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ut computational dataset of halide
perovskite alloys†

Jiaqi Yang, Panayotis Manganaris and Arun Mannodi-Kanakkithodi *

Novel halide perovskites with improved stability and optoelectronic properties can be designed via

composition engineering at cation and/or anion sites. Data-driven methods, especially involving high-

throughput first principles computations and subsequent analysis based on unique materials descriptors,

are key to achieving this goal. In this work, we report a density functional theory (DFT) dataset of 495

ABX3 halide perovskite compounds, with monovalent organic or inorganic cations as A, divalent Group 2

or Group 14 elements as B, and I, Br, or Cl as X, and different amounts of mixing applied at each site

using the special quasirandom structures (SQS) approach. We perform GGA-PBE calculations on all 495

pseudo-cubic perovskite structures and between 250 and 300 calculations each using the more

expensive HSE06 functional, with and without spin–orbit coupling, both including full geometry

optimization and static calculations on PBE optimized structures. Lattice parameters, decomposition

energy, band gap, and theoretical photovoltaic efficiency derived from computed optical absorption

spectra, are determined from each level of theory, and some comparisons are made with collected

experimental values. Trends in the data are unraveled in terms of the effects of mixing at different sites,

fractions of specific elemental or molecular species present in the compound, and averaged physical

properties of species at different sites. We perform screening across the perovskite dataset based on

multiple known definitions of stability factors, deviation from cubicity in the optimization cell, and

computed stability and optoelectronic properties, leading to a list of promising compositions as well as

design principles for achieving multiple desired properties. Our multi-objective, multi-fidelity,

computational halide perovskite alloy dataset, one of the most comprehensive to date, is available open-

source, and currently being used to train predictive and optimization models for accelerating the design

of novel compositions for superior performance across many optoelectronic applications.
1 Introduction

Perovskites have historically been materials of immense interest
for a variety of industrial applications. With a general formula of
ABX3, a perovskite cubic unit cell contains two cations A and B at
the corners and body center, and an anion X at each of the face
centers. The symbolic 3D perovskite structure is a network of BX6

octahedra robustly held together by large A-site cations. This
unique structure means that perovskite properties are incredibly
tunable, by changing the size and number of A/B/X species, by
manipulating relative octahedral arrangements, and by creating
non-cubic and metastable phases. Numerous research efforts
have been devoted to halide perovskites (HaPs), especially as
photovoltaic (PV) absorbers.1–4 In ABX3 HaPs, X-site anions are
halogens such as I and Br, B-site cations may be divalent
elements such as Pb and Sn, and the A-site is occupied by large
iversity, West Lafayette 47907, IN, USA.
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manuscript–PIP-data-manifest. See

–870
monovalent cations that are either inorganic (e.g. Cs, K, and Rb)
elements or organic molecules (e.g.Methylammonium (MA) and
Formamidinium (FA)). The most commonly studied halide
hybrid organic–inorganic perovskites (HOIPs), MAPbI3 and
FAPbI3, have demonstrated large power conversion efficiency
(PCE) values between 20% and 25% when used as absorbers in
single- or multi-junction solar cells.5,6 This is a ve-fold
improvement over the efficiencies rst reported in 2009 and
shows the most attractive feature of HaPs, their unique
tunability. A perovskite structure is considered stable if the ionic
radii of A, B, and X-site species satisfy the well-known tolerance
(t) and octahedral (m) factors.7 Even under these restrictions, the
chemical space of HaP structures, alloying ratios, ionic ordering,
and possible defects is still combinatorial and poses a highly
multidimensional optimization problem.

Three of the most common ways of tuning the properties of
HaPs are described below:

(1) Composition: the most promising HaP compositions for
PV absorption explored to date usually contain a mix of MA, FA,
and Cs at the A-site, primarily Pb at the B-site with minor frac-
tions of other divalent cations such as Sn and Ge, and I or Br at
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the X-site oen with little Cl. The discovery of novel HaP
compositions with attractive properties is on the rise as
researchers expand the search into more complex alloys, novel A-
site organic molecules, and substitutes for Pb at the B-site from
Group IV, Group II, or transition elements.8–11 Mixing at the A site
improves the general stability to degradation, while B site and X
site mixing can tune and optimize band gaps and optical
absorption. The allure of A/B/X-site mixing, even creating high
entropy perovskite alloys, is in obtaining starkly different prop-
erties compared to pure compositions, possibly eliminating the
harmful effect of defects, and improving the long-term stability
and consequent optoelectronic performance.

(2) Structure and phases: while the canonical perovskite phase
is cubic, many HaPs are most stable in tetragonal, orthorhombic,
or hexagonal phases.12 For a given composition and phase, there
may exist many local minima on the potential energy surface,
typically sampled via rigorous application of evolutionary or
minima hopping algorithms, atomic perturbations within larger
supercells, or by varying degrees of distortion and rotation in the
octahedral networks. Stable or metastable structures thus ob-
tained may show better properties than previously studied
ground state structures.13 In addition, HaPs may also manifest as
double perovskites or 2D layered perovskites which include large
organic spacer ligands, providing another means of tailoring the
stability and optoelectronic properties.

(3) Defects: investigation of the electronic structure of crys-
talline materials is incomplete without consideration of point
defects, either native or impurity, which will affect the opto-
electronic properties by modifying charge carrier lifetimes,
equilibrium conductivity, and resulting trap-limited efficien-
cies.14,15 Point defects manifest as vacancies, interstitials, or
substitutions, and the same defect may behave very differently
in different compositions or structures, highlighting the need to
include the presence of defects as another variable towards
tuning HaP properties.

