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on large datasets for the accurate
prediction of material properties

Noah Hoffmann, a Jonathan Schmidt, ba Silvana Botti b

and Miguel A. L. Marques *a

Graph neural networks trained on large crystal structure databases are extremely effective in replacing ab

initio calculations in the discovery and characterization of materials. However, crystal structure datasets

comprising millions of materials exist only for the Perdew–Burke–Ernzerhof (PBE) functional. In this

work, we investigate the effectiveness of transfer learning to extend these models to other density

functionals. We show that pre-training significantly reduces the size of the dataset required to achieve

chemical accuracy and beyond. We also analyze in detail the relationship between the transfer-learning

performance and the size of the datasets used for the initial training of the model and transfer learning.

We confirm a linear dependence of the error on the size of the datasets on a log–log scale, with

a similar slope for both training and the pre-training datasets. This shows that further increasing the size

of the pre-training dataset, i.e., performing additional calculations with a low-cost functional, is also

effective, through transfer learning, in improving machine-learning predictions with the quality of a more

accurate, and possibly computationally more involved functional. Lastly, we compare the efficacy of

interproperty and intraproperty transfer learning.
I. Introduction

Over the past decade, machine learning models have emerged
as unbeatable tools to accelerate materials research in elds
ranging from quantum chemistry1 to drug discovery2 to solid-
state materials science.3–6 One of the major drivers of progress
has been the transition from simpler models based on a single
material family to more advanced and more universal
models.7–9 The current state of the art are graph neural networks
and graph transformers.10 However, the accuracy of these
complex models, which include millions of parameters,
depends heavily on the amount and quality of the training
data.11 Consequently, the development of such models is
conditional on the availability of large databases of calculations
obtained with consistent computational parameters.

In quantum chemistry, there are a variety of large databases
that gather calculations with varying degrees of accuracy, from
density functional theory (with different functionals) to
coupled-cluster.12 In comparison, in solid-state materials
science, all large databases (>105 compounds) contain calcula-
tions performed using the Perdew–Burke–Ernzerhof (PBE)
functional.13 The list includes AFLOW,14 the OQMD,15,16 the
Materials Project,17 and DCGAT.18 An exception is the smaller
sität Halle-Wittenberg, D-06099 Halle,

ni-halle.de

Friedrich-Schiller-Universität Jena, Max-

8–1379
JARVIS database that encompasses ∼55 k calculations obtained
using OptB88-vdW19,20 and the modied Becke–Johnson
potential.21–23 The rst large databases beyond the PBE func-
tional have been published only recently.24,25 These datasets are
based on the PBE functional for solids (PBEsol),26 the highly
constrained and appropriately normalized semilocal functional
(SCAN),27 and the R2SCAN functional.28 All of these density
functionals yield much more accurate geometries than the PBE,
and the latter two also yield more accurate formation energies
and band gaps.29–32 Nevertheless, these databases are one to two
orders of magnitude smaller than the largest PBE databases.

Currently, graph networks7,8,33–35 are the best performing
models for datasets including more than 104 compounds.11

However, they improve dramatically with increasing dataset size
beyond this number. Consequently, despite the higher accuracy
of PBEsol or SCAN, models trained on these smaller datasets
have a signicantly larger prediction error compared to their
PBE counterparts. One way to circumvent the problem of data
sparsity is to perform transfer learning and pre-training, as
these approaches have proved to be extremely effective in other
elds.36,37 In the areas of computer vision and natural language
processing, for instance, almost all non-edge applications can
be improved by using large pre-trained models.36,37

In recent years, transfer learning and multi-delity learning
have also arrived inmaterials science.7,38–49 The published works
deal with rather small datasets for both pre-training and
transfer learning, usually (104 data points for the transfer
dataset and (105 data points for the pre-training dataset. In
© 2023 The Author(s). Published by the Royal Society of Chemistry
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this context, band gaps7,38,46,48 and formation energies39,48 are
the most popular features for transfer learning, since there is
abundance of multi-delity theoretical and experimental data
(∼103 measurements).

