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of rare isotopologues into
machine learning of the chemical inventory of the
solar-type protostellar source IRAS 16293-2422

Zachary T. P. Fried, *a Kin Long Kelvin Lee, b Alex N. Byrne c

and Brett A. McGuire *de

Machine learning techniques have been previously used tomodel and predict column densities in the TMC-

1 dark molecular cloud. In interstellar sources further along the path of star formation, such as those where

a protostar itself has been formed, the chemistry is known to be drastically different from that of largely

quiescent dark clouds. To that end, we have tested the ability of various machine learning models to fit

the column densities of the molecules detected in source B of the Class 0 protostellar system IRAS

16293-2422. By including a simple encoding of isotopic composition in our molecular feature vectors,

we also examine for the first time how well these models can replicate the isotopic ratios. Finally, we

report the predicted column densities of the chemically relevant molecules that may be excellent targets

for radioastronomical detection in IRAS 16293-2422B.
1 Introduction

The observation of interstellar molecules is a central compo-
nent of astrochemical studies. Molecular species have shaped
our understanding of star1 and planet formation,2 can trace
stellar outows,3 interstellar shocks,4 and protoplanetary disks,5

and can serve as probes of the physical conditions of interstellar
sources such as the temperature.6 However, until recently, in
order to model interstellar abundances and predict new mole-
cules for detection, observations have relied on complex
chemical models based on a vast network of interconnected
reactions (e.g. Ruaud et al.,7 Wakelam et al.8). While these
astrochemical models can be excellent tools to explore specic
chemical processes that occur in space, their predictive ability
can also be quite limited for several reasons (e.g. McGuire
et al.9). Firstly, these models are by denition incomplete
representations of the true chemical complexity of the inter-
stellar medium because network expansions rely on human
input. Additionally, the networks are oentimes dependent on
uncertain extrapolated rate constants.10
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In an attempt to predict molecular abundances without the
need for complete networks, Lee et al.11 introduced a novel
methodology involving machine learning. A major benet of
their approach contrasts traditional astrochemical modeling, as
it requires no prior knowledge of the conditions of an inter-
stellar source or any reaction pathways involving the previously
detected molecules. Instead, abundances are expressed purely
in terms of a chemical vector space. Simple regression algo-
rithms were shown to signicantly outperform traditional
astrochemical models in reproducing the abundances of
molecules already observed, and provided a straightforward way
to extrapolate to yet undetected molecules.

An interstellar source for which this machine learning
technique could be effectively applied is the Class 0 protostar
IRAS 16293-2422B (hereaer referred to as IRAS 16293B). IRAS
16293B is one component of the protostellar system IRAS 16293,
which is located in the L1689 region of the r Ophiuchus cloud
complex. Interferometric observations initially revealed two
protostellar sources in IRAS 16293 (source A and source B),
separated by around 5.1′′.12–14 Further high-resolution studies
then conrmed that source A is in fact composed of two
compact sources (source A1 and A2), making IRAS 16293 a triple
protostellar system.15 Extensive observations have been made of
this source with the Atacama Large Millimeter/submillimeter
Array (ALMA) as part of the Protostellar Interferometric Line
Survey (PILS) program.16 The submillimeter spectrum toward
IRAS 16293B is especially rich with more than 10 000 features
detected.16 The line widths of the spectral peaks are also
extremely narrow for a star forming region (∼1 km s−1 FWHM),
which signicantly reduces line confusion and makes this an
excellent source for molecular detections.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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The predictive power of the machine learning method
introduced by Lee et al.11 may be especially useful for IRAS
16293B since a large portion of the molecular lines in the
interstellar line survey remain unassigned. In fact, as of 2018,
Taquet et al.17 noted that approximately 70% of the 5s transi-
tions identied in the ALMA Band 6 dataset were unidentied.
If successful, this method might be able to provide an unbiased
list of astrochemical targets not yet detected but whichmight be
abundant enough to be contributing to the unidentied
molecular lines. If subsequently detected, these molecules and
their abundances could then be used to further constrain both
the machine learning model and traditional network-based
astrochemical models of low mass protostars. These models
provide invaluable insight into the chemical processes and
conditions relevant to the formation of stars similar to our Sun.

One aspect of interstellar chemistry that was not treated in
the work of Lee et al.11 was the incorporation of isotopically
substituted species. While certainly such rare isotopologues are
present and detectable in TMC-1,18 detections of these species
are more common toward IRAS 16293B and therefore provide
substantially more insight into the chemical and physical
history of this source. Therefore, it is desirable to update the
machine learning model to include isotopologues. Molecules in
IRAS 16293B consistently display isotopic ratios that are
enhanced compared to the mean solar value and other inter-
stellar sources, especially deuterium (D) and 13C substituted
species. In fact, the deuterated isotopologues of ethanol,
ketene, acetaldehyde, formic acid, formamide, and isocyanic
acid were all rst detected toward this source.19,20 Various
doubly and triply deuterated species have been detected as well
(e.g. Ilyushin et al.,21 Persson et al.22). Additionally, the 12C/13C
ratios of dimethyl ether, methyl formate, ethanol, and glyco-
laldehyde toward IRAS 16293B are all much lower than the
12C/13C ratio of the local ISM.16,19 By convention, the deuterium
ratios are reported as D/H while the 13C ratios are reported in
the inverse manner. Therefore, a high D/H ratio and low 12C/13C
ratio both denote isotopic enhancement.

A large portion of the remaining unassigned spectral peaks
are predicted to arise from isotopically substituted species. In
fact, Jørgensen et al.16 note that only 25% of the transitions
correspond to the most common organic molecules detected in
hot cores, including formaldehyde, methanol, methyl cyanide,
isocyanic acid, ethanol, acetaldehyde, methyl formate, dimethyl
ether, and ketene. Following this, they predict that the majority
of the remaining transitions are likely related to various isoto-
pically substituted molecules as well as more complex organic
species. Thus, it is also vital to accurately model the column
densities of isotopically substituted molecules so that the high
abundance isotopologues in this source can be predicted,
measured as needed in the laboratory, and their signals in the
PILS survey identied and assigned.