The chemical design space of HaPs is very much combina-
torial and raises challenges for experimentalists to perform
effective screening. First principles-based density functional
theory (DFT) simulations have been systematically performed to
study the optoelectronic properties of HaPs as a function of
structure, composition, and defects. The expense of standard
DFT computations is reasonable when searching for new
promising candidates in such a boundless space. Recently, DFT
simulations have been reliably used for modeling structure,
heat of formation or decomposition, band gaps, optical
absorption spectra, and defect formation energies of a variety of
HaPs.2,16 High-throughput DFT (HT-DFT) computations provide
the most effective way to screen across a large space of hybrid
and inorganic ABX3 halide perovskites. An examination of the
HaP-related computational literature reveals that there have
been numerous medium (∼102 data points) to large (∼103 or
more data points) DFT datasets reported for HaPs, which have
been successfully used to screen promising materials with
desired stability and formability as well as PV-suitable band
gaps, among other properties.12,17–19

A clear limitation of HT-DFT-driven screening is the
computational expense of applying a suitably advanced level of
© 2023 The Author(s). Published by the Royal Society of Chemistry
theory across a large number of materials. This problem is
typically addressed by coupling DFT computations with state-of-
the-art machine learning (ML) or articial intelligence (AI)
techniques. Within the area of perovskites, there are many
examples in the literature where DFT datasets and suitable
atomic/structural/compositional descriptors have been used to
train a variety of ML-based predictive and classication models,
leading to accelerated prediction of lattice constants, formation
energies, band gaps, and other important properties.18,20,21 Such
DFT-ML models, once rigorously trained and tested, are
deployed for high-throughput screening across massive data-
sets of unknown perovskites. We recently published a thorough
overview of many such efforts applying DFT and/or ML towards
halide perovskite discovery.22

In this work, we report a large HT-DFT dataset of 495
chemically distinct, pseudo-cubic, halide perovskite alloys. This
dataset builds upon the 229 compounds reported in prior work
by Mannodi-Kanakkithodi and Chan,16 adding more types of
mixing, better property estimates, and detailed analysis of
trends and correlations. The relatively large size of this dataset
is intended to provide an initial sampling suitable for a guided
search within the HaP alloy space. In this dataset, all perovskite
structures are cubic or pseudo-cubic, and the focus is more on
investigating the dependence of computed properties on
composition, and specically the type of alloying.

Based on the generated perovskite structures, we perform
GGA-PBE calculations and report the computed decomposition
energy, band gap, and theoretical PV efficiency. In addition,
around 250 to 300 calculations are performed using the HSE06
functional (henceforth referred to as HSE), in three different
versions: using full geometry optimization, with and without
spin–orbit coupling (SOC), and static calculations on GGA-
optimized structures with SOC. The same properties are
computed from all three types of HSE computations, which
enables the comparison of PBE and multiple HSE estimates
with experiments, as well as an understanding of the impor-
tance of SOC for certain compositions. Pearson correlation
analysis is performed to study the contribution of specic A/B/X
species and their known elemental/molecular properties on the
DFT computed properties, leading to some useful design rules.
We further combine DFT-computed properties with perovskite
stability factors such as the octahedral and tolerance factors
and determine a deviation from cubicity for all optimized
structures, to obtain a list of promising candidates for solar
absorption and related optoelectronic applications. We
emphasize that this chemically diverse, multi-objective, multi-
delity dataset of HaP alloys will serve many ML endeavors in
the future for prediction and inverse design, be used as the
foundation for extended datasets of non-cubic structures and
new chemistries, and drive the experimental discovery of novel
HaP compositions with targeted properties.

2 Methodology
2.1 Devising a halide perovskite chemical space

The dataset we report is based on the standard cubic ABX3

perovskite structure. Fourteen common perovskite constituents
Digital Discovery, 2023, 2, 856–870 | 857
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are selected to form the chemical space. The ve constituents
making up the A-site occupants include three inorganic and two
organic cations. Six divalent metals represent the possible B-site
occupants and three halogen anions make up the possible X-
site occupants. The elemental and molecular space used to
construct the data set is shown in Fig. 1(a). In total, these
component vectors form a constrained 14 dimensional space
within which all perovskite compounds consisting of the
species shown in Fig. 1(a) must exist.

The pure (non-alloyed) possibilities are exhaustively sampled
using 5 × 6 × 3 = 90 compounds. Starting from these pure
perovskite structures, we perform systematic mixing at the A, B,
and X sites. For simulating perovskite alloys, the special quasi-
random structures (SQS) method23 is applied to build periodic
structures that make the rst nearest-neighbor shells as similar
to the target random alloy as possible. The SQS can be consid-
ered the best possible periodic supercell representing a given
mixed-composition perovskite. The distribution of different
types of mixing across our dataset is shown in Fig. 1(b). For
simplicity, only one type of mixing at a time is considered in this
study; that is, mixing is not performed at multiple (A/B/X) sites
simultaneously. In total, we performed GGA-PBE computations
Fig. 1 (a) Chemical space of ABX3 perovskites studied in this work. (b)
involved in generating the PBE and HSE datasets of three kinds of pro
spectroscopic limited maximum efficiency (SLME).

858 | Digital Discovery, 2023, 2, 856–870
on 90 pure, 126 A-site mixed, 151 B-site mixed, and 127 X-site
mixed HaPs.

