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ured seed-mediated gold nanorod
growth procedures from scientific text with LLMs†

Nicholas Walker, *a Sanghoon Lee,ad John Dagdelen,ad Kevin Cruse,bd

Samuel Gleason,ae Alexander Dunn, ad Gerbrand Ceder,bd A. Paul Alivisatos,bdef

Kristin A. Persson cdf and Anubhav Jain*a

Although gold nanorods have been the subject of much research, the pathways for controlling their shape

and thereby their optical properties remain largely heuristically understood. Although it is apparent that the

simultaneous presence of and interaction between various reagents during synthesis control these

properties, computational and experimental approaches for exploring the synthesis space can be either

intractable or too time-consuming in practice. This motivates an alternative approach leveraging the

wealth of synthesis information already embedded in the body of scientific literature by developing tools

to extract relevant structured data in an automated, high-throughput manner. To that end, we present

an approach using the powerful GPT-3 language model to extract structured multi-step seed-mediated

growth procedures and outcomes for gold nanorods from unstructured scientific text. GPT-3 prompt

completions are fine-tuned to predict synthesis templates in the form of JSON documents from

unstructured text input with an overall accuracy of 86% aggregated by entities and 76% aggregated by

papers. The performance is notable, considering the model is performing simultaneous entity

recognition and relation extraction. We present a dataset of 11 644 entities extracted from 1137 papers,

resulting in 268 papers with at least one complete seed-mediated gold nanorod growth procedure and

outcome for a total of 332 complete procedures.
1 Introduction

Gold nanoparticles have been synthesized for centuries due to
their interesting optical properties, dating back to the Lycurgus
Cup from 4th century Rome,1 as well as imperial bowls and
decorated dishes from the Qing dynasty.2 However, scientic
interest did not develop until the work of Michael Faraday in the
mid-19th century, when he accidentally synthesized colloidal
gold while investigating the interaction between light and
matter.3 In the last three decades, chemists have developed the
ability to synthesize anisotropic metal nanoparticles in
a controllable and reproducible fashion.4 Around the turn of the
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millennium, multi-step seed-mediated growth methods were
developed to prepare gold nanorods with aspect ratios ranging
from 8 to 20.4–6 This generated a great deal of interest in
anisotropic gold nanoparticles due to a combination of the
convenience of the wet-chemistry approach, as well as the
ability to tune the shape of the synthesized nanorods. The
anisotropic gold nanoparticles, in turn, provide access to shape-
dependent optical phenomena not observed with spherical gold
nanoparticles.7–10 Their applications are widespread across
many domains, including semiconductor technology,11,12

biomedicine,13,14 and cosmetics.15 The suitability of a nano-
particle for a particular application depends on its morphology
and size, which correspond to different plasmonic
properties.16–18

Despite the popularity of anisotropic gold nanoparticles,
systematic investigation of the control of these properties has
only recently been approached.19 Although some theories and
models do exist for identifying and explaining the mechanisms
of synthesis that determine nanoparticle morphology,4,20–22

most synthesis exploration is still guided by heuristics based on
domain knowledge.

For gold nanorods, it is clear that the simultaneous presence
of various reagents during the synthesis affects the character-
istics of the resulting gold nanoparticles.4 To better understand
these effects, computational simulation and analysis of the
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00019b&domain=pdf&date_stamp=2023-11-30
http://orcid.org/0000-0001-6939-953X
http://orcid.org/0000-0002-8567-1879
http://orcid.org/0000-0003-2495-5509
https://doi.org/10.1039/d3dd00019b
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00019b
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002006


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
21

/2
02

5 
1:

32
:3

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
formation energetics of the nanoparticles or the nucleation and
growth steps can be used. Density functional theory (DFT) can
be used to investigate the energetic landscape of potential gold
nanoparticle morphologies, including the effects of surface
ligands that are vital for the solution-phase synthesis of noble
metal nanoparticles.23–25 However, this approach does not
account for the nuances of nucleation and growth competition
in solution-based nanoparticle syntheses. These aspects can be
addressed by modeling real-time growth and dispersity
dynamics with continuum-level model, though this sacrices
access to small-scale energetics granted by DFT.26 Alternatively,
direct experimentation can be used to explore the synthesis
space by varying precursor amounts over many experiments,
though this is impractical due to the both the number of
experiments required to sample the synthesis space and the
condition that a single experiment can take many hours to
complete. Automated labs may address this problem in the
future, though most are still in their infancy.

A third approach seeks to leverage the wealth of information
contained in scientic literature. Many seed-mediated gold
nanorod recipes have been published in the materials science
and chemistry literature, but parsing them requires domain
experts to manually read these articles to retrieve the relevant
precursors, procedures, laboratory conditions, and target
characterizations. This comes with its own complications,
however, as over time, the body of materials science literature
has grown to an unwieldy extent, preventing researchers from
absorbing the full breadth of information contained in estab-
lished literature or even reasonably following research progress
as it emerges.27 Thus, it is unreasonable to expect domain
experts in gold nanoparticle synthesis to manually read and
parse the complete existing synthesis literature efficiently,
motivating the development of high-throughput text-mining
methods to extract this information.

The resulting databases built with these methods are the
rst steps toward developing data-driven approaches to under-
standing synthesis, which are being developed at an acceler-
ating pace as a rapidly emerging third paradigm of scientic
investigation. Generally speaking, these approaches involve the
use of both conventional and machine learning methods to
both build large databases and perform downstream analysis
and inference over said databases. Natural language processing
(NLP) has been successfully applied in the chemical, medical,
and materials sciences to produce structured data from
unstructured text using methods and models such as pattern
recognition, recurrent neural networks, and language
models.28,28–52

For applications specically related to materials synthesis,
data-driven approaches have been successful for tasks such as
materials discovery, synthesis protocol querying, and simula-
tion and interpretation of characterization results.53–57 However,
these approaches are fundamentally limited by the quality of
the data, such as the completeness and substance of the data
source. To address this, careful data curation is necessary, as
seen with the construction and maintenance of large databases
of characteristic features of nanostructures.58
© 2023 The Author(s). Published by the Royal Society of Chemistry
Recently, the wealth of unstructured information about gold
nanoparticle synthesis and characterization in literature has
been directly tapped through the combination of various NLP
models and other text-mining techniques to produce a dataset
of over ve thousand codied gold nanoparticle synthesis
protocols and outcomes.59 This general dataset contains
a wealth of information, including detected materials, material
quantities, morphologies, synthesis actions, and synthesis
conditions, as well as tags for seed-mediated synthesis,
synthesis paragraph classications, and characterization para-
graph classications.