Additionally, machine learning predictions of isotopic ratios
are also useful since these ratios can act as tracers of the
evolutionary history of an interstellar source along with the
conditions, timescales, and pathways of molecular formation.
For example, deuterium fractionation relies on gas-phase
isotope exchange reactions that are strongly dependent on the
© 2023 The Author(s). Published by the Royal Society of Chemistry
temperature. Consequently, the deuterium fraction is a tracer of
the conditions of the interstellar environment during molecular
formation, with a high D/H ratio (i.e. high deuterium fraction)
indicating cold formation temperatures.23,24 Therefore, accurate
prediction of isotopic ratios would allow us to gain insight into
the details of molecular formation and source history without
requiring a dedicated search for these isotopically-substituted
species that are oen present in fairly low abundance.

In this work we apply the machine learning technique
introduced by Lee et al.11 to IRAS 16293B. The machine learning
pipeline used for this project along with the isotopic encoding is
described in Section 3. Section 4.1 then presents the ability of
the supervised machine learning regressors to model the
molecular column densities in this source. Using these trained
regressionmodels, we obtain an unbiased list of predicted high-
abundance targets for astronomical observation. Analysis of
these molecular targets is presented in Section 4.2. Next, in
Section 4.3 we test the ability of the regressors to model the
isotopic ratios in this source. Finally, a list of high predicted
column density isotopologues is provided in Section 4.4.

2 Dataset

The molecules included in the dataset for this work were mostly
detected through observations from the PILS survey.16 IRAS 16293A
is an edge-on disk system while IRAS 16293B has a face-on
orientation. This results in the line widths of the spectral peaks
toward source A being much wider.16 Consequently, there is much
more overlap of the spectral peaks, making the identication of
individual signals more challenging and resulting in fewer den-
itive molecular detections toward source A. Our analysis therefore
focused solely on IRAS 16293B. Most molecules were detected at
a one-beam (0.5′′) offset position from the continuum peak of
source B in the south-west direction. The coordinates of this one-
beam offset position are aJ2000 = 16h32m22s.58, dJ2000 = −24°
28′32.8′′. A few of the species, however, were detected at a half-
beam offset. For these molecules, the column densities have been
reduced by a factor of 2.136 to account for this different pointing
position.25 In total, our dataset includes 98 molecules. Of these, 43
are main isotopologues and 55 are isotopically substituted species.
All molecules in the dataset are listed in Table 5 in the Appendix.
Our dataset contains 27 deuterium substituted species, 15 13C
substituted species, two 15N substituted species, four 34S
substituted species, two 33S substituted species, two 17O
substituted species, and three 18O substituted species. Addition-
ally, several doubly deuterated molecules along with one triply
deuterated molecule is included.

3 Model description

The machine learning pipeline has three main components: (1)
molecular featurization, (2) modeling the column densities in
IRAS 16293B using supervised regressors, and (3) prediction of
high abundance astrochemical targets. An outline of this entire
process is depicted in Fig. 8 in the Appendix. In this work, the
process of molecular featurization and regression is quite
similar to the methods introduced by Lee et al.11 In summary,
Digital Discovery, 2023, 2, 952–966 | 953
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a Mol2vec26 model is rst trained on a dataset of 3 634 046
molecules collected from various online databases like Pub-
chem,27 ZINC,28 and the NASA PAH database.29–31 This trained
embedding model then creates 70 dimensional feature vectors
for all molecules in the dataset, in addition to the detected
interstellar species.

In order to include isotopologues in the training set and
investigate isotopic ratios, it was necessary to encode isotopic
composition in the feature vectors. In its current form, Mol2vec
is not able to fully capture isotopic information. For example, it
creates unique vectors for deuterium-substituted molecules but
not for molecules that are substituted with 13C. This is because
the molecular substructures are rst encoded using Morgan
ngerprints, which do not by-default capture differences in 13C-
substituted isotopologues (e.g. the default RDKit-constructed32

Morgan ngerprint33 of H2CO and H2
13CO are identical). To

differentiate between each of the isotopologues in our dataset,
we ensure that the Mol2vec-generated vectors are identical for
all isotopologues of the same species and then add 19 extra
dimensions that encode isotopic information as well as the
chemical environment of the isotopic substitution (Fig. 1). The
isotopic encoding is designed as follows:

� Dimensions 1–9: number of D, 34S, 33S, 36S, 13C, 17O, 18O,
15N, and 37Cl atoms in the molecule.

�Dimensions 10–12: whether the 13C atoms are sp, sp2 or sp3

hybridized.
� Dimension 13: whether the substituted 13C atom is bonded

to oxygen.
� Dimension 14–15: whether a deuterium atom is bonded to

carbon or oxygen.
� Dimension 16: number of non-hydrogen atoms in the

molecule.
� Dimensions 17–18: whether there is an oxygen or carbon

atom two bonds away from the substituted deuterium.
� Dimension 19: number of deuterium atoms bonded to

carbonyl carbons.
The RDKit module was used to obtain hybridization and

bonding information.32 Because of the limited number of
unique isotopologues in our dataset, the selection of these
hand-picked features was largely dependent on which chemical
substructures are present in enough molecules to constitute
a reasonably sized training set. More specically, each of the
isotopic features denoted by dimensions 10–19 are present in at
least three molecules in the dataset. Each of the selected
features also has a notable impact on the average isotopic ratio.

Additionally, Mol2vec was unable to differentiate between
several conformers of the detectedmolecules. Examples include
ethylene glycol (for which both the aGg′ and gGg′ conformers
Fig. 1 Depiction of how isotopic composition is encoded in the
molecular feature vectors.

954 | Digital Discovery, 2023, 2, 952–966
were detected) as well as monodeuterated CH2DCH2OH and
CH2DOCH3. For consistency, we inputted the column density of
the most stable or abundant conformer in each case.

Using the resulting feature vectors as inputs and the log10
column densities as outputs, the data was split 80/20 into
training and testing sets. In order to mitigate data leakage, all
isotopologues of the same molecule were assigned to either the
training or testing set. The datapoints were then bootstrapped
with Gaussian noise in order to increase the effective dataset
size to 800 and control overtting.

These resulting training and testing sets were then fed into
two separate supervised machine learning regressors: Gaussian
process regression (GPR)34 and Bayesian ridge regression (BR).
Thesemodels learn relationships between the vector components
to map the molecular features to the column density data. Each
of the models were implemented with the SCIKIT-LEARN Python
module.35 We determined the optimal hyperparameters for each
model by rst splitting the data into training and testing sets and
then running a 5-fold grid search on the training data.