Each HaP composition is simulated using a 2 × 2 × 2
supercell, which allows A- and B-site mixing to be performed in
discrete 1/8th fractions of the total site occupancy, and X-site
mixing in 1/24th fractions, though for simplicity, we restrict
X-site mixing to fractions of 3 × (1/24). At these mixing levels,
these systems may be referred to as perovskite alloys. Fig. 2
shows the distribution of various types of mixing of the 14 total
species at the A, B, and X-sites, across the dataset of 495
compounds. Since mixing is only allowed on one out of the
three sites at a time, there is a higher prevalence of the 8/8
fraction for each species. We also nd a larger occurrence of
the smallest fractions of mixing at A and B sites as compared to
intermediate fractions; overall, every type of mixing is repre-
sented within the dataset a few times. Using the procedure
presented in Fig. 1(c), we calculate the stability and optoelec-
tronic properties for the HaP dataset using both the semilocal
GGA-PBE functional and the hybrid HSE06 functionals. Ulti-
mately, we generated a dataset of 495 points at the PBE level,
and between 244 and 299 points each at the HSE–PBE + SOC
(referring to HSE + SOC on PBE relaxed structures), HSE-
Number of samples representing each kind of primary alloy. (c) Steps
perties, namely the decomposition energy (DH), band gap (Egap), and

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Distribution of the mixing fractions of various species at the A (a), B (b), and X (c) sites across the PBE dataset of 495 compounds.
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relaxed, and HSE-relaxed + SOC levels. The exact constitution of
the dataset from different levels of theory is presented in Table
1. The different number of data points from different func-
tionals is a consequence of the number of computations that
were completed within the constraints of computing resources
and researcher time, but adequate chemical diversity is main-
tained in each dataset, and as explained later, insights from
cheaper functionals can be extended to more expensive
theories.
2.2 DFT details

All DFT computations were performed using VASP version 6.2
(ref. 24–26) employing the projector augmented wave (PAW)
pseudopotentials.27,28 The Perdew–Burke–Ernzerhof (PBE)
functional within the generalized gradient approximation
(GGA)29 as well as the hybrid HSE06 (ref. 30) (a = 0.25 and u =

0.2) functionals are used for exchange–correlation energy. The
energy cutoff for the plane-wave basis is set to 500 eV. For all
PBE geometry optimization calculations, the Brillouin zone was
sampled using a 6 × 6 × 6 Monkhorst–Pack mesh for unit cells
and a 3 × 3 × 3 mesh for supercells. Using the PBE optimized
structure as input, the electronic band structure is calculated
along high-symmetry k-points31,32 to obtain accurate band gaps,
and the optical absorption spectrum is further calculated using
the LOPTICS tag, setting the number of energy bands to 1000 for
each structure. For HSE calculations, geometry optimization
was performed using only the Gamma point, and the subse-
quent electronic structure computations used a reduced 2 × 2
× 2 Monkhorst–Pack mesh. The force convergence threshold is
set to be−0.05 eV Å−1. Spin–orbit coupling is also applied to two
Table 1 Number of HaP compounds studied using each of the 4
theories applied in this work

Functional Number of data points

PBE 495
HSE-rel 299
HSE-rel-SOC 282
HSE–PBE-SOC 244

© 2023 The Author(s). Published by the Royal Society of Chemistry
types of HSE computations using the LORBIT tag and the non-
collinear magnetic version of VASP 6.2.33 We obtain optical
absorption spectra from different HSE functionals by using the
difference between the respective PBE and HSE band gaps, and
shiing the PBE-computed spectrum.
2.3 DFT computed properties

2.3.1 Decomposition energy. In this work, we estimate the
stability of any ABX3 compound based on the energy of
decomposition to all possible AX and BX2 phases. In addition,
we add a mixing entropy term for all alloys, assuming the
temperature to be 300 K. The decomposition energy (DH) is thus
calculated using eqn (1), individually from each level of theory.

DH ¼ EoptðABX3Þ �
X
i

xiEoptðAXÞ �
X
i

xiEoptðBX2Þ

þkBT

 X
i

xilnðxiÞ
!

(1)

Here, Eopt(M) refers to the total DFT energy of any compoundM,
kB is the Boltzmann constant, T is the temperature (xed to be
300 K in this work), and xi is the fraction of any particular
species mixed at the A/B/X site. The weighted sums over Eopt(AX)
and Eopt(BX2) signify that an ABX3 alloy is assumed to decom-
pose to multiple AX and BX2 phases, based on the number of
species mixed at the A, B, or X site. Taking A(B1)x(B2)1−xX3 as an
example, the decomposition energy would be calculated using
eqn (2). We assume that the “BX2” decomposition products for
B1–B2 mixed perovskite are (B1)X2 and (B2)X2.

DH
�
AðB1ÞxðB2Þ1�xX3

� ¼ EoptðAB1B2X3Þ � EoptðAXÞ � x

�EoptðB1X2Þ � ð1� xÞ � EoptðB2X2Þ
þkBTðxlnðxÞ þ ð1� xÞlnð1� xÞÞ (2)

The decomposition energy is calculated from 4 different
levels of theory, namely PBE (DHPBE), HSE-relaxed (DHHSE-rel),
HSE-relaxed-SOC (DHHSE-rel-SOC), and HSE–PBE-SOC (DHHSE-PBE-

SOC). All decomposition energy values are reported per ABX3

formula unit. Calculating DH for X-site mixed compounds
involves some additional work because of the multiple choices
Digital Discovery, 2023, 2, 856–870 | 859

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00015j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/1
6/

20
25

 8
:0

1:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
for AX and BX2 phases; more details are provided in the ESI and
in Fig. S1 and S2.†

2.3.2 Band gap. From the PBE band structure calculations
and the static HSE calculations using the 2 × 2 × 2 Monkhorst–
Pack mesh, four types of electronic band gaps are computed
in eV: PBE (EPBEgap ), HSE-relaxed (EHSE-rel

gap ), HSE-relaxed-SOC
(EHSE-rel-SOC

gap ), and HSE–PBE-SOC (EHSE-PBE-SOC
gap ).