Despite the breadth of accurate information provided, the
general dataset still suffers from a few pitfalls: (i) the inability to
distinguish between seed and growth solution procedures in
seed-mediated growth synthesis; (ii) the inability to detect
references to materials that do not contain specic formulae or
chemical names (e.g. “AuNP seed solution”); and (iii) the
inability to detect target morphologies as opposed to inciden-
tally mentioned morphologies. To address these issues, this
work intends to use a large sequence-to-sequence language
model to extract full synthesis procedures and outcomes in
a single-step inference. Generally speaking, a sequence-to-
sequence model in NLP maps an input sequence to an output
sequence by learning to produce the most likely completion of
the input by conditioning the output on the input.60

In this work, we leverage the capabilities of the latest
language model in the Generative Pre-trained Transformer
(GPT) family, GPT-3,61 to build a dataset of highly structured
synthesis templates for seed-mediated gold nanorod growth. A
similar approach using GPT-3 to build materials science data-
sets has been applied to extracting dopant-host material pairs,
cataloging metal–organic frameworks, and extracting general
chemistry/phase/morphology/application information for
materials.62 We extracted these templates for seed-mediated
gold nanorod growth from 2969 paragraphs across 1137
ltered papers, starting with using a question-answering
framework aided by the zero-shot performance of GPT-3 to
construct a small initial dataset. We then ne-tuned GPT-3 to
produce complete synthesis templates for input paragraphs.
Fine-tuning GPT-3 consists of using multiple examples of
paragraph and synthesis template pairs to train GPT-3 to
perform this specic task. Each synthesis template in the nal
dataset contains information on relevant synthesis precursors,
precursor amounts, synthesis conditions, and characterization
results, all structured in a JSON format. This dataset provides
reproducible summaries of procedures and outcomes, explicitly
establishing the relationships between the components of the
recipe (e.g. accurately linking the correct volumes and concen-
trations with the correct precursors in the correct solution).
However, this specicity comes at the cost of generality, as the
dataset focuses on seed-mediated gold nanorod growth. The
nal dataset consists of 11 644 entities extracted from 1137
ltered papers, 268 of which contain least one complete seed-
mediated gold nanorod growth procedure and outcome for
a total of 332 complete procedures.

While our primary focus revolved around the application of
a ne-tuned GPT-3 Davinci model, we further extended our
Digital Discovery, 2023, 2, 1768–1782 | 1769
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research horizon by employing 13 billion parameter variant of
Llama-2 (ref. 63) to undertake the same task for benchmark.
Llama-2, an acronym for “Large Language Model Meta AI – 2′′,
emerges from a lineage of language models that have been re-
ported to exceed performance of much larger models (such as
GPT-3 Davinci) on many NLP benchmarks.64 Compared to GPT-
3, Llama utilizes different approaches to architecture including
the use of SwiGLU activations instead of ReLU,65 rotary position
embeddings instead of absolute position embeddings,66 and
RMS layer-normalization67 instead of standard layer normali-
zation.68 Additionally, Llama-2 boasts a 4192 token context
window instead of the 2048 token context window provided by
GPT-3.

2 Dataset

The relevant data for constructing the training, testing, and
prediction data for this model was collected using the database
of gold nanoparticle synthesis protocols and outcomes devel-
oped by Cruse et al.59 from the full-text database developed by
Kononova et al.28 through text- and data-mining agreements
with several major scientic journal publishers. The original
full-text database contains more than 4.9 million materials
science articles, and the pipeline for identifying and extracting
gold nanoparticle synthesis articles consists of progressively
ner-meshed ltering steps using text-mining tools adapted
from Kononova et al.28 and Wang et al.69 These steps include
regular expression matching to identify nanomaterial papers,
document and vocabulary vectorization using term frequency-
inverse document frequency (TF-IDF) to reveal papers related
more to gold than other noble metals, BERT-based binary
classiers to identify paragraphs related to gold nanoparticle
synthesis or characterization (particularly morphological
information), a combination of BiLSTM-based named entity
recognition (NER) and rules-based methods to extract synthesis
procedure details from synthesis paragraphs, and MatBERT49

NER to extract morphology and size information from charac-
terization paragraphs.

Using the extracted information, 5145 papers were identied
to contain gold nanoparticle synthesis protocols,70 of which 1137
ltered papers were found to contain seed-mediated recipes
using the “seed_mediated” ag as well as rod-like morphologies
(“rod or “NR” in “morphologies” under “morphologica-
l_information”) or aspect ratio measurements (“aspect” or “AR”
in “measurements” under “morphological_information”). This
was done to lter the total papers down to only those likely to
contain seed-mediated synthesis recipes for gold nanorods.

3 Methods

At the core of the GPT-1 model was a focus on improving
language understanding by generative pre-training involving
the use of a large language model in conjunction with a very
large and diverse pre-training corpus with long stretches of
contiguous text, which greatly facilitated the model's ability to
learn “world knowledge” alongside its ability to process long-
range dependencies.71 For a sequence-to-sequence generative
1770 | Digital Discovery, 2023, 2, 1768–1782
model, outputs are generated by maximizing the log probability
of p(outputjinput).60 To further improve zero-shot performance
for both learning and task transfer, GPT-2 modied the training
objective to include task conditioning, p(outputjinput, task),
thus establishing the model as an unsupervised multitask
learner.72 With GPT-3, more extensions of the model size and
the pre-training corpus have produced a model with consider-
able capacity for few-shot learning that is capable of producing
text that is difficult to distinguish from human-written text or
performing tasks it was not explicitly trained on, such as writing
code or summing numbers.61 We employed the 175 billion
parameter variant of GPT-3 (OpenAI Davinci) for this work.

Of the 1137 ltered papers identied to contain information
about seed-mediated gold nanorod synthesis, 240 (consisting of
661 relevant paragraphs) were randomly sampled and fully
annotated with JSON-formatted recipes by a single annotator with
machine assistance to serve as a training set. An additional 40
ltered papers (consisting of 117 relevant paragraphs) were
annotated to serve as a testing set. Each relevant paragraph was
separately annotated due to length constraints imposed by GPT-3,
which limits the capability to process an entire article at once. A
limit of 2048 tokens is shared between the input prompt and the
output completion, corresponding to approximately 1500 words.61

3.1 Overall procedure

A diagram outlining the general process for producing the nal
ne-tuned model for template-lling is shown in Fig. 1. In the
initial stage (orange), a simple question-answering framework
is used to individually ll in templates for an initial set of
paragraphs. These results are then corrected according to the
described annotation procedure and used as an initial training
set for ne-tuning GPT-3 to produce complete templates in the
second stage (green). The nal stage (blue) is an iterative
training process in which new templates are predicted, cor-
rected, and added to the training set to update the ne-tuned
model, thus improving its performance with each iteration.
Default settings through the OpenAI API (v0.13.0) are used for
all ne-tunes of the GPT-3 Davinci model, and a temperature of
zero is used for all model predictions with a double line break as
the stop sequence. By using a temperature of zero, the results
should be deterministic assuming that oating point errors in
the GPU calculations are smaller than the differences between
the log probabilities of the next token prediction candidates.

To assess Llama-2-13B's efficacy in extracting two-step seed-
mediated gold nanorod synthesis procedures, we adopted
a ne-tuning approach using Low-Rank Adaptation (LoRA) as
described in ref. 73, facilitated by the Parameter-Efficient Fine-
Tuning library.74 The base model of Llama-2-13B75 with 8 bit
quantization was ne-tuned with the identical training data on
a single GPU (NVIDIA A100). Some of the ne-tuning parameters
we used are as follows: 4 epochs, batch size of 1, learning rate of
0.0001, LoRA r of 8, LoRA alpha of 32 and LoRA dropout of 0.05.