Hutchinson et al.38 compare multi-task training, latent vari-
ables, and delta learning for small datasets nding mixed
results for the best strategy depending on the dataset.

Very few applications have been made in the realm of big
data, since hardly any large data sets exist. Smith et al.12

improved ANI40 quantum chemistry force elds beyond the
accuracy of DFT by transferring from the ANI-1x DFT dataset
that contains 5.2 million molecules to a dataset of 0.5 million
molecules computed with coupled cluster.12 They explored both
transfer learning by retraining the last layers of their neural
network as well as delta learning by rst predicting DFT ener-
gies and then the difference from DFT to coupled cluster with
a second network. Both approaches markedly outperformed
naive direct training on coupled cluster data, with the delta
learning approach achieving 1% smaller errors than transfer
learning.

Kolluru et al.45 used a model pre-trained on the Open Cata-
lyst Dataset OC20 (ref. 50) to obtain better results on the smaller
MD17 dataset51 as well as on other open catalyst datasets. They
studied the retraining of various layers as well as the addition of
extra randomly initialized layers and attention based weighting
of pre-trained embeddings. For the in-domain dataset they
found that embeddings from deeper interaction layers were
more relevant while for out of domain data the attention based
combination of embeddings from different depth was required.
In this work, we investigate the benets of transfer learning
when large materials datasets are available, investigating both
cross-property transfer and prediction improvement through
high-accuracy data. We will compare retraining of the whole
graph networks and transfer learning with a xed graph
embedding network.

We focus mainly on properties that are important for the
discovery of new crystal structures. In this context, the energy
distance to the convex hull of thermodynamic stability is a key
quantity, as it compares the formation energy of a crystalline
compound with the combined energy of the available decom-
position channels. In ref. 24 we have published a data set with
175 k SCAN27 total energies and PBEsol26 geometries of stable
and metastable systems. In preparation of this work, we have
extended that dataset to include additional ∼50 k calculations
of randomly selected unstable systems with a distance from the
convex hull of thermodynamic stability below 800 meV per
atom. Calculations using SCAN show about half the mean
absolute error (MAE) for formation energies compared to
calculations with the standard PBE functional.32 Similarly,
calculations using PBEsol reduce the mean absolute percent
errors on volumes by 40% compared to PBE.30

In the following, we will demonstrate that pre-training using
a large PBE dataset allows us to obtain improved predictions,
with the accuracy of more advanced density functionals, even
when the available training data is limited for the latter.
Furthermore, we will evaluate the dependence of the error on
the size of the training and pre-training data to quantify
© 2023 The Author(s). Published by the Royal Society of Chemistry
potential gains through future expansion of the datasets of
calculations. We also investigate to which extent transfer
learning is useful to improve predictions of different materials
properties.

II. Results

We started our transfer learning experiments by training crystal
graph-attention neural networks35 on a PBE dataset with 1.8 M
structures18 from the DCGAT database, and on the extended
PBEsol and SCAN datasets from ref. 24. The DCGAT dataset
combines compatible data from AFLOW,14 the materials
project17 and ref. 18, 35 and 52–54. We generally used a train/
val/test split of 80/10/10%. The same training, validation and
test set were randomly selected once for PBEsol and SCAN and
then kept constant for all experiments to ensure a fair
comparison. As a starting point, one model was trained for each
of the three functionals and for four properties, specically the
distance to the convex hull (Ehull), the formation energy (Eform),
the band gap and the volume per atom of the unit cell. For the
band gaps only PBE and SCAN models were trained, as PBEsol
and PBE band gaps are very similar, and we did not perform
transfer learning for SCAN volumes as we only have calculated
PBE and PBEsol geometries.