2.3.3 Spectroscopic limited maximum efficiency (SLME).
Introduced by Yu and Zunger,34 the SLME is a convenient metric
for evaluating a semiconductor's suitability for single junction
photovoltaic (PV) absorption. In this work, SLME is calculated
considering a 5 mm sample thickness for every perovskite using
eqn (3)–(5), combining the original SL3ME.py code from Yu
et al.34 with our DFT computed absorption spectra and band
gaps.

a(E) = 1 − e−2a(E)L (3)

Here, a(E) is the DFT computed optical absorption coefficient as
a function of incident photon energy and L is the thickness of
the absorber.

J ¼ e

ðN
0

aðEÞIsunðEÞdE � J0

0
@1� e

eV
kT

1
A (4)

h ¼ Pm

Pin

¼ maxðJ � VÞ
Pin

(5)

J is the current density, Isun is the light spectrum intensity of
sunlight, and P refers to the power used to calculate SLME
Table 2 RMSE values of band gaps computed from different func-
tionals compared with experimental (Exp) values

Functional
Band gap RMSE
vs. Exp (eV)

PBE 0.78
HSE-rel 0.93
HSE-rel-SOC 0.74
HSE–PBE-SOC 0.70

Fig. 3 Comparison between the DFT computed and experimentally mea
band gaps.

860 | Digital Discovery, 2023, 2, 856–870
efficiency. Using the DFT (PBE) computed optical absorption
spectrum as well as the magnitude and type (direct or indirect)
of the band gap as input, SLME is directly calculated using an
open-source package.35 This calculation is performed using PBE
as well as the 3 different HSE functionals based on shiing the
band gap, resulting in 4 theoretical estimates of PV efficiency,
denoted as SLMEPBE, SLMEHSE-rel, SLMEHSE-rel-SOC, and
SLMEHSE-PBE-SOC (Table 2).
3 Results and discussion
3.1 Comparing DFT with experiments

In Fig. 3, we compare the various PBE and HSE calculated lattice
constant and band gap values with the corresponding experi-
mental results collected from Tao et al.36 and Almora et al.37 We
nd that the root mean square error (RMSE) of PBE lattice
constants compared to experiments is 0.27 Å, while the corre-
sponding HSE RMSE is 0.31 Å. The percentage error of PBE-
relaxed lattice constants compared to experiments is 2.21%,
and the corresponding HSE-relaxed percentage error is 3.91%.
These results show that hybrid functional-based geometry
optimization is unnecessary for obtaining accurate crystal
structure information. We note that the accuracy of optimized
geometry may be further improved by using the PBEsol func-
tional38 or by incorporating van der Waals interactions with the
PBE functional using DFT-D3 (ref. 39) or a similar approach,
especially for hybrid perovskites.

Fig. 3(b) shows that EPBEgap is generally an underestimation
compared to experiments, as expected, showing an RMSE of
0.78 eV. The corresponding RMSEs of EHSE-rel

gap , EHSE-rel-SOC
gap , and

EHSE-PBE-SOC
gap are respectively 0.93 eV, 0.74 eV, and 0.70 eV. We

nd that on average, HSE–PBE-SOC is the best approach out of
the four for reproducing band gaps, but other functionals may
be more accurate for certain types of compositions (such as
purely inorganic vs. organic–inorganic, Pb-based or Pb-free,
etc.), as will be discussed further later in this article. HSE-
relaxed band gaps are heavily overestimated and brought
down by the inclusion of SOC. It should also be noted that
phase information was not always available for certain
sured properties of the selected HaPs: (a) cubic lattice constants and (b)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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experimental data points collected from the literature, and non-
cubic phases may affect the accuracy of the computational
results here. We additionally performed a comparison for
a much smaller dataset of 9 compounds known to be cubic from
experiments; a plot showing these band gaps is presented in
Fig. S4,† and the corresponding RMSE values in Table S1† show
that EHSE-PBE-SOC

gap has a respectable RMSE against experiments of
0.4 eV. Finally, it should be noted here that the PBE RMSE is not
signicantly different from the RMSE of HSE–PBE-SOC, which
comes from the accidental accuracy of semi-local functionals
without SOC for HOIPs.16,40
3.2 Visualizing the PBE dataset

Fig. 4 presents a visualization of the PBE computed properties
across the dataset of 495 compounds. The data can be distin-
guished in terms of purely inorganic vs. hybrid organic–inor-
ganic compounds, as well as in terms of the type of mixing. A
broad range of values is observed for the three properties, which
is a testament to the chemical diversity in our dataset. DHPBE

varies from ∼−1.5 eV to ∼4 eV, with a majority of the data
points in the unstable >0 eV region, while EPBEgap goes from
∼0.5 eV to ∼5.5 eV. SLMEPBE goes from a low of 0 (when band
gaps are too large for visible range absorption) to a maximum of
0.25 (or 25% efficiency). Fig. 4(a) shows EPBEgap plotted against
DHPBE, with the shaded region showing the ranges of favor-
ability, chosen here as DHPBE < 0 eV and 1 eV < EPBEgap < 2.5 eV.