GPR is a nonparametric model that denes a probability
distribution over all functions that can map the molecular
descriptors to the column densities. It is therefore able to
handle nonlinear relationships in the data. A kernel provides
the model with prior knowledge regarding the shape and
smoothness of the functions. Similarly to Lee et al.,11 the kernel
we used was a linear combination of the rational quadratic, dot
product, and white noise kernels. Along with the kernel func-
tion, additional hyperparameters include a noise value added to
the kernel matrix diagonal that denotes the inherent Gaussian
noise of the training observations.

BR is a linear regressor that takes a probabilistic approach to
optimize the ridge regression model coefficients. It does this by
using a gamma distribution prior for the regularization coeffi-
cients. These parameters are then optimized through maximi-
zation of the log marginal likelihood. For this regressor, the
hyperparameters dene the shape and inverse scale of the
Gamma distribution priors over the various model parameters.

Similarly to Lee et al.,11 a linear model is included in order to
provide a baseline performance using an extremely simple model
with a limited number of parameters. Bayesian ridge was specif-
ically chosen due to its ability to report prediction uncertainties,
which allows us to gauge the condence level of the predicted
values. A GPR model then displays the ability of a more complex
model to improve upon this baseline regressor. GPR was also
chosen due to its probabilistic and nonlinear nature. The reported
uncertainties are fairly informative and interpretable since they
can be linked directly to the designed covariance matrix.

Following the training of the regression models, the column
densities of the molecules that are most chemically similar to
those detected in IRAS 16293B were predicted using the trained
models. K-means clustering with k = 10 was used to cluster the
entire dataset of 3 634 046 feature vectors. Each of themolecules
detected in IRAS 16293B was assigned to a single cluster. Thus,
we only considered the molecules assigned to this cluster when
searching for detectable new species.

When analyzing the ability of the regressors to model the
molecules in the training set and subsequently predict the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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column densities of the species in the testing set, we were
limited to the molecules that have been previously detected
toward IRAS 16293B. We were therefore only able to gauge the
performance of these models on molecules that are relevant to
this fairly small and homogeneous dataset. Consequently, we
proceeded to remove the molecules that had no or few chemi-
cally similar examples in the dataset since the models did not
have sufficient training examples to learn the required rela-
tionships for these species and we had no ability to gauge the
accuracy of the model predictions. For this additional ltering,
we removed molecules that contained atoms other than
hydrogen, carbon, sulfur, nitrogen, and oxygen because all of
the previously detected molecules were predominantly
composed of these atoms. Additionally, we also removed the
remaining free radical species because nitrous oxide is the only
free radical for which a column density has been derived toward
IRAS 16293B. This minuscule training set of free radicals
resulted in the models not being able to sufficiently handle
these molecules. For example, the free radical counter-parts of
various molecules had much higher predicted column densities
than the observed values of the parent species. This is very
unlikely due to the instability of free radicals and the general
under abundance of radicals in protostellar sources. In fact,
while 36.5% of interstellar molecules were rst detected in star-
forming regions, only 13.5% of radical species were rst
detected in these protostellar sources.36 This under abundance
may be due to the larger gas-phase chemical inventory and
warmer kinetic temperatures leading to a greater number of
destruction partners for these highly reactive species. Following
these ltering steps, the column densities of the remaining 84
863 molecules were then predicted using the previously trained
regression models.

4 Results and discussion
4.1 Regression analysis

Fig. 2 shows the training and testing results of each regression
model. The train/test splits were consistent in each case. Just as
Fig. 2 Training and testing results of each supervised regression model.
combined testing and training data. 1s uncertainties are shown.

© 2023 The Author(s). Published by the Royal Society of Chemistry
shown in Lee et al.11 's study of TMC-1, each of the regressors
were able to accurately model the column densities in this
source. The strong performance on the test set also provides
condence that the models can generalize well to relevant
molecules that were not included in the training set.

Additionally, although the BR model showed an ability to
precisely model the column densities with lower uncertainties
than the GPR regressor, it was mainly limited by its linear
mapping. With our current isotope encoding, a linear model
will be unable to fully capture the relevant isotopic fraction-
ation. For example, the difference between a singly and doubly
deuterated molecule is in-part denoted with a 2 instead of a 1 in
a single vector dimension. That said, the difference in the
column densities of singly and doubly deuterated species is
typically not simply 2/1 and can differ signicantly between
molecules. Thus, for the remainder of the analysis, a GPRmodel
was used since a nonlinear mapping was required.

The large error bars on the GPR predictions are in part due to
the small size of the dataset. Additional molecular detections
(especially of main isotopologues) toward this source will allow
for further constrained predictions. Moreover, despite the
overall strong performance of the GPR model, this regressor
overpredicts ethylene glycol (OHCH2CH2OH) and dimethyl
ether (CH3OCH3) by over one order of magnitude. This predic-
tion inaccuracy is likely because these molecules have few
nearby neighbors in the training set. In fact, thesemolecules are
the 10th and 12th furthest species from any neighbor in the
dataset, respectively. Ethylene glycol is especially unique in that
it is the only molecule in the dataset containing two hydroxyl
groups. Additionally, ethylene glycol's nearest neighbors are
methoxymethanol and ethanol, each of which are more
abundant.

Another notable prediction error is the slight overprediction
of chloromethane and underprediction of methanol since it
highlights the shortcomings of our molecular featurization.
Mol2vec creates molecular feature vectors by combining vector
representations of chemical substructures. Therefore, small
molecules with some shared substructures have extremely
An 80/20 train/test split was used. The reported MSE and R2 are for the

Digital Discovery, 2023, 2, 952–966 | 955
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Table 1 Average chemical composition of the 20 highest and lowest
predicted abundance astrochemical targets

20 highest predicted
abundance
molecules

20 lowest predicted
abundance
molecules

Mean # of oxygen atoms 1.65 0.75
Mean # of nitrogen atoms 0.10 1.05
Mean # of sulfur atoms 0.10 0.75
Mean degree of
unsaturation

0.75 1.65

Mean # of heavy atoms 3.85 4.25
Mean molecular weight
(amu)

59.66 74.35
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similar feature vectors. In this case, Mol2vec generates similar
feature vectors for all molecules that contain a methyl group
bonded to a single heteroatom. Despite obvious chemical
differences, the resulting vector representations of chloro-
methane and methanol are therefore very similar. Since meth-
anol is one of the most abundant molecules in the dataset and
chloromethane is one of the least abundant, the resulting
prediction errors are fairly unsurprising.