3.2 Template structure and annotation scheme

The structure and content of the synthesis templates are shown
in Fig. 2. The synthesis templates are stored as JSON
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A diagram illustrating the overall procedural approach for
extracting synthesis templates from text with GPT-3 is shown. All
unstructured text paragraphs were drawn from the seed-mediated
gold nanorod growth dataset of 1137 filtered papers (purple). The first
stage involves filling initial templates using a zero-shot question/
answer framework with GPT-3, which is then corrected (orange). The
plus sign indicates a combination of the texts and queries used as
input. Template correction is done through manual editing of the
templates according to the described annotation procedure. These
annotated templates are used to fine-tune an initial GPT-3 model,
which produces complete templates in a single prediction (green).
From there, the process of iteratively predicting more templates with
a fine-tuned model, correcting them, adding them to the training set,
and then fine-tuning the model again is then performed (blue). The
plus signs for these stages indicate that text-template pairs are used as
input for fine-tuning.

Fig. 2 A diagram representing the structure of the seed-mediated
gold nanorod growth JSON template. From left to right, the structure
is divided into three components, the seed solution, the growth
solution, and the resulting gold nanorods. For the seed and growth
solution components, there are entries for the precursors and their
associated quantities, as well as entries for experimental conditions
such as the age and aging temperatures of the solutions and stir rates
when adding the reducing agent (for the seed solution) or the seed
solution (for the growth solution). For the gold nanorod component,
there are entries for the characterization information that may be
present, including the aspect ratio (ar), length (l), and longitudinal/
transverse surface plasmon resonances (l/tspr).
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documents, which contain three components: the seed solu-
tion, the growth solution, and the resulting nanorods. For the
seed and growth solutions, the precursors and their associated
volumes (vol), concentrations (concn), and/or masses are
recorded, as well as the ages of the respective mixed solutions at
the time of use and the temperatures (temp) at which they are
aged. Furthermore, the stirring rates when adding sodium
borohydride (NaBH4) to the seed solution and when adding the
seed solution to the growth solution are recorded. The shape
and size of the gold seeds in the seed solution are also noted.
For the gold nanorods (AuNR), the aspect ratios (ar), lengths (l),
widths (w), and longitudinal/transverse surface plasmon reso-
nances (SPRs) are recorded. The JSON documents have identical
structures and thus contain an entry for every value that can be
requested; any values not present in a given paragraph are lled
with an empty string.

When available, numerical quantities with units are extracted.
For precursor volumes, the units are provided in variations of
liters, though the concentrations may be measured in either
molarity, molality, or weight percentage. In some cases, the total
volume of a collection of precursors may be specied instead of
© 2023 The Author(s). Published by the Royal Society of Chemistry
the individual volumes of the precursors. In this case, the explicit
volume is associated with the rst precursor and the volumes for
the remaining precursors refer to the name of the rst precursor,
implicitly communicating a shared volume. For temperatures,
degrees Celsius are most commonly provided, though more
qualitative descriptions such as “room temperature” will still be
recorded if the explicit temperature is not provided in the text but
a qualitative description is. Similarly, for solution ages, minutes
or hours aremost common, but sometimes only descriptions like
“overnight” are provided and recorded. For stirring rates, the
revolutions per minute (rpm) is preferred, but many papers will
instead provide descriptions such as “gentle” or “vigorous” that
are recorded. For the gold nanorod properties, aspect ratios are
unitless while the other quantities (length, width, SPRs) are
provided in units of length, with the exception of some cases
where the LSPR is only provided as “NIR” (near-infrared).
Throughout all stages of the annotation process, three addi-
tional researchers were consulted to reach a consensus on the
Digital Discovery, 2023, 2, 1768–1782 | 1771
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appropriate annotations for various edge cases caused by unclear
wording or other ambiguities.

3.3 Question answering completions

Unfortunately, the standard pre-trained GPT-3 Davinci model is
not capable of providing consistent completed templates of
high quality in one request. However, the model is capable of
answering simple questions about synthesis paragraphs
without any ne-tuning, which allows for the elds of the
synthesis templates to be individually lled using answers from
a simple question-answering framework using GPT-3. An
example is shown in Fig. 3.76 This machine-assisted annotation
approach avoids the laborious process of manually lling in
each eld of the templates by hand, as an annotator only needs
to verify and correct the provided answers as-needed. However,
this approach does not scale well to large numbers of papers, as
each query is a separate model request, meaning that each
paragraph in each paper would require a large number of
requests in order to ll a single template. Therefore, this
approach is used to construct an initial dataset consisting of
synthesis templates for paragraphs from a small number of
papers. Due to the small number of papers used, this initial
dataset does not necessarily capture the variety of precursors or
manners in which critical data can be communicated in text. As
such, only information known to be commonly present in seed-
mediated gold nanorod synthesis (e.g. the common precursor
volumes/concentrations) were queried. Nevertheless, these
initial templates, when corrected, provide a suitable starting
point for ne-tuning GPT-3 to provide complete synthesis
templates in single requests for each paragraph. Through an
iterative process of ne-tuning GPT-3 on the available
templates, predicting new templates, correcting them, and ne-
tuning a new model using all of the corrected templates con-
structed thus far, a nal ne-tuned model can be obtained.

The initial synthesis template dataset was constructed using
the zero-shot question-answering framework with 40 randomly
sampled ltered papers. If a relevant precursor, condition, or
characterization was identied with regular expression pattern
matching in the paragraph, the framework would be to request
the information using GPT-3. For example, if “ascorbic acid”,
“AA”, “vitamin C”, or “C6H8O6” appeared in the paragraph, the
Fig. 3 An example of a question answering completion using GPT-3.
The input is bounded by a purple box containing the prompt (orange),
paragraph text (green), and query (blue). The output is bounded by
a red box.

1772 | Digital Discovery, 2023, 2, 1768–1782
framework would request the volume, concentration, and mass
of ascorbic acid. This initial dataset only requested information
about the eight most common precursors, including “HAuCl4”,
“CTAB”, and “NaBH4” for the seed solution, and “HAuCl4”,
“CTAB”, “AgNO3”, “AA”, and “seed solution” for the growth
solution. To capture different ways of expressing each
precursor, multiple aliases were checked to include variations
on chemical names as well as the chemical formulae. Addi-
tionally, the framework requested information about the stir
rate when adding NaBH4 to the seed solution, the age of the
seed solution, the temperature of the seed solution during
aging, the size and shape of the seeds, the stir rate when adding
the seed solution to the growth solution, the age of the growth
solution, and the temperature of the growth solution during
aging. All request completions for each paragraph were aggre-
gated into a single JSON entry according to the synthesis
template scheme shown in Fig. 2.

The approach of using zero-shot GPT-3 question answering
requests to ll the templates tended to produce poor results, but
it offered an acceptable starting point for collecting structured
recipes. Most of the templates only required correcting the
incorrect entries, rather than lling them in manually from
scratch, which greatly accelerated the creation of the initial
dataset. However, some entries had to be added from scratch
due to recipes including precursors outside the initial set of
eight common precursors. Note that the static nature of the
synthesis templates across all paragraphs means that when one
paragraph requires the addition of a new precursor to the
template, this is applied to all templates for all paragraphs.
Additionally, annotation was done strictly, requiring that the
synthesis method must be seed-mediated growth and the target
gold nanoparticle morphology must be nanorods. This provides
an important test for the model, as the difference between
recipes that produce very similar morphologies can sometimes
be subtle.
3.4 Fine-tuning procedure and dataset construction

These corrected templates derived from the question answering
completions provided an initial training set for ne-tuning GPT-
3 to produce the desired lled templates. From there, templates
for paragraphs from 40 more randomly sampled ltered papers
were iteratively predicted, corrected (adding new precursors as
necessary), and added to the training set until templates for
paragraphs from 240 ltered papers had been corrected in total.
With each iteration, the correction process became much easier
and faster. Initially, templates for information-dense para-
graphs took approximately 4 minutes to validate and correct,
whereas, by the end of the process, they took around a minute
each. This is because GPT-3 largely predicted lled templates
with high accuracy. The testing dataset was composed of para-
graphs from an additional random sampling of 40 papers. Not
all of the papers ltered from the original dataset were guar-
anteed to contain information that should be placed into
synthesis templates. For example, seed-mediated growth or
nanorod measurements and morphologies may only be inci-
dentally mentioned in a given paragraph that is otherwise not
© 2023 The Author(s). Published by the Royal Society of Chemistry
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relevant to a specic seed-mediated gold nanorod growth
procedure. Of the 240 ltered papers in the training set and the
40 ltered papers in the testing set, 141 and 23 papers respec-
tively contained at least one paragraph with information that
could be placed into a synthesis template. The following
command was used to perform the ne-tuning:

.