We nd that stable compositions (DHPBE < 0 eV) are
predominantly occupied by HOIPs, with a fair few pure, B-site
mixed, and X-site mixed compounds. A large number of A-site
mixed HOIPs as well as a majority of inorganic HaPs occupy
the unstable region, indicating that although the presence of
organic cations is desirable to prevent perovskite decomposi-
tion, mixing at the A-site may not always be benecial. The band
gap shows less clear trends, and as will be explained later, is
largely dependent on the type and number of specic B and X-
Fig. 4 Visualization of the PBE dataset: (a) band gap against decompositi
band gap. Different colors represent different types of mixing and differe
HOIPs. The shaded regions attempt to capture compounds with negative
larger than 15%.

© 2023 The Author(s). Published by the Royal Society of Chemistry
site ions. The region of desirable EPBEgap and DHPBE is largely
populated by HOIPs with B-site or X-site mixing. Furthermore,
Fig. 4(b) shows SLMEPBE plotted against EPBEgap , showing the
characteristic relationship that has been explored in past
studies.41,42 SLME rises initially as the band gap increases,
reaching a peak of ∼25% around EPBEgap = 1.5 eV, and subse-
quently goes down until it goes to 0 for EPBEgap >∼3 eV. The largest
SLMEPBE values are shown by pure hybrid and B-site mixed
compounds, both hybrid and inorganic.
3.3 Composition–property correlations

To obtain a qualitative understanding of how different
constituents at the A, B, and X sites contribute to the properties
of interest, we encode each compound in the dataset using a set
of descriptors and calculate the Person coefficient of linear
correlation43 between each descriptor dimension and each
property. Since all HaPs in this study are cubic or pseudo-cubic,
the essential distinguishing feature from one compound to
another is the composition or the chemical formula. Every
compound is thus encoded using two types of descriptors: a 14-
dimensional composition vector representing fractions of every
species (Cs, MA, Pb, Br, etc.) in the compound, and a 36-
dimensional “elemental properties” vector, representing
weighted averages of 12 elemental (or molecular) properties
each (such as ionic radii, electron affinity, ionization energy,
etc.) of the respective species at A, B, and X sites. A complete list
of all 50 descriptors is provided in Table SIII.†

Fig. 5(a) shows the linear correlation between composition
descriptors and PBE properties, namely lattice constant,
decomposition energy, band gap and SLME. In the heatmap,
darker red implies large positive correlation, darker blue
implies large negative correlation, and white means there is
little or no correlation. A few important relationships immedi-
ately stand out from this plot: large ions like Ba and I lead to an
increase in the lattice constant, while Cl has the reverse effect.
on energy, and (b) SLME at 5 mm thickness sample thickness against the
nt symbols are used to distinguish between purely inorganic HaPs and
decomposition energy, a band gap between 1 eV and 2.5 eV, and SLME
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Fig. 5 Pearson coefficients of linear correlation between 4 PBE computed properties and (a) 14 compositional descriptors and (b) 36 elemental
property descriptors.
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An increase in the fraction of K at the A-site increases DHPBE and
thus makes the compound more unstable, while increasing the
fraction of FA will make it more stable. B-site elements generally
have little effect on the stability, but have much larger correla-
tions with EPBEgap and SLMEPBE. While Ca, Sr, and Ba increase
EPBEgap and decrease SLMEPBE, Ge and Sn decrease EPBEgap and
increase SLMEPBE. Pb shows a large positive correlation with
SLMEPBE, which is not surprising given that FA/MA/Cs-based Pb
iodide or bromide perovskites are most common in optoelec-
tronic applications. Finally, X-site species show more modest
correlation with EPBEgap and SLMEPBE, with Br showing virtually no
correlation with the band gap, which is an effect of Br lying
between I and Cl in the band gap spectrum. The lower values of
correlation between X-site constituents and the band gap and
SLME reveal that mixing or complete substitution at the B-site
has a more signicant effect on the optoelectronic properties.
These correlations provide conrmation for some well-known
effects and some simple design principles for HaP composi-
tions with targeted properties.

Next, we calculated the linear correlations between the 36-
dimensional elemental property descriptors and the 4 PBE
properties, and the results are presented in Fig. 5(b). Once
again, it can be seen that the biggest contributors to DHPBE are
A-site properties: specically, increasing the ionic radius, ioni-
zation energy, or atomic number of A-site species makes the
compound more stable, whereas increasing the boiling point,
862 | Digital Discovery, 2023, 2, 856–870
electron affinity, or heat of vaporization makes it less stable.
The largest correlations with the lattice constant are from X-site
features, with higher electron affinity, ionization energy, or
electronegativity of the X-site constituent reducing the lattice
constant and all other properties increasing it. When it comes
to the band gap and SLME, we once again notice an over-
whelming contribution from the B-site species. Increasing the
boiling point, electron affinity, ionization energy, or electro-
negativity of B-site species helps decrease EPBEgap and increase
SLMEPBE, explaining why Pb/Sn/Ge are clearly more benecial
in PV applications than Ba/Sr/Ca at the B-site. These correla-
tions help expand our design principles based purely on the
fractions of different species and provide an opportunity to
train predictive models for various properties.16,22
3.4 Improving property predictions using HSE06 and spin–
orbit coupling

It was shown in Section 3.1 that for a set of selected HaP
compositions, while PBE-optimized lattice constants match
well with experiments, PBE band gaps are underestimated, and
HSE–PBE-SOC band gaps match better with measured values.
GGA-PBE computations are generally reliable for the structure
and stability (formation or decomposition energy) of both
hybrid and purely inorganic HaPs, but advanced levels of theory
such as the HSE06 functional or GW approximation, with the
inclusion of SOC to account for the relativistic effects of heavy
© 2023 The Author(s). Published by the Royal Society of Chemistry
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atoms such as Pb, are of paramount importance when it comes
to electronic and optical properties. Here, we perform a series of
expensive HSE calculations across the HaP dataset and report
trends and major observations, specically the effect of full
geometry optimization with HSE compared to using the PBE-
optimized structures, and the effect of incorporating SOC in
the calculation. Overall, we generate HSE datasets of the
decomposition energy, band gap, and SLME, for HSE-relaxed
(299 data points), HSE-relaxed + SOC (282 data points), and
HSE–PBE + SOC (244 data points).