In order to test the efficacy of the chosen kernel for the GPR
model, we predicted the column density of cimetidine
C10H16N6S. This molecule is far more complex than any other
species in our dataset and would certainly have an extremely low
abundance in the interstellar medium. Therefore, an effective
kernel would also produce a low column density prediction for
this species. Ultimately, the trained GPR model predicted this
molecule to have a column density of 6.94 × 106 cm−2, which is
nearly eight orders of magnitude lower than any main iso-
topologue in the dataset. This provides condence that the
model is not over-tting to the dataset and simply learning to
predict each column density to be in the range of the detected
species.
4.2 Targets for astrochemical study

Using the trained GPR model, we then predicted the column
densities of the aforementioned 84 863 astrochemically relevant
molecules assigned to the same cluster as the IRAS 16293B
Fig. 3 The 10 undetected molecules with the highest predicted
column densities. The molecules were drawn from the collection of
species that were assigned to the same cluster as each of the detected
molecules through k-means clustering. Predictions were made using
the trained Gaussian process regression model. 1s column density
uncertainties are shown.

956 | Digital Discovery, 2023, 2, 952–966
detections. To enhance the condence in our predicted values
and further limit our investigation to chemically relevant
molecules, our analysis was solely focused on species for which
the 1s prediction uncertainty was less than ve orders of
magnitude; there were 242 such species. Fig. 3 shows the 10
molecules with the highest predicted column densities. All
predictions are provided in the associated GitHub repository.

The chemical composition of the predicted molecules is
displayed in Table 1. Oxygenated hydrocarbons were typically
predicted to be in high abundance while those containing
nitrogen and sulfur were predicted to have lower column
densities. Of the 20 highest predicted column density mole-
cules, 15 contain at least one oxygen atom, while 2 contain
a nitrogen atom, and 1 contains a sulfur atom. The preference
for oxygen-substituted molecules is not surprising since the
most abundant detected species in IRAS 16293B are carbon
monoxide (CO), methanol (CH3OH), formaldehyde (H2CO),
methyl formate (HCOOCH3), dimethyl ether (CH3OCH3),
carbonyl sulde (OCS), and ethanol (CH3CH2OH) – each of
which contain an oxygen atom.

Highly saturated molecules were also predicted to be very
abundant in IRAS 16293B. This is to be expected in a proto-
stellar source since hydrogenation is very efficient on grain
surfaces. Therefore, many of the species that are sublimated
from grains as the protostar heats the surroundings are highly
saturated (e.g. Linnartz et al.,37 Fedoseev et al.,38 Woon,39 Garrod
et al.40).

The predictions also display a preference for lighter mole-
cules that contain less heavy atoms. This also matches the
detected chemical inventory in IRAS 16293B, in which the seven
highest abundance molecules each contain four or less heavy
atoms.

The proceeding subsections highlight the astrochemical
relevance of some of the molecules with the highest predicted
column densities in Fig. 3. It is important to note that while
a high column density is benecial for interstellar molecular
detectability, various additional factors must also be considered
including the magnitude of the dipole moment, the spectral
pattern, and intrinsic line strengths.

4.2.1 Hydrogen peroxide (H2O2). Hydrogen peroxide was
rst observed toward the SM1 core in r Oph A through several
© 2023 The Author(s). Published by the Royal Society of Chemistry
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torsion–rotation transitions.41 This molecule is proposed to
form on grain surfaces via successive hydrogen additions to
O2.42 If hydrogen peroxide were to be detected, another possible
molecular candidate is HO2. This radical is generated aer the
rst of these successive hydrogen additions to molecular oxygen
and was also detected toward r Oph A with a similar abundance
to hydrogen peroxide.43

4.2.2 Methyl hydroperoxide (CH3OOH). Methyl hydroper-
oxide is a very attractive candidate for interstellar detection.
This organic peroxide is structurally similar to many of the
small chemical species that have been detected in the inter-
stellar medium, such as hydrogen peroxide.41 Additionally,
multiple energetically feasible products of methyl hydroper-
oxide UV photodissociation have been detected in space,
including the OH and CH3O radicals.44–46 The microwave and
millimeter-wave spectra of this molecule have been previously
experimentally studied and assigned, thus allowing for radio-
astronomical detection.47 To the best of our knowledge, no
dedicated search for this molecule has been conducted toward
any interstellar source.

4.2.3 Methanediol (OHCH2OH). Methanediol is the
simplest diol molecule and is of astrochemical interest due to
its similarity to previously detected species such as methanol.
Through modeling efforts, it has been proposed that this
molecule is generated via grain surface reactions of the OH and
CH2OH radicals.40 For years, methanediol has been extensively
studied in the aqueous phase (e.g. Möhlmann,48 Matsuura
et al.,49 Ryabova et al.50). However, gaseous production and
detection of this molecule was only reported in the past year.51

To our knowledge, there have been no previous high-resolution
microwave studies of this species. Thus, without experimental
rotational parameters, denitive interstellar detection using
radio astronomy is currently impossible.

4.2.4 Methoxyethanol (CH3OCH2CH2OH). This molecules
is in the same chemical family as methoxymethanol (CH3-
OCH2OH) and methoxyethane (CH3OCH2CH3), which have
large column densities of 1.4 × 1017 cm−2 and 1.8 × 1016 cm−2

toward IRAS 16293B, respectively.52 The methoxy radical (CH3O)
has been detected in space and is proposed to form through
methanol photodissociation, gas-phase reactions between the
OH radical and methanol, and hydrogen addition to H2CO.53

Additionally, methoxymethanol has been shown to form via
a reaction of the methoxy radical with CH2OH.40 The methoxy
radical could feasibly react with other organic radicals to form
the methoxylated versions of various additional organic species.
Therefore, the methoxylated counterparts of the high abun-
dance organics in this source could be interesting radio-
astronomical targets. However, the microwave spectrum of
methoxyethanol has only been experimentally collected and
assigned up to 26.5 GHz.54

4.2.5 Ethane (C2H6), carbon dioxide (CO2), and carbon
disulde (CS2). For an allowed pure rotational spectrum to be
collected, a molecule must have a nonzero dipole moment.
Therefore, nonpolar molecules like ethane, carbon dioxide, and
carbon disulde will be undetectable through radio astronomy
based on allowed pure rotational transitions regardless of their
high predicted column densities. However, ethane was rst
© 2023 The Author(s). Published by the Royal Society of Chemistry
detected toward the comet C/1996 B2 Hyakutake with high-
resolution infrared spectroscopy.55 Both solid and gaseous
CO2 have also been detected toward various interstellar sources
using IR techniques.56,57 CS2 has not been previously detected in
the interstellar medium. That said, experimental studies have
shown that CS2 can react with oxygen atoms on solid surfaces
under astrophysically relevant conditions to form carbonyl
sulde (OCS), which is detected in high abundance toward IRAS
16293B58,59