4 Results

The described training dataset of synthesis templates was used
to ne-tune a GPT-3 model to reproduce said synthesis
templates from the unstructured text. Default parameters for
the ne-tuning process were employed, incurring a cost of 85.30
USD (191 069 prompt tokens and 522 649 completion tokens).
The predictions over the testing dataset (40 papers composed of
117 paragraphs) took around eighty minutes to complete and
incurred a cost of 14.39 USD (27 327 prompt tokens and 92 126
completion tokens). The performance of the ne-tuned model
was then evaluated using the testing dataset.
Fig. 4 A model prediction example is shown, with empty entries
omitted. The original unstructured text is shown on the top, and the
components of the predicted synthesis template in JSON form are
shown on the bottom. The important information from the unstruc-
tured text is colored in orange (for precursors) and green (for quan-
tities), while any errors are highlighted in red.
4.1 Error evaluation examples and denitions

An example prediction is depicted in Fig. 4.77 Errors are high-
lighted in red. For this example, two errors were made. First, the
quantities for “Borohydride” in the seed solution were instead
placed under “NaBH4” in the seed solution. Arguably, this is not
truly an error since sodium borohydride is oen conventionally
referred to as “borohydride”, possibly indicating “world
knowledge” exhibited by GPT-3. However, there are technically
other borohydrides, such as potassium borohydride, that can be
used as a reducing agent for seed-mediated gold nanorod
growth,78 so this was still marked as incorrect due to possible
ambiguity. The second error was the failure to extract the HCl
volume. Note the rather complex relationship in the growth
solution precursor volumes, where CTAB, HAuCl4, ascorbic
acid, AgNO3, and HCl all share the same 25 mL volume. To
avoid confusion, the volume is explicitly associated with the
rst-mentioned precursor in the mixture, and the following
precursors refer back to that rst precursor. This ensures that
downstream applications can unambiguously process the data
to mean that the precursors are sharing a single volume. Other
than these two errors, themodel performs very well at extracting
quantities in this example.

For the 117 testing paragraphs, two types of errors are
tracked: placement errors and transcription errors. This is done
in order to evaluate the model's capability for separately iden-
tifying which elds of the synthesis templates should contain
information, as well as how accurate the appropriately placed
information is. To evaluate information placement, only the
existence of information in the elds of the prediction and
ground truth synthesis templates are considered. For example,
if the same eld contains information (as opposed to being
empty) in both templates, that is considered a true positive
prediction regardless of whether the information explicitly
© 2023 The Author(s). Published by the Royal Society of Chemistry
matches. If both elds are empty, then that is a true negative. If
the prediction eld contains information while the ground
truth eld is empty, then that is a false positive, while the
reverse is a false negative. These categories of placement errors
are used to calculate the precision, recall, and F1-score for
information placement. Examples of these evaluations are
shown in Fig. 5.

For evaluating transcription accuracy, only the agreement
between the prediction and the annotation for true positive
placements are considered, as the other types of errors are
accounted for by the evaluations of information placement. For
numerical values with units, the units must be exactly correct
and the quantitative relative error was calculated according to
the function s(p, q) = 2$min(p, q)/(p + q), which is derived from
the absolute proportional difference r(p, q) = jp − qj/(p + q) and
is bounded on [0,1] for non-negative numerical values p
Digital Discovery, 2023, 2, 1768–1782 | 1773
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Fig. 5 A diagram depicting the different types of prediction errors
made by the model is presented. Generally, two categories of errors
exist: placement errors and transcription errors. Placement errors refer
to whether the prediction has placed any information, correct or
incorrect, into the appropriate fields as determined by the ground
truth. These are indicated with the lines connecting the fields in the
ground truth and the prediction templates. A false positive prediction
occurs when the prediction places information in a field that is empty,
while a false negative prediction is the reverse. A true negative
prediction is when a field is empty in both the ground truth and the
prediction, and a true positive prediction is when a field is non-empty
in both the ground truth and the prediction. Since the placement
evaluations do not consider whether the predicted value in a field is
actually correct for true positives, an additional transcription evalua-
tion is used tomeasure howwell the predicted value explicitly matches
the ground truth value. These are indicated with boxes encapsulating
the fields. The transcription evaluation is only applied to true positive
placements.
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(predicted numerical value) and q (annotated numerical value).
Some values may have modiers attached, such as “>3 h”. If the
prediction misses this information, e.g., gives “3 h”, the
prediction is considered half-correct even if the quantity and
unit are both correct. Some quantities will additionally be
expressed as a range or list of values. In these cases, the range
boundaries are split into a list as necessary, and the transcrip-
tion accuracies are scored and aggregated across the values in
the list with proper ordering enforced. For non-numerical
predictions such as stir rates described as “vigorous” or gold
seed morphologies, an exact string match is required for the
Table 1 Model F1-scores and accuracies for recipe entities aggregated b
only the true positives used for the accuracy calculation

Placement

Precision Recall

Seed solution GPT-3 0.97 0.92
Llama-2 0.90 0.91

Growth solution GPT-3 0.90 0.94
Llama-2 0.88 0.92

AuNR GPT-3 0.79 0.74
Llama-2 0.75 0.70

Overall GPT-3 0.90 0.90
Llama-2 0.87 0.88

1774 | Digital Discovery, 2023, 2, 1768–1782
prediction to be marked as correct. The combined accuracy
(adjusted F1-score) is presented as the product of the F1-score
for information placement and the transcription accuracy.
This is the most meaningful metric to evaluate the overall
performance of the model.
4.2 Model performance

The total performance of the model aggregated over each recipe
component as well as all entries is shown in Table 1. The model
appears to be procient at generally identifying which infor-
mation should be lled in the template based on the content of
the text, with a rather high F1-score of 90% that favors neither
precision nor recall. It additionally performs exceptionally at
accurately transcribing the information with an accuracy of
95%. By taking the product of the placement F1-score and the
transcription accuracy, this provides an impressive overall
adjusted F1-score of 86%. This indicates a signicant
improvement over comparable efforts in solid-state synthesis
text-mining, which report an overall accuracy of 51% for
extracting all recipe items (chemistry, operations, and attributes
of the operations).28 Direct comparison is, however, rather
challenging, as some aspects of the two-step, seed-mediated
growth synthesis are more complicated, such as the presence
of two solutions with distinct precursor sets and a greater
amount of precursor information needed due to the solution-
based format. On the other hand, solid-state synthesis extrac-
tion carries its own challenges, considering the greater variation
in procedural steps and conditions that must be considered.