The initial neural network, trained on the PBE datasets
comprising 1.8 M calculations, predicts the distance to the
convex hull of the systems in the test set with a MAE of 23 meV
per atom. As expected, the same neural networks, trained from
scratch using signicantly smaller PBEsol and SCAN datasets
(this procedure is labelled “no transfer” in the gures and
tables), perform worse and yield, respectively, 9% and 23%
higher MAEs. To take advantage of transfer learning we
considered two options: starting from the neural network
trained with the large PBE dataset, we either continue the
training of the whole network with the PBEsol or the SCAN data
(this procedure is denoted “full transfer”), or we x most of the
weights and train only the residual network that follows the
message passing part, i.e., the one that calculates the scalar
output from the nal graph embedding (this procedure is
indicated as “only regression head”). Comparing in Fig. 1 and
Table 1 these two approaches of transfer learning to the original
model trained solely on the smaller datasets, we can immedi-
ately conclude that, in all cases, transfer learning enhances
considerably the performance of the neural network.

Applying the neural network trained on the PBE data, aer
retraining only the output network on the PBEsol/SCAN dataset,
resulted in improved predictions in comparison to the ones of
the same network trained only on the PBEsol/SCAN dataset.
This type of transfer learning leads to a 15% smaller test MAE
for the PBEsol data and 16% smaller test MAE for the SCAN
data. Retraining the full network resulted in an even better
performance, with a reduction of the MAE on the test set, aer
only ∼70 epochs, by 27% and 29% for the PBEsol and SCAN
data, respectively.

If we use the same neural network to predict the formation
energy instead of the distance to the convex hull, the results are
very similar, as shown in Table 1. Transfer learning with
Digital Discovery, 2023, 2, 1368–1379 | 1369
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Fig. 1 Learning curves, i.e., MAE on the validation set as a function of the training epoch, for the prediction of EPBEsolhull (left) and ESCANhull (right) using
the different training procedures, without pre-training (no transfer), with pre-training using EPBEhull data and freezing part of the weights (only
regression head) and with pre-training using EPBEhull data and successive full reoptimization of all weights (full transfer). We employed a triangular
learning rate schedule, in which the learning rate oscillated between a minimum of 0.1 times and a maximum of the original learning rate. This
results in the cyclical behavior in the training plots.

Table 1 Intra-property transfer learning. We report the mean absolute errors on the test set for the neural networks trained on the large PBE
dataset only and the neural networks trained on the PBEsol and SCAN datasets with and without transfer learning. The different approaches for
transfer learning (only regression head and full transfer) are explained in the text. The models with the best performance for PBEsol/SCAN are
indicated with bold letters. The percent improvement in comparison to the case of no transfer learning are shown in parenthesis

PBE

PBEsol SCAN

No transfer Only regression head Full transfer No transfer Only regression head Full transfer

Ehull [meV per atom] 23 26 22 (15%) 19 (27%) 31 26 (16%) 22 (29%)
Eform [meV per atom] 18 20 18 (10%) 13 (35%) 24 22 (8%) 16 (33%)
Volume [Å3 per atoms] 0.24 0.21 0.18 (14%) 0.16 (23%)
Band gap [eV] 0.020 0.078 0.93 (−19%) 0.068 (13%)
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retraining of the output network leads in this case to an error
reduction of 10% and 8% for PBEsol and SCAN, respectively. On
the other hand, extending the training of the full network to the
additional datasets brings an even higher error reduction of 35
and 33% for PBEsol and SCAN, respectively. Again both transfer
learning approaches give consistently a lower MAE than the
neural network trained anew on smaller datasets, demon-
strating the benet of exploiting the larger database of less
accurate, but computationally more affordable, PBE
calculations.

The visible discrepancies in the performance of the fully
retrained network and the partially retrained network, where
only the weights of the output network are further optimized,
hint to the fact that the crystal graph embeddings for the three
functionals must differ signicantly.