4.2.6 3-Hydroxypropanal (OHCH2CH2CHO). Hydrox-
yacetone (CH3COCH2OH), a structural isomer of 3-hydrox-
ypropanal, was detected with a column density of 1.2× 1016 cm−2

toward IRAS 16293B.60 Experiments by Wang et al.61 showed that
3-hydroxypropanal can be formed in methanol–acetaldehyde ices
irradiated with energetic electrons at 5 K. They concluded that
this molecule can be produced in interstellar ices of star-forming
regions that have high abundances of methanol and acetalde-
hyde (which is the case in IRAS 16293B). This molecule would
then be desorbed into the gas phase as the protostar is heated.
However, to our knowledge the rotational spectrum of 3-hydrox-
ypropanal has not been experimentally measured.
4.3 Isotope ratios

Since isotopic composition was encoded in our molecular
feature vectors, we proceeded to test the regressors' ability to
predict isotopic ratios. As noted previously, if the machine
learning model can accurately predict isotope ratios, informa-
tion about the evolutionary history of the source and the
molecular formation can be deciphered. That said, with such
a simple encoding of the isotopic information in our feature
vectors as well as the relatively small collection of isotopically
substitutedmolecules, modeling this nuanced chemistry will be
a challenge. Our discussion will solely focus on 13C and D
substituted isotopologues because of the extremely small
sample size of all other minor isotopes.

Fig. 4 displays the predicted column densities of the D and
13C substituted isotopologues along with the corresponding
isotopic ratios. These predictions stem from 5-fold cross vali-
dation on the isotopically substituted data. In this process, the
isotopologues are split into ve subsets of training and valida-
tion data. In each iteration, 20% of the isotopically substituted
molecules are le out of the training set. The model is then
trained on all molecules in the dataset besides the 20% of rare
isotopologues that were assigned to the validation set.

Because the deuterium and 13C ratios are reported in inverse
fashions, the mean squared errors of the two ratio plots differ
dramatically. The points within the shaded regions denote the
molecules for which the prediction error is less than the mean
absolute prediction error. For the D/H ratios, the mean absolute
error is 0.032. For the 12C/13C ratios, themean absolute error is 20.9.

The column density predictions for isotopically substituted
molecules are typically extremely accurate. However, when
considering isotopic ratios, the range of realistic values is quite
limited; therefore, a small prediction error is very notable. For
example, deuterated acetaldehyde in IRAS 16293B is observed to
have a D/H ratio of 7.98%. A column density under-prediction
Digital Discovery, 2023, 2, 952–966 | 957
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Fig. 4 GPR column density and isotope ratio predictions of deuterium and 13C substituted isotopologues using hand-picked isotope features. 1s
column density uncertainties are shown. Some of the notable prediction errors are labelled and discussed in the text. Points that are within the
grey shading denote molecules for which the ratio prediction error is less than the mean absolute error.
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by 0.3 orders of magnitude would result in a predicted ratio of
approximately 4.00%. This ratio suggests very different
temperatures and timescales of formation.

There are a few molecules for which the ratio prediction is
especially inaccurate. These species are labelled on Fig. 4. The
prediction errors of HDCS and CH2DOCHO are especially
notable since they highlight the shortcomings of using hand-
picked descriptors. When encoding the chemical environment
of the deuterium substitution, vector dimensions are included
that denote whether there is a carbon or oxygen atom two bonds
away from the deuterium atom. However, there was no
consideration of whether the atom in this position is sulfur
since HDCS is the only molecule in the dataset in which this is
the case. Therefore, this important chemical environment
information is not provided to the model, thus leading to a large
prediction error. Additionally, with simple hand-picked
features, the model isn't always able to capture the nuances of
isotopic fractionation. For example, the isotopic encoding of
CH2DOCHO is very similar to that of CH2DOH. Because
CH2DOH has a D/H ratio of only around 7%, the model inac-
curately predicts CH2DOCHO to have approximately the same
ratio.
958 | Digital Discovery, 2023, 2, 952–966
Preferably we could include a more nuanced encoding of
isotopic composition that better captures the local chemical
environment instead of simple hand-picked features. However,
with only 27 deuterated molecules and 15 13C substituted
species, the dataset of unique isotopologues is too small to
learn the required relationships with a complex featurization.
As mentioned previously, Mol2vec is sensitive to some, but not
all, isotopic substitutions. It can, however, create unique vectors
for deuterated species. Therefore, we tested the ability to learn
deuterium ratios from the original Mol2vec-produced vectors
that more fully consider chemical context. These results are
shown in Fig. 5. The D/H ratio of formic acid is omitted from the
graph since a ratio of around 6 is predicted which skews the
ability to view the remaining points. As can be seen, these
predictions are far less accurate than when hand-picked
features were used. This is because the vector representations
of many of the deuterated species are quite dissimilar to the
main isotopologue in this case. In fact, the vector representa-
tion of CH2DCH2OH is closer to that of propanal than that of
CH3CH2OH. In order to include more detailed isotopic infor-
mation in the feature vectors and thus accurately model
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Measured and predicted 12C/13C ratios for CO, CN, and H2CO toward IRAS 16293B along with the expected ratios that correspond to
the 13C galactocentric gradient

Molecule
Galactocentric gradient
12C/13C ratio

Predicted 12C/13C
ratio Observed 12C/13C

CO 46.04–79.05 50.85 —
CN 41.72–79.52 27.34 —
H2CO 53.90–104.46 — 52.92

Fig. 5 GPR column density and isotope ratio predictions of deuterium substituted isotopologues. The inputted molecular feature vectors were
generated with the Mol2vec algorithm and had no additional isotopic information included. 1s column density uncertainties are shown. The
notable prediction errors are labelled and discussed in the text.

Fig. 6 The 10 undetected rare isotopologues of the molecules iden-
tified in IRAS 16293B with the highest predicted column densities. The
trained Gaussian process regression model was used for the predic-
tions. 1s column density uncertainties are shown.
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isotopic fractionation, it is clear that we require additional
isotopologue detections.