It is clear that the adjusted F1-scores for the recipe entities
associated with the seed and growth solutions are very prom-
ising, indicating that the model is reliable for extracting the
necessary information from the text for the component solu-
tions to the synthesis procedure. However, the performance is
worse overall for the gold nanorod properties, with an adjusted
F1-score of approximately 72%. This is still an improvement
over similar results, as the gold nanoparticle synthesis
protocol and outcome database developed by Cruse et al.59

extracts morphology measurements, sizes, and units with F1-
scores of 70%, 69%, and 91% via NER with MatBERT.
However, these entities are not linked together, so while doing
so would inevitably introduce additional sources of error and
performance would be additionally constrained by the lowest
y recipe component. The support numbers in parentheses account for

Transcription Combined

SupportF1 Accuracy Adj. F1

0.94 0.95 0.90 159 (142)
0.91 0.94 0.85 169 (140)
0.92 0.96 0.88 244 (206)
0.90 0.94 0.84 247 (202)
0.76 0.95 0.72 96 (59)
0.72 0.97 0.70 99 (56)
0.90 0.96 0.86 499 (407)
0.87 0.94 0.82 515 (398)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Model performance for precursor detection in the seed and growth solution information

Seed solution Growth solution

Precision Recall F1 Support Precision Recall F1 Support

Precursor GPT-3 0.98 0.90 0.94 61 0.93 0.92 0.92 118
Llama-2 0.95 0.90 0.92 63 0.91 0.91 0.91 120

Fig. 6 Histograms showing the adjusted F1-score performances for
the (a) paragraphs and (b) papers.
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performing extractions, a direct quantitative comparison is not
applicable.

Table 2 shows the model performance for detecting precur-
sors in the seed and growth solutions. Precursor detection is
calculated implicitly based on which precursors the extracted
volumes, concentrations, and masses are associated with. This
is a clear improvement over the results in the gold nanoparticle
synthesis protocol and outcome database developed by Cruse
et al.59 The prior work detected precursors via a BiLSTM-based
NER model with an F1-score of 90%. However, as mentioned
earlier, this does not distinguish between seed and growth
solution precursors and cannot detect precursors that do not
contain specic formulae or chemical names, such as the seed
solution that is added to the growth solution. This means that
direct quantitative comparison is not applicable. The ne-tuned
GPT-3 model missed cases where cationic surfactant, PP, BH4,
and AuCl3 were used as well as a case where HCl was used in the
seed solution. None of these cases occurred in the training set.
Notably, the model correctly normalized “AsA” to “AA”, despite
“AsA” never appearing in the training data.

The adjusted F1-scores aggregated over extracted entities for
the paragraph-wise and paper-wise predictions are shown in
Fig. 6. Instances in which there were no entities present in either
the ground truths or the predictions are omitted from the results,
giving a total of 66 paragraphs and 26 papers. For the para-
graphs, the average adjusted F1-score was approximately 64%
with 22 (33%) perfect predictions and 32 (48%) predictions with
>90% adjusted F1-score. For the papers, the average adjusted F1-
score was approximately 76% with 4 (15%) perfect predictions
and 16 (62%) predictions with >90% adjusted F1-score.

Comparative performance of Llama-2-13B against GPT-3
Davinci is also detailed in Tables 1 and 2. Although Llama-2
exhibits comparatively diminished performance, its viability is
context-dependent. Its value arises from being a smaller model,
amenable for non-commercial on-premise deployment without
relying on an API. Moreover, its reduced size compared to GPT-3
Davinci makes it an economical choice from a computational
standpoint.
4.3 Full ltered dataset

The ne-tuned GPT-3 model was applied to the full ltered
dataset of 1137 ltered papers (2969 paragraphs) at a total cost
of 384.31 USD (838 901 prompt tokens and 2 332 796 comple-
tion tokens) over 33 hours. In total, 11 644 entities were
extracted from the paragraphs that contained information of
interest. The dataset is presented as a JSON le containing a list
with each element corresponding to a single article. Table 3
summarizes the structure of the JSON documents for each
© 2023 The Author(s). Published by the Royal Society of Chemistry
paper alongside a breakdown of how the total extracted entities
across the entire dataset are distributed across the entity types.
While the template extractions were performed paragraph-by-
paragraph, the templates have been merged by article for
convenience. However, this does mean that some conicts and
repetitions are present in the dataset. A conict arises when
a particular entity type in a paper (e.g. the volume of a particular
precursor) is specied with different values across multiple
paragraphs and a repetition arises when it is specied with the
same value across multiple paragraphs. Of the 11 644 extracted
entities, 10 098 (∼87%) are uniquely identied, meaning there
are no conicts or repetitions (the associated value is extracted
from exactly one paragraph). An additional 353 entries present
at least one conict without any repetitions, 251 with at least
one repetition and no conicts, and 57 with both conicts and
repetitions. Repetitions do not need to be manually resolved
since this arises from the specication of identical information
across multiple paragraphs (e.g. mentioning the gold nanorod
aspect ratios in paragraphs about both the synthesis procedure
as well as the nanorod characterization), but conicts can be
challenging to resolve in a consistent manner without manual
inspection. For instance, if two separate volumes for a particular
precursor are provided in two separate paragraphs, it can be
ambiguous whether the volumes are part of the same synthesis
Digital Discovery, 2023, 2, 1768–1782 | 1775
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Table 3 A table depicting the format of each data record for each article in the dataset is presented (constructed by merging paragraph
templates)a

Root key First subkey Second subkey Third subkey Description Total

doi Article DOI 1137
text <integer> Paragraph text for <integer>th paragraph 2969
seed prec <precursor name> volume Seed solution precursor volume 1347

concentration Seed solution precursor concentration 1385
mass Seed solution precursor mass 6

seed size Seed solution seed size 137
shape Seed solution seed shape 24

stir Seed solution reducing agent stir rate 266
temp Seed solution aging temperature 284
age Seed solution aging time 352

growth prec <precursor name> volume Growth solution precursor volume 2664
concentration Growth solution precursor concentration 2178
mass Growth solution precursor mass 65

stir Growth solution reducing agent stir rate 134
temp Growth solution aging temperature 322
age Growth solution aging time 464

AuNR ar Gold nanorod aspect ratio 587
l Gold nanorod length 443
w Gold nanorod width 452
lspr Gold nanorod LSPR 357
tspr Gold nanorod TSPR 177

a The “doi” key contains the article DOI and the “text” key contains index keys of the relevant paragraphs within that article which in turn contain
the paragraph text. The “seed” and “growth” keys respectively contain the keys for the seed and growth solution information, including the “prec”
key for precursors, the “stir” key for stir rates (when adding the reducing agent for the seed solution and when adding the seed solution for the
growth solution), the “temp” key for the aging temperature, and the “age” key for the solution aging time. The “seed” key has an additional
“seed” key that contains the “size” and “shape” keys for the size and shape of the seeds in the seed solution. The “prec” key for each solution
contains multiple keys for each precursor in each solution, anonymized as “<precursor name>” in the table. For each precursor, there are three
keys: “vol”, “concn”, and “mass” for the precursor volume, concentration, and mass, respectively. The “AuNR” key contains keys for
measurements of gold nanorod dimensions: “ar”, “l”, “w”, “lspr”, and “tspr” for the aspect ratio, length, width, LSPR, and TSPR, respectively.
Each extracted value is additionally stored as a key with a corresponding list of the paragraph indices that the value was extracted from in order
to preserve information about entity sources. The nal column displays the total number of entities extracted for each key (with no subkeys).
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procedure or distinct synthesis procedures in the same paper
due to the lack of cross-paragraph context. With this in mind, of
the 11 644 extracted entities, 10 349 (∼89%) can be safely
extracted by automatically resolving repetitions and discarding
entities with conicts. Of the entities with conicts, 341 have
two distinct values, 47 have three, 12 have ve, 9 have four, and
1 has ve.