We only have available PBEsol volumes, as the data was
generated with the approach of ref. 24. Consequently, we only
test the transfer learning for the PBEsol functional achieving an
improvement of 23%.

The band gaps are the sole material property where we only
obtain an improvement (with a 13% MAE reduction) when the
training on the new data is performed for the whole network.
We have to be careful in considering the MAE for this dataset as
most of the materials are metals with a band gap equal to zero.
1370 | Digital Discovery, 2023, 2, 1368–1379
If the machine predicts zero band gap, i.e., a metal, the asso-
ciated error on the band gap value will be zero for a metal, while
a nite error can be associated to the prediction of an open
band gap. There are remarkable differences in the band gap
distribution for calculations performed with the two different
functionals (also visible in Fig. 2d), as PBE underestimates the
band gap more strongly than SCAN. This results in an average
band gap of 0.08 eV in the PBE dataset and of 0.47 eV in the
SCAN dataset. The fact that PBE misclassies some semi-
conductors as metals leads to an MAE articially smaller for the
machine trained on PBE data, as more metals are contained in
the PBE dataset. While the distributions for other properties
also differ, there is in this case a qualitative difference between
metals and semiconductors and it is necessary that the network
trained on the SCAN data also learns also how to distinguish
false metals in the PBE dataset. The training of the regression
head only is therefore totally insufficient. By training solely on
semiconductors with band gaps larger than 0.1 eV, we observed
an improvement of 9% for a full retraining of the PBE network
for SCAN band gaps above the same cutoff. However, based on
Fig. 3 and considering that the limits on the band gap resulted
in a reduced transfer learning data set for this task, we expect
that the transfer learning performance for band gaps larger
than 0.1 eV aligns with that of other quantities.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Histogramof (a) the distances to the convex hull and (b) the formation energies of the PBE, PBEsol and SCAN datasets. (c) Histogramof the
volumes of the PBE and PBEsol dataset. (d) Histogram of the band gaps of the PBE and SCAN datasets.

Fig. 3 The left panel shows the log–log plot for the MAE on the test set for the prediction of ESCANhull as a function of the training set size. We
consider the cases of full transfer with pre-training datasets of different size (different shades of blue) or no transfer (orange). The right panel
shows the same MAE as a function of the pre-training dataset, for different values of the training datasets (different shades of blue). In the insets
we indicate the slopes and the y-intercepts according to the linear fit and the purple line marks “chemical accuracy”.
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Now that we are convinced of the benets of pre-training on
a larger lower-quality dataset to speed up successive training on
a higher-quality dataset, we can further inspect how the
performance of transfer learning depends on the size of the
training set. The log–log plots of Fig. 4 offer a clear insight into
the quantity of high-quality data required in case of transfer
from the pre-trained PBE model (with training of the full
© 2023 The Author(s). Published by the Royal Society of Chemistry
network on the new data) and no transfer. In the le panel of
Fig. 4 we show the MAE for the prediction of SCAN and PBEsol
energy distances to the convex hull ESCAN/PBEsolhull , while in the
right panel of Fig. 4 the MAE for the prediction of SCAN and
PBEsol formation energies ESCAN/PBEsolform is displayed. All models
are again evaluated on the same test set. In both panels of Fig. 4
we observe that we reach chemical precision (i.e., an error below
Digital Discovery, 2023, 2, 1368–1379 | 1371
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Fig. 4 Log–log plot of the test MAE for the prediction of ESCAN/PBEsolform (left) and ESCAN/PBEsolhull (right) as a function of the training set size for a model
trained solely on SCAN/PBEsol data (no transfer dashed line) vs. a model pre-trained on PBE data (full transfer). The lines show a log–log linear fit
to the data.
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43 meV per atom) already at 11 k training systems. We can
therefore conclude that tting neural networks to computa-
tionally expensive calculations based on hybrid or double-
hybrid functionals will be enabled in the near future by trans-
fer learning. We can easily t the points in the log–log plots with
lines and extrapolate the number of training datapoints needed
to achieve the same MAE with and without transfer learning.
The resulting numbers are very consistent: 1.6 M (ESCANhull ), 1.7 M
(EPBEsolhull ), 1.5 M (ESCANform ) and 1.6 M (EPBEsolform ). Similarly, we can
extrapolate for how many training systems the neural network,
trained without transfer learning, would have the same MAE of
the best network that we have trained with transfer learning. We
obtain in this case these number of systems: 613 k (SCAN) and
637 k (PBEsol) for predicting Ehull and 513 k (SCAN) and 568 k
(PBEsol) for predicting Eform. In other words, it is necessary at
least to double the size of the training datasets of PBEsol and
Fig. 5 Based on the linear fits to the log–log plots, we demonstrate the e
when additional computing budget is allocated to either SCAN or PBE cal
for various initial sizes of the training and pre-training sets, under the a
calculations.