Finally, in order to test the predictive ability of the model on
isotopologues for which no column density has been derived,
we proceeded to predict the 12C/13C ratio of CO and CN with the
trained GPR model from Section 4.1. For these two molecules
(along with H2CO), a linear 12C/13C trend has been dened as
a function of galactocentric distance (DGC). The formulae of
these galactocentric gradients are displayed in eqn (1)–(3)

12CO/13CO = (5.41 ± 1.07)kpc−1 × DGC + (19.03 ± 7.90) (1)

12CN/13CN = (6.01 ± 1.19)kpc−1 × DGC + (12.28 ± 9.33) (2)

H2
12CO/H2

13CO = (7.60 ± 1.79)kpc−1 × DGC

+ (18.05 ± 10.88) (3)

Using a galactocentric distance of 8.043 kpc for IRAS 16293,
the range of expected ratios along with the ratios predicted by
the GPR model are shown in Table 2. For reference, the
observed 12C/13C ratio of H2CO is listed as well.22 The Gal-
actocentric distance of IRAS 16293 was computed using the
ASTROPY Python module.62 The values used in this calculation
were the distances from the Earth to both the Galactic Center
and IRAS 16293 (8.178 kpc and 141 pc (ref. 63 and 64)) as well as
their respective sky coordinates.

The observed 12C/13C ratio of formaldehyde toward IRAS
16293B is very near the lower bound of the galactocentric trend
© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 952–966 | 959
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Table 3 Tentative column densities of various ethanol isotopologues
derived by Jørgensen et al.19 corresponding to marginal detections
along with the column densities predicted by the trained Gaussian
process regression model

Molecule
Tentative column
density (cm−2)

Predicted column
density (cm−2)

CH3CH2OD 1.1 × 1016 2.15 × 1016
13CH3CH2OH 9.1 × 1015 1.33 × 1016

CH3
13CH2OH 9.1 × 1015 1.18 × 1016

Table 4 Analysis of the simulated spectra of the three deuterated
isotopologues of methoxymethanol, 13C substituted methyl formate,
and deuterated methoxyethane. The spectral line catalogs were
produced using SPCAT and the spectra were simulated with the
MOLSIM Pythonmodule. The simulations span ALMA Band 7 (329.147–
362.896 GHz). 1s transitions have intensities of 7 mJy per beam and 3s
transitions have intensities of 21 mJy per beam

Molecule
# of 3s
transitions

# of 1s
transitions

Intensity of strongest
transition (mJy per beam)

13CH3OCHO 81 86 571.0
CH3CH2OCH2D 12 18 64.8
CH2DOCH2OH 0 0 0.39
CH3OCHDOH 0 0 0.18
CH3OCH2OD 0 0 3.92 × 10−8
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error bars at 8.043 kpc. Interestingly, the GPR model predicts
the CO and CN ratios to also be fairly near the lower bounds of
the respective ratio gradients. This matches the observed trends
of various other molecules in IRAS 16293B, which typically show
high levels of 13C substitution. A high abundance of 13CO could
stem from favorable ion-neutral isotope exchange reactions in
the cold interstellar gas before CO freeze-out.65 Complex organic
species that were then formed on grain surfaces from CO
following freeze-out would inherit this small 12C/13C ratio. The
Fig. 7 Simulated spectra of CH3CH2OCH2D and 13CH3OCHO toward IR
1015 cm−2 for CH3CH2OCH2D and 6.80 × 1015 cm−2 for 13CH3OCHO. Th
model. The red line denotes the approximate RMS noise level of the P
required for a transition to have 3s significance. Other simulation param

960 | Digital Discovery, 2023, 2, 952–966
13C enhancement in organic molecules would be even more
notable at later timescales since laboratory experiments have
shown that 12CO desorbs slightly more efficiently than 13CO.66

This enables 12CO to sublimate from the grain at a lower
temperature. Therefore, as the protostar begins to heat the
surroundings to around the CO sublimation temperature, the
more efficient 12CO sublimation would result in grain surfaces
that are further enhanced with 13CO.

Overall, while the machine learning regressor is not precise
enough to adequately model the exact isotopic ratios, the 13CO
and 13CN predictions show that it still is able to learn the
general overabundance of 13C in the organic species of IRAS
16293B.

4.4 Isotopologue targets for astrochemical study

As noted in Section 1, because of the extreme isotopic frac-
tionation in this source, multiple groups have predicted that
a signicant portion of the unidentied spectral peaks in the
line survey arise from isotopically substituted species.16,17

Additionally, Fig. 4 shows that the GPR regressor is able to
precisely model column densities of the isotopically substituted
molecules. Therefore, using the trained GPR model we pro-
ceeded to predict the column densities of the D and 13C mono-
substituted isotopologues of the previously identiedmolecules
in IRAS 16293B for which no accurate column density has been
derived. Due to the inaccurate predictions of the main iso-
topologues of ethylene glycol, chloromethane and dimethyl
ether, the predictions of the rare isotopologues of these species
were omitted. The highest 10 predicted column density iso-
topologues are displayed in Fig. 6. All predictions are provided
in the associated GitHub repository.

Of these highest 10 predicted column density species, both
13C-substituted ethanol isotopologues and OD substituted
ethanol were marginally detected toward IRAS 16293B. While
we did not include these molecules in our training set,
Jørgensen et al.19 derived tentative column densities for these
AS 16293B. The column densities used for the simulations are 3.98 ×
ese values were predicted by the trained Gaussian process regression
ILS observations in ALMA Band 7. The blue line denotes the intensity
eters are noted in the text.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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species. These tentatively derived column densities along with
the values predicted by the GPR model are listed in Table 3. As
can be seen, all predictions closely match the tentative column
densities. Additionally, while transitions corresponding to
13CH3OH and DCN have been identied toward IRAS 16293, no
derived column density is listed.67

Therefore, the remaining molecules of interest are the three
deuterated isotopologues of methoxymethanol along with the
13C isotopologue of methyl formate. Beyond these largest 10
predicted column density isotopologues, another high pre-
dicted abundance isotopologue is the deuterated isotopologue
of methoxyethane (CH3CH2OCH2D). As mentioned previously,
while large column densities are benecial for detection,
various other factors impact the detectability of a molecule. For
all of these molecules, we therefore simulated their spectra
toward IRAS 16293B using the predicted column densities in
order to assess their true detectability. The microwave and sub-
mm spectra of 13CH3OCHO have been experimentally studied
and assigned, thus making interstellar detection currently
possible. In fact, this rare isotopologue was detected in the
Orion molecular cloud.68 However, this particular isotopologue
is not present in the CDMS molecular spectroscopy database.69

All of the other aforementioned deuterated isotopologues have
not been studied experimentally.