With post-processing applied (as was done for evaluation of
the testing dataset), splitting lists of extracted values into
distinct entities and resolving repetitions of identical informa-
tion extracted across different paragraphs within the same
papers results in a total of 11 770 unique entities. In the post-
Table 4 A table depicting the format of each extracted value in the pos

Key Structure Description

mod <modier> A string indicating i
val [<value>, ., <value>] A list of the extracte

Processed values wil
unit <unit> The units for the ext
src [[<index>, ., <index>],

., [.]]
A list of lists of para

index [[<index>, ., <index>],
., [.]]

A list of lists of posi
during post-processi

1776 | Digital Discovery, 2023, 2, 1768–1782
processed version of the dataset, each property contains a list
of dictionaries with structures indicated in Table 4.
4.4 Full ltered dataset analysis

4.4.1 Procedure completeness analysis. An ideal database
of gold nanorod growth procedures should contain fully-
specied, reproducible procedures alongside their outcomes.
This is desirable because missing information could inhibit
downstream applications that need complete information
about the synthesis procedure. For instance, if a scientist wants
to reproduce an experiment that produces gold nanorods of
t-processed version of the dataset

f a value is a range, approximate, bounding, or unprocessed
d values. Ranges will consist of two values for the range boundaries.
l be numbers while unprocessed values will be strings
racted values, if applicable, as a string
graph indices to indicate the source for the extracted information

tional indices to retain ordering for values that were split from a list
ng

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 A diagram showing the proportional overlaps of papers with
complete synthesis procedure and outcome components. Each vertex
of the triangle corresponds to the labeled recipe component. The
areas of the circles are proportional to the corresponding number of
papers inscribed. The circles on the midpoints of the edges corre-
spond to papers with complete recipe components corresponding to
the bounding vertices. The center circle corresponds to the papers
with complete recipes and complete characterizations.
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a particular aspect ratio, they would at the very least need to
know all of the relevant seed and growth solution precursors
with their amounts. Similarly, a data science project that
intends to investigate the relationship between procedures and
outcomes will need complete information for the seed and
growth solutions in addition to the gold nanorod measure-
ments in order to produce reliable predictions. To evaluate the
completeness of the information this dataset contains, we
examined 1137 ltered papers in the full ltered prediction
dataset. Of these, 701 (62%) contained at least one paragraph
with a non-empty synthesis template. Of these 701 papers, 678
(97%) fully specied at least one synthesis component: the seed
solution, the growth solution, or the gold nanorod dimensions.
This is encouraging since the vast majority of the papers that
contain information at least fully specify one component of the
procedure or the outcome.

In order to evaluate the completeness of the components of
the procedure and the outcome, for seed and growth solutions,
only fully specied precursors were considered necessary for
reproducibility. Auxiliary information, such as stirring rates,
aging times, aging temperatures, and seed particle morphol-
ogies and sizes, while useful, was not considered necessary. The
precursor information was considered to be full specied for
a given paper if all of the precursor quantities were fully spec-
ied with either volume and concentration, mass, or a specic
concentration within another solution for each precursor with
extracted quantities. Exceptions were made for water and the
seed solution that is added to the growth solution, which both
only needed a reported volume or mass. Additionally, seed
solution in the growth solution precursors was required for the
growth solution precursors to be considered complete. For the
gold nanorod dimensions to be considered complete, either the
aspect ratio, length, or LSPR measurement had to be specied,
with the latter two at least providing an avenue for estimation of
the aspect ratio if reported alone.

Fig. 7 shows how the papers in the full ltered prediction
dataset are distributed across fully-specied synthesis proce-
dure and outcome components according to these criteria. The
vast majority of the papers reported gold nanorod dimensions,
with 80% of the 678 papers with at least one fully specied
synthesis component containing fully-specied gold nanorod
dimensions. Additionally, the majority of the papers fully-
specied the seed and growth solutions (respectively 61% and
67%). However, they are distributed such that 40% (268) of the
papers fully specied all three components. This is a reasonable
result considering that many papers will directly report the
relevant gold nanorod dimensions without specifying
a synthesis procedure, opting instead to reference the estab-
lished recipe that the researchers used to produce the gold
nanorods. Additionally, some researchers will opt to purchase
gold seed solution instead of producing their own, which
accounts for cases where some papers are missing information
about seed solution preparation. Most of the papers with fully-
specied synthesis procedures and outcomes (162) used the
typical 8-precursor synthesis and an additional 49 use the same
synthesis precursors with the addition of HCl in the growth
solution. In the post-processed version of the dataset, it is
© 2023 The Author(s). Published by the Royal Society of Chemistry
determined that of the 268 papers that fully specied all three
components, 233 contained exactly one procedure. An addi-
tional 16 contained two, 13 contained three, 3 contained four, 2
contained ve, and 1 contained six for a total of 332 complete
procedures. This nal dataset should be suitable for down-
stream analysis and inference, given the overall model perfor-
mance for extracting complete synthesis procedures and
outcomes from the literature.

4.4.2 Data consistency analysis. Fig. 8 shows the relation-
ship between various measurements extracted from text
compared to the aspect ratios extracted from the text. Only co-
occurring measurements explicitly present within the extrac-
ted information from a given paragraph are considered data
points for comparison. No derived measurements were used. As
a sanity check, the rst diagram (a) shows the relationship
between the ratios of the explicit lengths and widths present in
the text (excluding ranges) and the reported aspect ratios.
Ideally, the relationship should be an identity as shown with the
dashed line. However, while the vast majority of the data
approximately complies with this trend, there are several
outliers that produce deviation from the ideal trend in the
regression of the text-mined data. This is primarily caused by
two papers with mismatches in measurements extracted from
three-step seed-mediated gold nanorod overgrowth procedures
where the dimensions of the nanorod seeds used for overgrowth
into nanowires are confused with the dimensions of the
Digital Discovery, 2023, 2, 1768–1782 | 1777
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Fig. 8 A diagram showing the relationships between the gold nanorod
aspect ratios and other gold nanorod measurements extracted from
the literature including the (a) ratio between length and width and (b)
the LSPR peak. The inlier datapoints are shown in purple and the outlier
datapoints in red. The linear regressions derived from the text-mined
data using all of the available data and only the inlier data are
respectively shown in red and purple on each sub-diagram. For the
comparison to the ratio between length andwidth (a), the ideal relation
is shown with a dashed black line and for the LSPR comparison (b),
a simulated relationship is shown with a dashed black line.79
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nanowires themselves. With all outliers removed via outlier
detection using an elliptic envelope80,81 followed by manual
verication, the linear regression almost exactly matches the
ideal relationship. The most common errors were caused by
nanorod overgrowth measurements taken from three-step seed
mediated growth procedures and cases in which the ordering of
the aspect ratios and the lengths and widths were mismatched
(e.g. the lengths and widths are listed while the aspect ratios are
presented as a range). Only 8 of the 78 data points were iden-
tied as outliers. For the comparison between the LSPR peaks
and the aspect ratios (b), a strong linear trend is similarly
present. However, for this relationship, there is an additional
comparison to a relationship derived from simulation using
a set refractive index for gold nanorods shown in blue, which is
in general agreement with the relationship derived from text-
mined empirical data.79 The deviations can be explained by
multiple factors including deviations from ideal conditions
shiing the LSPR peaks such as deviation from spherical end-
cap geometries, low nanorod yields, or impurities in the gold
nanorod solution or the nanorods themselves that change the
1778 | Digital Discovery, 2023, 2, 1768–1782
refractive index (including poor cleaning or high concentrations
of silver in procedures using AgNO3).79,82 While there are
extraction errors present, outlier removal using an elliptic
envelope followed by manual verication does not signicantly
change the linear regression. Outliers were most commonly
caused by extraction errors that swapped the LSPR and TSPR
measurements provided in the text. Only 9 of the 86 data points
were identied as outliers. Deviation from the theory in such
a manner is to be expected when considering empirical data
from real-world experiments. Still, the LSPR for spheres should
be around 520 nm while the text-mined trend line points
towards a value closer to 580–590 nm. However, for larger aspect
ratios, the text-mined trend line is more representative of the
text-mined empirical data than the trend line derived from
simulation. The major outlier present in the text-mined data is
once again explained by a mismatch in measurements from
a three-step seed-mediated gold nanorod overgrowth
procedure.