1372 | Digital Discovery, 2023, 2, 1368–1379
SCAN calculations to achieve the performance we already have
with the available data.

We can now ask a similar question for the size of the pre-
training data set. In fact, it can be even more interesting to
assess if increasing the quantity of PBE data used for the pre-
training can also improve the nal MAE of the network to
predict PBEsol and SCAN properties, without adding new
calculations to these higher-quality datasets. To quantify this
effect we trained four neural networks, using datasets of PBE
calculations with different size, to predict EPBEhull. We then used
these models as starting points for transfer learning to predict
SCAN energies, following the same procedure as before.

In the le panel of Fig. 3 we can see the MAE on the test set
for predicting ESCANhull , plotted on a log–log scale as a function of
the number of systems in the training set. The different curves
correspond to pre-training using PBE datasets of different size,
xpected MAE for the prediction of the SCAN distance to the convex hull
culations. We present the predictions in relation to the computing time
ssumption that SCAN calculations are five times as expensive as PBE

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Learning curves, i.e., MAE on the validation set as a function of the training epoch, for the prediction of PBEsol volumes with transfer
learning from a model pre-trained for EPBEform (left panel) and for the prediction of ESCANform from a model pre-trained for PBE volumes (right panel).
The different curves are obtained with the training procedures described in the text: without pre-training (no transfer), with pre-training using
1.8 M PBE calculations and freezing part of the weights (only regression head) and with pre-training using 1.8 M PBE calculations and successive
full reoptimization of all weights (full transfer). In the right panel we consider full transfer with two different learning rates (lr).
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while the orange curve shows the performance of the network
trained without transfer learning.

We can observe that the points draw lines with very similar
slopes for pre-training datasets of different sizes. In fact, the
slope decreases only slightly with the increasing size of the pre-
training dataset. This behavior is expected, as when more PBE
data is already given to the model, less new information can be
found in the additional SCAN data. The MAE decreases signif-
icantly and consistently with the increasing size of the pre-
training set. The neural network trained only on the SCAN
dataset (no transfer) has the largest MAE in all cases, even when
the pre-training dataset is reduced by a factor of 10.

In the right panel of Fig. 3 we demonstrate that also the error
as a function of the size of the pre-training dataset can be tted
Fig. 7 Learning curves, i.e., MAE on the validation set as a function of
the training epoch, for the prediction of ESCANform with transfer learning
from a neural network that predicts accurately EPBEhull . The different
curves are obtained with the training procedures described in the text:
without pre-training (no transfer), with pre-training using 1.8 M PBE
calculations and freezing part of the weights (only regression head)
and with pre-training using 1.8 M PBE calculations and successive full
reoptimization of all weights (full transfer).

© 2023 The Author(s). Published by the Royal Society of Chemistry
by a line in the log–log graph. Here the slopes are smaller than
in the le panel. Consequently, similar reductions of the MAE
can be achieved by transfer learning at the cost of using
signicantly more pre-training data than training data. On the
other hand, extra pre-training data can be generated with lower-
level approximations at a reduced computational cost, and the
pre-trained model can be used as a starting point for the
training of several new models.

