected in every active learning run and
found that the number of times a specic molecule was selected
differed widely. We discovered that some of the available
molecules for training were never selected by active learning
Digital Discovery, 2023, 2, 1134–1142 | 1139
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even when repeating the process 20 times, indicating that they
do not encode useful information for the machine learning
algorithm. Conversely, out of the molecules that were selected
at least once by active learning, between approximately 5% to
20% of them were selected during every active learning run
(Table S3†). To quantify the difference in selection frequency for
different molecules across active learning runs, we calculated
the Gini index per active learning task and found a large
discrepancy in selection frequency, which indicates that the
selection of datapoints does not follow a uniform distribution
but instead favors certain molecules (Fig. 2A). This indicated
that the adaptive active learning process was able to sample
a core set of datapoints that result in the overall improved
performance.
Active learning is robust to low-quality data

The ability of active learning to sample a more balanced dataset
in terms of class imbalance could imply that it can also
circumvent other imbalances and biases in the data. For
example, in molecular modeling, we and others have shown
that active learning can sample the space of ligand–protein
interactions while circumventing underlying biases to specic
protein families and chemotypes.14 Active learning is also
known to avoid redundant information in the training data.16

We wondered whether this means that active learning should
also be robust to potential errors in the training data. To analyze
the behavior of active learning-based subsampling on low-
quality data, we performed active learning on label-corrupted
datasets, i.e., we introduced errors in the data by ipping the
class labels of randomly selected subsets of data in the active
learning set A.

As expected, the performance of the machine learning
models trained on these corrupted datasets decreased rapidly
(gray lines in Fig. 2B): on the external validation set, which
maintained its correct class labels, predictive performance
decreased with increasing amount of error in the training data.
When 50% of the training labels were ipped, all information in
the training data was lost and all models collapsed to random
guessing, as expected. We then evaluated the behavior of our
active learning-subsampling strategy and found that models
trained on subsets of the corrupted datasets selected by active
learning maintained higher predictive performance (blue lines
in Fig. 2B) compared to training models on the complete, cor-
rupted datasets. This was noteworthy because the active
learning process was unaware which datapoints were erroneous
and could have been misled by the incorrect data to sample
irrelevant data subspaces. The improvement in performance for
active learning-based subsampling compared to full model
training increased with increasing error rate, suggesting that
the benets of active learning subsampling can increase when
the quality of the dataset decreases. When the error rate was
very high (>30% of the training data corrupted), the benet of
active learning started to diminish (Fig. 2C).

To further contextualize the robustness of the active
learning-based subsampling on erroneous data, we compared
the predictive performance of active learning against a range of
1140 | Digital Discovery, 2023, 2, 1134–1142
other state-of-the-art subsampling methods trained on this
corrupted data, including but not limited to “balanced
sampling”, “diverse sampling”, and SMOTEN. None of these
established data processing methods outperformed active
learning-based subsampling on these corrupted datasets
(Fig. 2D), indicating that adaptive subsampling through active
learning provides a robust and competitive approach to
autonomously curate datasets and improve predictive machine
learning performance. For additional context, we also
compared the performance of active learning-based sub-
sampling against all the other state-of-the-art subsampling
methods without error introduction. Although active learning-
based subsampling does not outcompete every other method
on all datasets, it was the only method that performed best in
more than one dataset (BBBP and BACE) and also showed the
highest median performance across all datasets (Table S4†).
This shows that, although active learning-based subsampling
appears particularly attractive for erroneous data, it also pres-
ents a competitive approach for other types of data.

IV. Conclusions

In spite of advances in complex model architectures, data
quality remains a key determinant of machine learning
performance and data curation continues to be a key step in
model development. We implemented an automated data
curation pipeline based on active machine learning that can
improve performance of a random forest model using binary
Morgan ngerprints for a range of different machine learning
applications. Our analysis shows that active learning can iden-
tify data subsets that lead to improved performance compared
to training on the complete data. This effect was consistent
across all our datasets, indicating that active learning as a sub-
sampling technique could be useful for molecular datasets of
various sizes, class imbalances, and describing different types
of properties. It appears the benets of subsampling are most
pronounced when introducing error to the datasets, indicating
that this technique could be particularly useful for data with
incorrect annotations, for example including artifactual read-
outs from high-throughput screens. We have made the code of
this work available and hope that broad deployment will not
only aid other researchers in their data curation workows but
also help to further characterize the most benecial use cases
for this novel sampling technique. Although improvements
were modest for some of the datasets, all observed improve-
ments were statistically signicant and oen in-line with
magnitudes of advances that are reported for improved
predictive architectures, thus highlighting the potential for data
curation instead of model optimization to improve predictive
performance of molecular machine learning models. Instead of
manually benchmarking data subsampling strategies for this
purpose, our pipeline relies on active learning to autonomously
determine the best data to subsample and is never out-
performed by other state-of-the-art sampling strategies. Admit-
tingly, running a full retrospective active learning campaign is
computationally more expensive than many other currently
implemented sampling approaches, but we expect this
© 2023 The Author(s). Published by the Royal Society of Chemistry
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additional computation time to be offset by not having to
benchmark multiple different sampling approaches. In the
future, it will be important to test whether other machine
learning models beyond random forest could be used for
sampling and whether a data sample extracted by one machine
learning model might be transferable to another machine
learning model.

Additionally, our pipeline further characterizes important
properties of active machine learning. We show that decreasing
data quality affects active machine learning workows less than
classic machine learning, indicating an underexplored capa-
bility of active learning to train robust models on poor quality
data and using noisy experimental “oracles”. Most commonly,
active learning is considered the method of choice when the
“oracle” is expensive or slow, but we show that active learning
can also provide benets when the “oracle” is inaccurate. In line
with previous studies, we observed that active learning can
extract a more balanced training dataset compared to random
sampling, but we note that class balance alone was insufficient
to replicate the improved performance through active learning,
suggesting that additional factors might be involved. Further-
more, a drop in model performance for late active learning
iterations indicates that further improvements are potentially
limited by the constrained selection in a small pool of data. It is
reasonable to assume that a more unrestricted sampling could
provide more sustained benets. This has important implica-
tions for the application of active learning to constrained and
small (chemical) spaces andmust be considered in future active
learning implementations and during “stopping criterion”
development. Overall, we expect the implementation of active
learning-based subsampling as an autonomous data curation
pipeline to become a powerful tool to boost machine learning
performance while reducing data storage needs and costs, thus
making molecular machine learning more reproducible,
accessible, and powerful.

Data availability

The datasets used in this study are available through the freely
available DeepChem and Scikit-Learn libraries. The code used
in this study is available on GitHub at https://github.com/
RekerLab/Active-Subsampling. Additional dependencies for
the code are the Python libraries numpy, scipy, Scikit-Learn,
numpy, DeepChem, and matplotlib – all of which are freely
available.
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M. Brucher, M. Perrot and É. Duchesnay, Scikit-Learn:
Machine Learning in Python, Journal of Machine Learning
Research, 2011, 12, 2825–2830.

27 D. Reker and J. B. Brown, Selection of Informative Examples
in Chemogenomic Datasets, in Computational
Chemogenomics, ed. J. B. Brown, Methods in Molecular
Biology, Springer, New York, NY, 2018, pp. 369–410, DOI:
10.1007/978-1-4939-8639-2_13.
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