In order to simulate the spectra of these previously
unstudied isotopologues, the rotational constants must rst be
calculated. A low-cost method to obtain molecular rotational
constants for isotopically substituted species can be achieved by
combining experimental data and ab initio calculations. In this
process, the experimental rotational and distortion constants of
the main isotopologue are rst collected. The A, B, and C rota-
tional constants of the parent species are then calculated at
a given level of theory and basis set. For our work, we ran the
calculations with the PSI4 70 Python package and used the M06-
2X functional with the 6-311++G(d,p) basis set. Assuming that
the geometry remains constant upon isotopic substitution, the
same computational methods are then used to calculate rota-
tional constants of the rare isotopologues. Finally, it is assumed
that the scaling factor between the experimental and calculated
rotational constants is the same for the main isotopologues and
the isotopically substituted molecules. For example, the B
rotational constant of the isotopically substituted species can be
calculated using eqn (4).

Bscaled ¼ BexpðparentÞ
Bcalc:ðparentÞ

� Bcalc: (4)

The experimental distortion constants and dipole moments
of the main isotopologues were used as-is for the isotopically
substituted molecules.

Following the rotational constant calculations, a rotational line
catalog was generated using Pickett's SPCAT.71 Only the A, B, and
C rotational constants and distortion constants (when available)
were used. Internal rotational was not considered during the
catalog simulations. The molsim72 Python package was then used
to simulate the spectra of the isotopologues toward IRAS 16293B
with the predicted column densities. Molsim assumes that the
© 2023 The Author(s). Published by the Royal Society of Chemistry
molecular emission can be described by a single excitation
temperature, and accounts for the effects of optical depth. For the
simulations, the excitation temperature and vlsr of the main iso-
topologue were used. A source size of 0.5′′, beam diameter of 0.5′′,
and line width of 1.0 km s−1 were used for each simulation.

Since ALMA Band 7 (329.147–362.896 GHz) is fully covered
with the PILS observations, this frequency range is the predom-
inant focus of our spectral simulations. Given the noise level of
the PILS observations,16 any transition with a peak intensity
stronger than ∼21 mJy per beam should be detectable at a 3s
signicance. Analysis of the spectral simulations can be seen in
Table 4. The simulated spectra of the 13C-substituted methyl
formate isotopologue and the deuterated methoxyethane iso-
topologue toward IRAS 16293B are presented in Fig. 7.

Despite having higher predicted column densities, the rare
isotopologues of methoxymethanol are predicted to have much
weaker spectral peaks than the other isotopologues considered
due to the limited dipole moment. That said, with several
transitions predicted to be stronger than 3s, CH3CH2OCH2D is
an excellent candidate for experimental study for astrochemical
purposes. Additionally, since the spectrum of 13CH3OCHO has
already been collected and assigned, we recommend that this
molecule be searched for in the PILS data.

5 Conclusions

In this work, we applied themachine learning pipeline introduced
by Lee et al.11 to source B of the Class 0 protostellar system IRAS
16293-2422. In order to include isotopologues in the dataset, we
also concatenated a simple encoding of the isotopic composition
to the feature vectors. Gaussian process regression and Bayesian
ridge regression were both able to accurately model the column
densities of the detected molecules in this source. The trained
Gaussian process regression model then provided a list of 242
well-constrained targets for astrochemical study. Small, oxygen-
ated, and fairly saturated hydrocarbons were predicted to be in
high abundance in this protostellar source. While the column
density predictions of isotopologues were quite precise, the
nuances of isotopic ratios were only modeled with moderate
accuracy. Additional isotopologue detections will be required to
allow for a more complex encoding of isotopic substitution that
better captures local chemical environment. Finally, since it has
been predicted that many of the unassigned transitions in the
PILS survey arise from isotopically substituted molecules, we
provided a list of 92 isotopologue column density predictions.

This machine learning method has now been shown to
effectively model the molecular column densities in two sepa-
rate interstellar sources and the resulting trained regression
models can be used to predict molecular species that are likely
abundant in these various regions of interstellar space.
However, these same techniques can be readily applied to
terrestrial chemical mixture identications as well. For
example, if a researcher is able to reliably identify a fairly small
number of chemical components present in an environmental
sample along with their abundances, these supervised regres-
sors could be trained and used to predict other components and
contaminants of that mixture.
Digital Discovery, 2023, 2, 952–966 | 961
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6 Appendix
Table 5 Molecules detected at a one-beam or half-beam offset position from the continuum peak of IRAS 16293B in the south-west direction.
The units of the observed column densities are log10 cm−2

Formula SMILES
Observed column
density Reference

CO [C−]#[O+] 20.0000 Drozdovskaya et al.25

CH3OH CO 19.0000 Jørgensen et al.16,19

H2CO C]O 18.2800 Persson et al.22

CH3CH2OH CCO 17.3600 Jørgensen et al.19

CH3OCH3 COC 17.3800 Jørgensen et al.19

HCOOCH3 COC]O 17.4100 Jørgensen et al.19

CH2OHCHO O]CCO 16.5100 Jørgensen et al.16

CH3COOH CC(]O)O 15.4500 Jørgensen et al.16

CH3CHO CC]O 17.0800 Jørgensen et al.19

c-C2H4O C1CO1 15.7300 Lykke et al.73

HCOOH O]CO 16.7500 Jørgensen et al.19

aGg′-(CH2OH)2 OCCO 16.7200 Jørgensen et al.16

CH3OCH2OH COCO 17.1500 Manigand et al.52

C2H5CHO CCC]O 15.3400 Lykke et al.73

(CH3)2CO CC(C)]O 16.2300 Lykke et al.73

NH2CHO NC]O 15.9800 Coutens et al.20

HCN C#N 16.7000 Drozdovskaya et al.25

CH3CN CC#N 16.6000 Calcutt et al.74

CH3NC [C−]#[N+]C 14.3000 Calcutt et al.75

HNCO N]C]O 16.5700 Ligterink et al.76

HC3N C#CC#N 14.2600 Calcutt et al.74

H2S S 17.2300 Drozdovskaya et al.59

OCS O]C]S 17.4000 Drozdovskaya et al.59

CH3SH CS 15.6800 Drozdovskaya et al.59

CS [C−]#[S+] 15.5900 Drozdovskaya et al.59

H2CS C]S 15.1100 Drozdovskaya et al.59

SO O]S 14.6400 Drozdovskaya et al.59

Fig. 8 Schematic that summarizes each of the steps of the machine learning method.
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Table 5 (Contd. )