It is important to comment on the cost of calculations of the
same property using different DFT functionals. For example,
SCAN calculations are at least ve time more expensive than
PBE calculations. Calculations using hybrid functionals are
even more computationally demanding. In the latter case, the
possibility to use larger pre-training datasets to reduce the MAE
of a predicted property becomes even more appealing and
effective (Fig. 5).
Fig. 8 Log–log plot of the MAE on the validation set for the prediction of
ESCANform as a function of the training set size for a model trained solely on
SCAN data (no transfer), a model pre-trained on a dataset of EPBEform

calculations and a model pre-trained on EPBEhull calculations. The lines
indicate a log–log linear fit to the data.

Digital Discovery, 2023, 2, 1368–1379 | 1373
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To illustrate the potential of transfer learning based on the
available high-delity (SCAN) and low-delity (PBE) data, and
the relative computational cost of these calculations, we depict
various scenarios in Fig. 5. For each case, we display the data
points from our computational experiments as crosses/dots and
extrapolate based on the previous ts. The rst two lines
represent scenarios with 178 k pre-training and 11 k training
systems, showing a decrease in error based on additional PBE
calculations and SCAN calculations versus the increased
computational cost (assuming SCAN calculations are ve times
Fig. 9 Number of the compounds containing each elements (a) in the P

1374 | Digital Discovery, 2023, 2, 1368–1379
more expensive). In this case performing SCAN calculations is
far more efficient in reducing the SCAN error.

However, when the number of pre-training and training
systems is equal, additional PBE calculations become a more
efficient approach (in terms of computer time) to improve the
SCAN error. Ultimately, when there are four times as many pre-
training systems, the computational cost balances out, and PBE
and SCAN calculations provide approximately the same level of
improvement. It is important to note that as we shi towards
more expensive high-delity calculations, such as hybrid
BE dataset and (b) in the PBEsol/SCAN dataset.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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functionals, the balance further moves towards additional PBE
calculations.

Seeing the promising results of transfer learning on two
datasets of calculations of the same property, we also attempted
to apply transfer learning to predict different properties. We
consider therefore transfer learning to predict SCAN formation
energies and PBEsol volumes, starting from neural networks
trained to output PBE volumes and PBE formation energies,
respectively.

As we can see in Fig. 6 only retraining the output network
does not improve the performance of the model. This is true for
both examples selected here and we can expect this to be
a general rule. In fact, the strong dependence of the graph
embeddings on the low-dimensional features that are good
descriptors for a specic property makes this part of the
network strongly property dependent.

We observe that reoptimizing all weights of the neural
network, starting from the model pre-trained to predict
another PBE property, leads to a very unstable learning curve
and does not produce better results than training from
scratch. To enforce convergence we retrained the full network
with a learning rate 10 times smaller than before. This
improves marginally the situation for transfer learning for the
prediction of PBEsol volumes from PBE formation energies.
However, the lower learning rate leads the neural network to
settle down very quickly in a suboptimal local minimum from
which it is unable to escape, yielding a model that is still worse
than the one obtained from training on the PBEsol dataset
only.

We have to conclude that two properties such as formation
energy and optimized volume, are too far dissimilar to
perform successful transfer learning. Of course, it is always
possible that an extensive hyperparameter variation would
improve this result. However, in this case, a hyperparameter
search with the same resources should be performed also
for the original model to make a valid comparison. Never-
theless, we attempted to use twomore learning rates, lr= 1.25
× 10−5, 1.25 × 10−6 and additional weight decays of 0.01,
0.001 and 0.0001 but could not nd any signicant
improvement.

Transfer learning between a neural network that predicts
PBE formation energies and a neural network that outputs
SCAN energy distances to the convex hull performs better as
these two properties are closely related. In Fig. 7 we can see that
only retraining the regression head does not bring a signicant
error reduction. On the other hand, the full retraining is now
able to improve considerably the model performance with an
error reduction of 18%.