A visualization of the types of mixing per A/B/X-site species is
presented in Fig. S5,† and different properties are plotted
against each other for the three types of HSE datasets in Fig. S9–
S11.† We nd similar distributions to the PBE data, with
notable differences coming from HSE band gaps being gener-
ally larger and eliminating a lot of the low SLME data points.
Very similar DH values are obtained for all compositions from
the 4 methods, showing that PBE-based stability metrics should
be more than reliable. We note here that SLME from the
different HSE functionals is obtained using the PBE-computed
optical absorption spectrum shied along the energy axis by
the difference between EPBEgap and the corresponding HSE Egap;
this is a method that helps us determine a theoretical efficiency
from HSE without performing a full optical absorption calcu-
lation using HSE. Fig. 6 presents a comparison between the
different types of HSE and PBE band gaps, dividing the data in
terms of the nature of A-site species: purely organic, purely
inorganic, or mixed organic–inorganic. While it is clear that B-
site and X-site species are the major contributors to the band
gap, we divide the data like this mainly to observe how impor-
tant HSE vs. PBE geometry optimization is for hybrid vs. inor-
ganic HaPs and the magnitudes of difference between PBE and
HSE band gaps and between using and not using SOC.
Furthermore, we observe from our dataset that HSE-relaxation
might be superuous, as HSE-relaxed lattice parameters,
decomposition energies, and band gaps largely correlate with
the corresponding PBE-relaxed values, as shown in Fig. S6–S8.†

It can be seen from the 299 data points in Fig. 6(a) that
EHSE-rel
gap is, on average, 1 eV or more greater than EPBEgap , with larger

differences appearing when A-site contains only organic
Fig. 6 Visualization of band gaps computed from various HSE06 approac
gap with SOC vs. HSE-relaxed band gap without SOC. (c) HSE–PBE with

© 2023 The Author(s). Published by the Royal Society of Chemistry
molecules; we attribute this to the larger degree of geometry
optimization from HSE in the presence of organic cations than
when only inorganic cations are present, leading to larger
differences in the band gap. Fig. 6(b) shows EHSE-rel-SOC

gap plotted
against EHSE-rel

gap for 282 data points. As expected, SOC brings
down Egap for many of the compounds, and keeps Egap the same
for many other compounds, conrming that SOC is certainly
vital for certain compositions but can be ignored in others, as
has been discussed in past studies.16,40,44 Interestingly, we
observe that for several purely inorganic HaPs with lower Egap <
3 eV, SOC signicantly reduces the gap. Next, we plot in Fig. 6(c)
EHSE-PBE-SOC
gap vs. EHSE-rel-SOC

gap for 244 data points, in an attempt to
understand the difference between HSE-relaxed and HSE-on-
PBE-relaxed band gaps (with the inclusion of SOC in both).
We nd virtually identical band gaps from both methods for all
pure inorganic HaPs, but large differences when organic cations
exist at the A-site, which can once again be explained by the
more severe geometry optimization from HSE in the latter.
While SLMEPBE peaked at around 25%, the corresponding HSE
peaks appear around 16% as a consequence of shiing the
optical absorption spectrum by the difference between the PBE
and HSE band gaps. For compounds with the highest SLMEPBE

values, EPBEgap is around 1 eV, while the corresponding HSE-rel
band gaps are higher and the HSE-rel + SOC and HSE–PBE-
SOC are lower. These band gap differences take SLMEHSE

lower than the PBE peak. This effect holds for all compounds
with SLMEPBE > 15%, such that SLMEHSE following the band gap
shi always tends to be lower and peaks at 15 to 16%.

Finally, we examine the relationships between HaP composi-
tion and various types of band gaps discussed above, by calcu-
lating Pearson coefficients of linear correlation. Fig. 7 shows the
correlations for ve types of properties, namely EPBEgap (PBE Gap),
EHSE-rel
gap (HSE Gap), EHSE-rel-SOC

gap (SOC Gap), EHSE-rel
gap − EPBEgap (D(HSE–

PBE)), and EHSE-rel-SOC
gap − EHSE-rel

gap (D(SOC-HSE)). For the rst three
quantities, we nd virtually identical behavior, and it can be
concluded that various A/B/X-site species have the same
increasing or decreasing inuence on any PBE or HSE Egap.
Correlations with the (HSE–PBE) Egap difference values show that
certain constituents such as FA, Cs, Sn, or I could have marginal
inuence, but the differences are largely uniform across the
hes: (a) HSE-relaxed band gap vs. PBE band gap. (b) HSE-relaxed band
SOC band gap vs. HSE-relaxed with SOC band gap.
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Fig. 7 Pearson coefficients of linear correlation between various types
of band gaps and the 14 compositional descriptors. HSE gap refers to
the HSE-relaxed band gap, SOC gap refers to the HSE-relaxed with
SOC band gap, D(HSE–PBE) is the difference between PBE and HSE-
relaxed band gaps, and D(SOC-HSE) is the difference between the
HSE-relaxed band gap with and without SOC.
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dataset. The effect of SOC is very evident in the correlation
analysis for EHSE-rel-SOC

gap − EHSE-rel
gap . While A-site species have no

inuence here, Pb has by far the highest negative correlation, Ge
has a slightly positive correlation, and I has a slightly negative
correlation. We conclude that the inclusion of SOC is of utmost
importance for Pb-based HaPs, and Egap values will be signi-
cantly lower (and more accurate) when using SOC. Fig. S12–S14†
present the complete correlation analysis for all properties
computed from the three types of HSE functionals and the 50-
dimensional descriptors introduced earlier, showing very similar
trends as compared to the PBE dataset.