4.4.3 Gold nanorod aspect ratio distribution analysis.
Fig. 9 shows the distributions of the aspect ratios extracted from
fully-specied experiments using precursor sets found in more
than 10 papers in the full ltered prediction database (Fig. 9a
and b), in addition to the complete set of papers (Fig. 9c). For
many of the papers, the aspect ratios were directly reported.
However, there are multiple different ways that they are re-
ported that must be addressed in order to properly construct the
distributions. If the aspect ratio is provided as a range of values,
the distribution across that range was taken to be a normal
distribution with a mean and standard deviation determined by
the midpoint and endpoints of the range, respectively. For
papers that did not report aspect ratios directly, length and
width information was used instead. In cases where the lengths
and widths were presented as ranges, they were similarly cast as
normal distributions, and the distributions of the aspect ratios
were calculated as ratio distributions. For cases where only the
LSPR was provided, the text-mined linear relationship with
outliers removed shown in Fig. 8 was used to estimate the
aspect ratios. In cases where any quantities were accompanied
by an approximation modier (e.g. ∼), the values were cast as
uniform distributions over the range of ±10% of the value. Any
calculated aspect ratios that fell below 1 (e.g. due to overlaps in
length and width distributions for gold nanorods with small
aspect ratios) were inverted.

From the distribution of the standard recipe, it is readily
apparent that the median nanorod aspect ratio is 3.3 with
respective rst and third quartiles of 2.75 and 3.98. Comparing
with experiments reporting that varying the concentration of
AgNO3 in the growth solution varies the resulting nanorod
aspect ratios from 1.83 to 5.04,83 the distribution of gold
nanorod aspect ratios text-mined from the literature is consis-
tent with this range, though it is narrower. Notably, there is
a non-negligible amount of samples with aspect ratios greater
than 5 in the distribution for the standard procedure. This is
not consistent with heuristic knowledge of the limitations of the
standard procedure for producing large aspect ratio gold
nanorods, usually due to shorter growth times compared to
procedures that adjust the pH of the growth solution to retard
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 A diagram showing the distributions of gold nanorod aspect
ratios resulting from different precursor sets including the (a) standard
procedure, (b) the addition of HCl in the growth solution, and (c) all
complete precursor sets. Negligible contributions for aspect ratios
larger than 20 are not shown (P(AR > 12) < 0.02). In each sub-diagram,
the median is shown with a solid black line and the first and third
quartiles are shown with dashed black lines.
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the nanorod growth.84,85 This is primarily due to erroneous
extractions of nanowire measurements from overgrowth
experiments or missed precursors based on manual inspection
of the data. However, the statistics are still dominated by the
lower aspect ratios. Compared to the distribution for experi-
ments using HCl in the growth solution, it is apparent that the
addition produces a distribution shied towards larger aspect
ratios. This is consistent with experiments that have deter-
mined that the use of HCl in the growth solution grants broader
tunability of the gold nanorod aspect ratios, allowing for more
controlled growth of longer nanorods relative to the standard
procedure.86,87 Notably, ∼7% of the procedures using the stan-
dard procedure and ∼9% of the procedures using HCl in the
growth solution provide nanorods with aspect ratios of 5 or
higher. However, when all recipes are considered, it is clear that
even longer nanorods can be synthesized, though these recipes
are not as popular in the literature.
5 Discussion

Overall, the model performs well at identifying and extracting
relevant information specic to seed-mediated gold nanorod
growth procedures in the literature. The model achieves an
overall adjusted F1-score of 86% on the testing dataset, indi-
cating that it performs rather well at the task of simultaneous
entity recognition and relation extraction. However, due to the
static nature of the relations provided by the synthesis template
and the single inference step, the entity recognition and rela-
tion extraction tasks are not easily disentangled, which limits
© 2023 The Author(s). Published by the Royal Society of Chemistry
direct comparison with conventional two-step approaches.
Instead, the model performance for information retrieval is
evaluated according to its ability to place information into elds
of the template where information should exist and then the
accuracy of the information that is correctly placed. For infor-
mation placement, the precision, recall, and F1-score are
balanced at 90%, indicating notable performance with no
preference for false positives or false negatives. Of the infor-
mation that is correctly placed in the templates, the model
predicts the specic values with 96% accuracy. Thus, the
primary source of error is the accurate placement of informa-
tion into the template rather than the accurate prediction of
correctly placed information. However, the template model
struggles with identifying new precursors that were not present
in the training set.

The dataset produced by the model provides a wealth of
information about seed-mediated gold nanorod growth experi-
ments and, to our knowledge, constitutes the largest structured
database with this level of depth and completeness. The
model's ability to distinguish between precursors in the seed
and growth solutions provides an example of very useful
information. The simultaneous identication of precursors
alongside linking them to the appropriate solutions in the two-
step seed-mediated procedure had proven difficult using
established methods due to the propagation of errors intro-
duced by the reliance on separate models for entity extraction
and relation. However, with this model, if a researcher wants to
quickly nd papers that used a particular precursor in the seed
solution for seed-mediated growth of gold nanorods, this task
can be accomplished with high delity using the predicted
templates. Access to this information can be expected to greatly
improve tools for scientic literature searches, as conventional
simple keyword searches do not offer this specic relational
dependence for complicated multi-step procedures.

For a more ambitious goal, the full synthesis procedure data
can be leveraged for multiple downstream tasks, which would
require the creation of additional models for inference. One
example would be a model that predicts gold nanorod dimen-
sions conditioned on a specic synthesis procedure: p(proper-
tiesjprocedure). Such a model may be leveraged to predict the
outcomes of proposed procedures without the need to perform
them explicitly. Building on this, the inverse problem, p(pro-
cedurejproperties), can also be modeled. This would be very
useful for streamlining synthesis experiments, as the necessary
procedures for synthesizing gold nanorods with the desired
properties can be inferred to provide a starting point that
reduces the number of experiments that must be conducted to
synthesize the desired gold nanorods. However, in the most
likely case, any model trained on literature data alone will be
incomplete and require further data generation and ne tuning.