In Fig. 8 we compare the MAE on the validation set for the
prediction of ESCANform as a function of the training set size,
considering the case of no transfer learning, and two
approaches for transfer learning, either starting from a neural
network pre-trained on the same property calculated with PBE
or on EPBEhull. As expected, the intra-property transfer learning
performs better, providing an 56–59% larger improvement than
the inter-property transfer learning for the whole range of
considered training set sizes.
© 2023 The Author(s). Published by the Royal Society of Chemistry
III. Conclusions

We demonstrated that performing transfer learning using
a crystal graph neural network trained on a large (>106) dataset
of less accurate but faster calculations enables efficient training
of the same neural network on a smaller (z104− 105) dataset of
more accurate calculations. The nal prediction error is
signicantly lower compared to the error that would be ob-
tained if the neural network was trained from scratch only on
the smaller dataset. We demonstrated that the obtained
performance improvement is consistent when we perform
transfer learning for different functionals and similar electronic
properties, e.g., Eform, Ehull. Thanks to transfer learning, we can
assume that a training set of about 104 high-quality ab initio
calculations is sufficient to obtain predictions of electronic
quantities with chemical precision. High-throughput studies
involving tens of thousands of calculations using advanced
electronic structure methods are foreseeable in the near future.
Transfer learning may therefore have a strong impact on future
machine learning studies in solid-state physics, allowing
prediction of properties with unprecedented accuracy.

We also demonstrated that the learning error aer transfer
learning decreases with increasing size of the pre-training
dataset with a linear scaling in a log–log graph. Using this
property, we can determine the relative size of the pre-training
and training datasets, which allows us to minimize the
prediction error and, at the same time, the total computational
cost, given the different computational resources required for
less accurate and more accurate ab initio calculations. This is of
particular interest for training universal force elds, an
emerging application of machine learning that has attracted
increasing attention in recent years (see, e.g.,9). In fact, universal
force elds are trained on PBE data so far. Since these force
elds also use universal message-passing networks, we expect
that transfer learning can also be easily applied to efficiently
train the existing force elds to the quality of higher-delity
functionals.

Unfortunately, our results show that transfer learning is
only effective for physically similar electronic properties. If
the pre-trained property is too dissimilar, the pre-training
may actually paralyze the neural network in predicting the
new property. It is in that case more convenient to produce
a large database of lower-quality calculations of the desired
nal property than to perform inter-property transfer
learning.

IV. Methods
A. Data

Our main PBE dataset consists of calculations from the Mate-
rials Project database,55 AFLOW56 and our own calculations.
This set of around two million compounds was accumulated in
ref. 18 and 35. In ref. 24 we reoptimized the geometries of 175 k
materials using PBEsol followed by a nal energy evaluation
with the PBEsol and SCAN functional as described in ref. 24. By
now we extended these datasets by another 50 k randomly
selected materials arriving at 225 k entries.
Digital Discovery, 2023, 2, 1368–1379 | 1375
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In Fig. 9a we can see the element distribution of the PBE
dataset. This set features a large variety of elements with oxygen
and nitrogen being the most prominent followed by lithium.
Not included are the noble gases and heavy radioactive chem-
ical elements. In the elemental distribution of the PBEsol and
SCAN dataset, depicted in Fig. 9b, oxygen is evenmore prevalent
while nitrogen and hydrogen appear less oen. This is a result
of the many stable oxides in the PBE dataset.