3.5 Deviation from cubicity

As alluded to earlier, some of the PBE and/or HSE geometry
optimization calculations, especially when multiple organic
cations are present in the HaP supercell, could lead to signicant
distortions of the cubic perovskite structure. Beyond the use of
a perfectly cubic supercell as the starting geometry, the cubic
shape is not enforced in the computations, but a vast majority of
the structures in the dataset are cubic or pseudo-cubic. Here, we
investigate how far any structure deviates from an acceptable
pseudo-cubic shape, and use this information to subsequently
screen out severely deformed, visibly non-cubic, or non-perov-
skite phases, even if the energy may be low. We dene a metric
known as Deviation from Cubicity (DC), estimated by how
different �b and �c lattice constant values are compared to lattice
constant a, as shown in eqn (6). Similarly, an angular deviation is
calculated by measuring how different angles a, b, and g are
from 90°, as shown in eqn (7). DC values greater than 10% for the
lattice constant and greater than 5% are considered too non-
cubic and excluded during the screening process, which will be
explained in a later section.

DCb ¼ jb� aj
a

(6)

DCa ¼ a� 90�

90�
(7)

DCavg ¼ DCb þDCc þDCa þDCb þDCg

5
(8)
864 | Digital Discovery, 2023, 2, 856–870
Fig. 8(a) shows DHPBE plotted against the average deviation
from cubicity (DCavg), calculated using eqn (8). Fig. S15 and
S16† show individual plots of DHPBE against DC corresponding
to �b, �c, a, b, and g. It can be seen that ∼90% of the compounds
show a DCavg of <2%, reinforcing condence in the cubic/
pseudo-cubic nature of a majority of the dataset. Around 20
compounds show a DCavg of >5%, and all of them are HOIPs
with A-site, B-site, or X-site mixing. The non-symmetricity
introduced in the supercell when large organic molecules are
mixed with other organic or inorganic cations, and when
complex mixing is performed at the B or X sites in the presence
of large organic cations, leads to elongation, contraction, or
twist along one or more directions. A consequence of the high-
throughput nature of our computational work is the inability to
visually examine the cubicity of every structure: the current
analysis helps reveal some unfavorable deviations in certain
compounds, which will be used as one of the factors while
determining suitable compositions in terms of perovskite
formability, stability, and optoelectronic properties. It should
be noted that larger DCavg values tend to correspond to negative
DHPBE, but despite their stability from DFT, such compounds
have a non-perovskite like phase and are thus excluded from
current screening and saved for future analysis.
3.6 Comparing perovskite formability factors with
decomposition energy

The formability of an ABX3 perovskite is typically predicted
using the Goldschmidt tolerance and octahedral factors, which
depend on the ionic radii of A, B, and X-site species. In recent
years, there have been newer factors devised through analysis of
large quantities of experimental and computational perovskite
data, oen using machine learning techniques;22 one such
factor was suggested by Bartel et al.7 Here, we utilize three
factors, namely the traditional tolerance factor (t), the octahe-
dral factor (o), and the Bartel tolerance factor (tB), dened using
eqn (9)–(11) respectively, to quantify the formability of all
perovskites in our dataset and compare these values with DFT
computed DH. For compounds with mixing, the weighted
averages of A-site (rA), B-site (rB), and X-site (rX) radii are
considered.

Octahedral factor:

o ¼ rB

rX
(9)

Tolerance factor:

t ¼ rA þ rXffiffiffi
2

p ðrB þ rXÞ
(10)

Bartel7 tolerance factor:

tBartel ¼ rX

rB
�

2
6641�

rA

rB

ln

�
rA

rB

�
3
775 (11)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 The PBE computed decomposition energy plotted against (a) average deviation from cubicity, (b) Goldschmidt tolerance factor, (c) Bartel
tolerance factor, and (d) octahedral factor. The vertical and horizontal dashed lines aim to distinguish between negative and positive decom-
position energies and highlight desirable ranges of other quantities, namely DCavg < 5% (a), t ˛ (0.813–1.107) (b), tB < 4.18 (c), and o ˛ (0.442–
0.895) (d).
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The suggested ranges for perovskite formability are o ˛
(0.442–0.895), t ˛ (0.813–1.107), and tB < 4.18. Fig. 8(b)–(d)
respectively show t, tB, and o values for the entire dataset plotted
against DHPBE. It can be seen that there is a roughly inverse
relationship between t and DHPBE, which is to be expected as
larger values of t mean more favorable perovskite formability
and should thus also correspond to negative decomposition
energies. A small number of compounds lie in the t > 1.1 range
and also show negative DHPBE; upon closer inspection, we nd
that they are HOIPs with signicantly distorted structures
showing large deviation from cubicity. One example of such
a compound is FAGeBr2.25Cl0.75, which has t = 1.13 and DHPBE