Furthermore, it is worth considering how these templates t
into a larger project for downstream synthesis outcome
predictions and synthesis procedure recommendations. The
data extracted from literature can be used to pre-train models
used for these purposes, while explicit experimental data can be
used to further train the models to produce better predictions.
The new templates provided by the experimental results are
Digital Discovery, 2023, 2, 1768–1782 | 1779
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expected to be of extremely high quality, which will mitigate the
errors present in the pre-training data from literature over time
as more experimental results are added to the template
database.

While this dataset is restricted to seed-mediated gold
nanorod growth, the exibility and performance of the tem-
plating approach using GPT-3 motivates application to other
tasks for structured information retrieval from unstructured
scientic text as has been shown in recent literature.62 To this
end, the dataset can be extended to accommodate seed-
mediated growth of other gold nanoparticle morphologies,
which may even improve overall model performance, as many
errors were caused by the model erroneously extracting infor-
mation from procedures that mentioned nanorod morphol-
ogies, but synthesized a different morphology. Additionally,
more complex synthesis methods, such as three-step processes
in which nanorods are rst synthesized via seed-mediated
growth to be used as seeds in a growth solution for over-
growth into nanowires, as well as other synthesis methods, such
as citrate reduction, may require the creation of new templates
and ne-tuning a separate model for each synthesis method to
improve overall performance. Generally, it can be expected that
more complex templates will require more examples for ne-
tuning.

6 Conclusions

The presented model for static structured templating of seed-
mediated gold nanorod growth procedures extracted from
unstructured text using GPT-3 is demonstrated to be a prom-
ising approach for constructing high-quality structured data-
bases of information from the scientic literature. This
approach for extracting seed-mediated gold nanorod proce-
dures and outcomes achieves an impressive adjusted F1-score
of 86% for the simultaneous identication and linking of
synthesis procedure components. We present a nal dataset of
11 644 entities extracted from 1137 ltered papers, resulting in
268 papers with at least one complete seed-mediated gold
nanorod growth procedure and outcome for a total of 332
complete procedures. This method can potentially be utilized
for many downstream applications including procedure
searches oriented around specic features, statistical analysis of
synthesis outcomes, synthesis outcome predictions condi-
tioned on procedures, and synthesis procedure recommenda-
tions conditioned on outcomes among others given the wealth
of structured information present. Overall, we present this
approach as a exible candidate for general-purpose structured
data extraction from unstructured scientic text and contribute
a dataset that may serve as a useful tool for investigating
synthesis pathways beyond heuristics.
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m9.gshare.19719310.v4.88 The texts for the paragraphs in
each paper are excerpted due to copyright restrictions.
1780 | Digital Discovery, 2023, 2, 1768–1782
Author contributions

A. J., G. C., and K. A. P. supervised the research. K. C. wrote the
data collection infrastructure, performed the data collection,
and wrote and applied the initial gold nanoparticle article
classication and information extraction models. S. G. provided
experimental domain knowledge necessary for the template
design. J. D. introduced the GPT-3 sequence-to-sequence
information extraction methodology and prepared the graphic
representation of the extraction template. N. W. co-developed
the GPT-3 sequence-to-sequence information extraction meth-
odology, designed the extraction templates, wrote the code for
interfacing with GPT-3, performed all annotations, performed
all GPT-3 experiments, and prepared all results. S. L. performed
ne-tuning on Llama-2 for the benchmark and provided addi-
tional result validation. All authors contributed to the discus-
sion and writing of the manuscript.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This work was funded and intellectually led by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division under
Contract No. DE-AC02-05CH11231 (D2S2 program KCD2S2).
Additional funding used for data set generation via the OpenAI
API was provided by Toyota Research Institute through the
Accelerated Materials Design and Discovery program. This
research used resources of the National Energy Research
Scientic Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231. This work also used the Extreme
Science and Engineering Discovery Environment (XSEDE) GPU
resources, specically the Bridges-2 supercomputer at the
Pittsburgh Supercomputing Center, through allocation TG-
DMR970008S.89
Notes and references

1 S. Mohan Bhagyaraj and O. S. Oluwafemi, Synthesis of
Inorganic Nanomaterials, Woodhead Publishing, 2018, pp.
1–18.

2 P. Colomban, M. Gironda, G. Simsek Franci and
P. d’Abrigeon, Materials, 2022, 15(16), 5747.

3 S. Szunerits and R. Boukherroub, Encyclopedia of Interfacial
Chemistry, Elsevier, Oxford, 2018, pp. 500–510.

4 S. E. Lohse and C. J. Murphy, Chem. Mater., 2013, 25, 1250–
1261.

5 N. D. Burrows, S. Harvey, F. A. Idesis and C. J. Murphy,
Langmuir, 2017, 33, 1891–1907.

6 L. Gou and C. J. Murphy, Chem. Mater., 2005, 17, 3668–3672.
7 P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, Acc.
Chem. Res., 2008, 41, 1578–1586.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.6084/m9.figshare.19719310.v4
https://doi.org/10.6084/m9.figshare.19719310.v4
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00019b


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
21

/2
02

5 
1:

32
:3

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
8 E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy and
M. A. El-Sayed, Chem. Soc. Rev., 2011, 41, 2740–2779.

9 S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 2006, 35, 209–
217.

10 J. C. Hulteen and C. R. Martin, J. Mater. Chem., 1997, 7, 1075–
1087.

11 K. Sandeep, B. Manoj and K. G. Thomas, J. Chem. Phys., 2020,
152, 044710.

12 M. Lau, A. Ziefuss, T. Komossa and S. Barcikowski, Phys.
Chem. Chem. Phys., 2015, 17, 29311–29318.

13 L. A. Dykman and N. G. Khlebtsov, Acta Nat., 2011, 3, 34–55.
14 X. Huang and M. A. El-Sayed, J. Adv. Res., 2010, 1, 13–28.
15 S. Kaul, N. Gulati, D. Verma, S. Mukherjee and U. Nagaich, J.

Pharm., 2018, 2018, 3420204.
16 K. I. Requejo, A. V. Liopo, P. J. Derry and E. R. Zubarev,

Langmuir, 2017, 33, 12681–12688.
17 Y. C. Dong, M. Hajfathalian, P. S. N. Maidment, J. C. Hsu,

P. C. Naha, S. Si-Mohamed, M. Breuilly, J. Kim, P. Chhour,
P. Douek, H. I. Litt and D. P. Cormode, Sci. Rep., 2019, 9,
14912.

18 S. A. Ng, K. A. Razak, A. A. Aziz and K. Y. Cheong, J. Exp.
Nanosci., 2014, 9, 64–77.

19 C. Daruich De Souza, B. Ribeiro Nogueira and
M. E. C. Rostelato, J. Alloys Compd., 2019, 798, 714–740.

20 E. Agunloye, L. Panariello, A. Gavriilidis and L. Mazzei,
Chem. Eng. Sci., 2018, 191, 318–331.

21 M. L. Personick and C. A. Mirkin, J. Am. Chem. Soc., 2013,
135, 18238–18247.
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