Formula SMILES
Observed column
density Reference

CH3Cl CCl 14.6600 Fayolle et al.77

C2H3CHO C]CC]O 14.5300 Manigand et al.78

C3H6 C]CC 16.6200 Manigand et al.78

CH3CCH C#CC 16.0400 Calcutt et al.79

t-C2H5OCH3 CCOC 16.2600 Manigand et al.52

C3H4O2 O]CC]CO 15.0000 Coutens et al.80

CH3NCO CN]C]O 15.6000 Ligterink et al.76

C2H5CN CCC#N 15.5600 Calcutt et al.74

C2H3CN C]CC#N 14.8700 Calcutt et al.74

CH2CO C]C]O 16.6800 Jørgensen et al.19

HONO O]NO 14.9500 Coutens et al.81

NO [N]]O 16.3000 Ligterink et al.82

CH3C(O)NH2 CC(N)]O 14.9500 Ligterink et al.82

SO2 O]S]O 15.1100 Drozdovskaya et al.59

t-HCOOH O]CO 16.7500 Jørgensen et al.19

CH2NH C]N 14.9031 Ligterink et al.82

H2
13CO [13CH2]]O 16.5563 Persson et al.22

H2C
17O C][17O] 14.8573 Persson et al.22

H2C
18O C][18O] 15.3617 Persson et al.22

HDCO [2H]C]O 17.1139 Persson et al.22

D2CO [2H]C([2H])]O 16.2041 Persson et al.22

D2
13CO [2H][13C]([2H])]O 14.3424 Persson et al.22

HC15N C#[15N] 14.3979 Drozdovskaya et al.25
13CH3CN [13CH3]C#N 14.7782 Calcutt et al.74

CH3
13CN C[13C]#N 14.6990 Calcutt et al.74

CH3C
15N CC#[15N] 14.2041 Calcutt et al.74

CH2DCN [2H]CC#N 15.1461 Calcutt et al.74

CHD2CN [2H]C([2H])C#N 14.3010 Calcutt et al.74
34SO2 O][34S]O] 14.6021 Drozdovskaya et al.59

O13CS O][13C]S] 15.6990 Drozdovskaya et al.59

OC34S O]C][34S] 16.0000 Drozdovskaya et al.59

OC33S O]C][33S] 15.4771 Drozdovskaya et al.59
18OCS [18O]]C]S 14.6990 Drozdovskaya et al.59

C34S [C−]#[34S+] 14.3010 Drozdovskaya et al.59

C33S [C−]#[33S+] 13.9031 Drozdovskaya et al.59

C36S [C−]#[36S+] 13.1461 Drozdovskaya et al.59

HDCS [2H]C]S 14.1761 Drozdovskaya et al.59

HDS [2H]S 16.2041 Drozdovskaya et al.59

HD34S [2H][34SH] 15.0000 Drozdovskaya et al.59

CD3OH [2H]C([2H)([2H)O 16.4914 Ilyushin et al.21

CH2DOH [2H]CO 17.8513 Jørgensen et al.19

CH3OD [2H]OC 17.2553 Jørgensen et al.19

a-CH3CHDOH [2H]C(C)O 16.3617 Jørgensen et al.19

CH3OCDO [2H]C(]O)OC 16.1761 Jørgensen et al.19

CH2DOCHO [2H]COC]O 16.6812 Jørgensen et al.19

CHDCO [2H]C]C]O 15.3010 Jørgensen et al.19
13CH3OCH3 CO[13CH3] 16.1461 Jørgensen et al.19

CH3CDO [2H]C(C)]O 15.9823 Jørgensen et al.19

H13COOH O][13CH]O 14.9191 Jørgensen et al.19

CHD2OCHO [2H]C([2H)OC]O 16.0414 Manigand et al.83

CH3
37Cl C[37Cl] 14.3424 Fayolle et al.77

NH2CDO [2H]C(N)]O 14.3222 Coutens et al.20

NH2
13CHO N[13CH]]O 14.1761 Coutens et al.20

DNCO [2H]N]C]O 14.4771 Coutens et al.20

HN13CO N][13C]]O 14.6021 Coutens et al.20

CHDOHCHO [2H]C(O)C]O 15.5211 Jørgensen et al.16

CH2ODCHO [2H]OCC]O 15.1761 Jørgensen et al.16

CH2OHCDO [2H]C(]O)CO 15.2148 Jørgensen et al.16

CH3
18OH C[18OH] 16.2718 Jørgensen et al.16

13CH2CO [13CH2]]C]O 14.8513 Jørgensen et al.19

CH2
13CO C][13C]]O 14.8513 Jørgensen et al.19

13CH3CHO [13CH3]C]O 15.2553 Jørgensen et al.19

CH3
13CHO C[13CH]]O 15.2553 Jørgensen et al.19

© 2023 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2023, 2, 952–966 | 963
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Table 5 (Contd. )

Formula SMILES
Observed column
density Reference

t-DCOOH [2H]C(]O)O 15.0414 Jørgensen et al.19

t-HCOOD [2H]OC]O 15.0414 Jørgensen et al.19

a–a-CH2DCH2OH [2H]CCO 16.4313 Jørgensen et al.19

Asym-CH2DOCH3 [2H]COC 16.6128 Jørgensen et al.19
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10 E. Hébrard, M. Dobrijevic, P. Pernot, N. Carrasco, A. Bergeat,
K. M. Hickson, A. Canosa, S. D. Le Picard and I. R. Sims, J.
Phys. Chem. A, 2009, 113, 11227–11237.

11 K. L. K. Lee, J. Patterson, A. M. Burkhardt, V. Vankayalapati,
M. C. McCarthy and B. A. McGuire, Astrophys. J., Lett., 2021,
917, L6.

12 A. Wootten, Astrophys. J., 1989, 337, 858.
13 L. G. Mundy, A. Wootten, B. A. Wilking, G. A. Blake and

A. I. Sargent, Astrophys. J., 1992, 385, 306.
14 L. W. Looney, L. G. Mundy and W. J. Welch, Astrophys. J.,

2000, 529, 477–498.
15 M. J. Maureira, J. E. Pineda, D. M. Segura-Cox, P. Caselli,

L. Testi, G. Lodato, L. Loinard and A. Hernández-Gómez,
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