In Fig. 2 we plot the distribution of the various datasets we
used in this work. As expected the materials of the PBEsol/SCAN
dataset are on average far more stable with only a small long tail
in the Eform and Ehull distributions introduced by the 50 k
random systems. The differences in the distributions also show
that the results are valid for transfer learning between datasets
with rather different distributions. The volume dataset on the
other hand is very similarly distributed for PBE and PBEsol with
respective medians/means/standard deviations of 22.1/23.5/9.2
Å3 per atom and 18.7/19.9/7.4 Å3 per atom. The slightly higher
median and mean of the PBE dataset are expected due to the
underbinding of the PBE that is somewhat corrected by PBEsol.
The distribution of the band gaps was already discussed earlier
but the main difference is the percentage of metals that is
roughly 4 times larger in the PBE dataset.

B. Crystal graph attention networks

Crystal graph attention networks were developed in ref. 35 for
the discovery of new stable materials. Using the periodic graph
representation of the crystal structure, the networks apply an
attention based message passing mechanism. By using solely
the graph distance of the atoms to their neighbors as edge
information, CGATs can perform precise predictions based on
unrelaxed geometries. If we compare the inputs for PBE and
PBEsol geometries, there is generally a change in volume
between the two, however, this does not necessarily result in
a different input neighbor list (for example, for a cubic structure
the input would stay the same). Only if the cell constants change
relative to each other or the internal atomic positions change,
the input to the network can also differ for the different func-
tionals. We generally expect, however, that this results in
a larger similarity of representations in comparison to standard
force-eld style networks using exact distances beneting the
transfer learning.

Following the notation of ref. 35, we label the embedding of
the ith node, i.e., atom, at time steps t of the message passing
process as hti and the respective edge embedding to the atoms j
as etij. FCNNN

t,n
a is the network of the nth attention head at

message passing step t and HFCNNqg
t
t a hypernetwork

depending on the difference between the embedding at step t
and the previous step. Using this notation we arrive at the
following equations for the updates of the node embeddings:

st,nij = FCNNNt,n
a (hti‖h

t
j‖eij) (1a)

at;nij ¼ exp
�
st;nij
�

P
j

exp
�
st;nij
� (1b)
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mt,n
ij = FCNNt,n

m (hti‖h
t
j‖eij). (1c)

htþ1
i ¼ hti þHFCNNt

qtg

 
1

N

X
n

X
j

anijm
n
ij

!
: (1d)

The edges are updated similarly:

se,nij = FCNNNn
a (h

t
i‖h

t
j‖e

t
ij) (2a)

ae;nij ¼ exp
�
sij
�P

n

expðsni Þ
(2b)

me,n
ij = FCNNNn (hti‖h

t
j‖e

t
ij) (2c)

etþ1
ij ¼ etij þ FCNNn;t

qtg

�
k
n

ae;nij m
e;n
ij

�
: (2d)

In parallel a ROOST34 model calculates a representation
vector of the composition that is used as a global context vector
and is concatenated with the nal node embeddings. Lastly, an
attention layer calculates the embedding for the whole crystal
structure. Then a residual network transforms the graph
embedding into the prediction. We used the following hyper-
parameters: AdamW; learning rate: 0.000125; starting embed-
ding: matscholar-embedding;57 nbr-embedding-size: 512; msg-
heads: 6; batch-size: 512; max-nbr: 24; epochs: 390; loss: L1-
loss; momentum: 0.9; weight-decay: 1 × 10−6; atom-fea-len:
128; message passing steps: 5; roost message passing steps: 3;
other roost parameters: default; vector-attention: true; edges:
updated; learning rate: cyclical; learning rate schedule: (0.1,
0.05); learning rate period: 130 (70 for transfer learning, 90 for
pre-training during the experiments shown in Fig. 3); hyper-
network: 3 hidden layers, size 128; hypernetwork activation
function: tanh; FCNN: 1 hidden layer, size 512; FCNN activation
function: leaky RELU;58 Nvidia apex mixed precision level 02
(almost FP16) or 00.
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github.com/hyllios/CGAT and at https://zenodo.org/badge/
latestdoi/352292655. The trained models resulting from all
the experiments are available at https://tdd.org/bmg/
data.php and at https://doi.org/10.5281/zenodo.8143755.
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