=−1.06 eV, but a highly distorted PBE optimized structure with
DCb = 16.4%. Fig. 8(c) shows that essentially all HaP compo-
sitions with negative DHPBE fall within the desirable tB < 4.18
region. Similarly, Fig. 8(d) shows that nearly all compounds
with negative DHPBE lie in the desirable range of o values,
barring a very small number of distorted structures. It should be
noted from Fig. 8(b)–(d) that hundreds of compositions that
satisfy the formability factor conditions show positive (oen
© 2023 The Author(s). Published by the Royal Society of Chemistry
very large positive) DHPBE values, which means that they will
easily decompose to other halide phases. Our observations
point to the idea that such factors may be necessary but not
sufficient conditions for perovskite formability and stability.
3.7 High-throughput screening of compositions with
favorable properties

So far, we have visualized and analyzed an HT-DFT dataset of
HaP alloys using PBE and multiple HSE functionals. In per-
forming an initial screening of candidates with promise for
single-junction solar absorption, we must consider DH (a
necessary but not complete description of perovskite stability),
Egap, and SLME; in addition, established perovskite formability
factors as well as deviation from cubicity should be considered.
We note here that the DFT dataset covers as wide a composi-
tional spectrum of HaPs as possible, within the 14-dimensional
chemical space. There are, of course, innumerable composi-
tions that could be generated which are intermediate to those
currently being studied, such as by mixing in fractions other
Digital Discovery, 2023, 2, 856–870 | 865
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than n/8 (where n is a positive integer), which may require
simulations in larger supercells and potentially lead to even
more desirable combinations of properties. We tackle this issue
in future studies by building upon our current dataset and
applying state-of-the-art ML algorithms for prediction and
inverse design. For the moment, we use the criteria/properties
described in the previous section to screen for promising
materials within the DFT datasets.

We apply the following screening criteria on the PBE dataset:
1. Formability: o ˛ 0.442–0.895, t ˛ 0.813–1.107, and tB < 4.18.
2. (Pseudo) cubicity: DCb < 10%, DCc < 10%, DCa < 5%, DCb <

5%, and DCg < 5%,
3. Thermodynamic stability: DHPBE < 0 eV. Negative DH is

a necessary but not complete metric for preventing ABX3

decomposition to phases AX and BX2; decomposition could
occur to other phases, and the effects of kinetics, ion segrega-
tion, defects, etc. are ignored in this work.

4. Band gap: EPBEgap ˛ 1–2.5 eV. PV-suitable band gaps lie close
to 1.5 eV. We use a wide range here to account for the various
inadequacies of the PBE band gap description: it will underes-
timate gaps of inorganic compounds but either accidently be
accurate or slightly overestimate the gaps of HOIPs: this effect
has been studied in prior studies.16,40

5. PV efficiency: SLMEPBE > 0.10. This criterion goes hand-in-
hand with the band gap requirement, as it can be seen from
Fig. 4(b) that the highest SLME values correspond roughly to the
band gap range described above.
Fig. 9 Screening methodology applied on the PBE dataset, yielding 32 c
show negative decomposition energy, and PV-appropriate band gaps and
screened list of compounds.

866 | Digital Discovery, 2023, 2, 856–870
Fig. 9 shows our ve-fold screening process, based on which
we obtain 32 candidates (out of 495) that fulll each require-
ment. Also shown is a pie chart with the distribution of various
types of mixing in the screened list of compounds. It can be
seen that a majority of the screened compounds, 19 in total, are
B-site mixed, and there are only 6 unalloyed compositions.
Fig. 10 further shows the relative distributions of various A-site,
B-site, and X-site species. We nd that MA followed by FA is by
far the most common A-site cation, oen occupying all of the A-
site (8/8 mixing fraction), followed by Cs and Rb. There are no
pure K-based compounds; K, as well as Rb and Cs, occur in
small fractions in some of the compounds. Pb and Sn appear in
an overwhelming majority of the compounds, with Ge, Ca, Sr,
and Ba only occurring in smaller fractions of 3/8 or less. This is
consistent with the observation that Pb and Sn, and sometimes
Ge, are most benecial for ideal optoelectronic properties,
whereas Ca/Sr/Ba should occur in minor fractions to keep the
band gap small. Pb has a high preference for 7/8 and 8/8
occupation, hinting at the difficulty in developing Pb-free
perovskites with ideal properties. At the X-site, Br and I
without any mixing are most common, and in the 4 compounds
with X-site mixing, I, Br, and Cl are found in various fractions.

We performed a similar screening procedure using the HSE–
PBE-SOC dataset, which was found to compare best with
experiments for the band gap. Applying the very same criteria as
shown in Fig. 9 leads to a list of 14 stable and formable
compounds with desirable band gaps and SLME, out of which 4
andidates that satisfy all perovskite formability and cubicity conditions,
SLME. The pie chart shows the distribution of various alloy types in the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Distribution of mixing fractions of various species at the A (a), B (b), and X (c) sites across the list of 32 promising compounds selected
from the PBE dataset.
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are pure unalloyed compounds, 1 is (purely inorganic) A-site
mixed, 8 are B-site mixed, and 1 is X-site mixed. Distributions
of the types of mixing fractions of various species in this
screened list of compounds are shown in Fig. S17.† Although
the HSE–PBE-SOC screened list is much smaller than the PBE
Fig. 11 HSE–PBE-SOC calculated electronic band structures, optical
absorption spectra, and SLME vs. sample thickness (inset) plots for
three promising compounds, namely (a) CsPbBr3, (b) CsPbI0.75Br2.25,
and (c) MACa0.125Sn0.75Pb0.125I3.

© 2023 The Author(s). Published by the Royal Society of Chemistry
screening list due to a smaller overall dataset, some similar
trends are found in both screening procedures. B-site mixing is
most prevalent, as is high fractions of Pb, and sometimes Sn
and Ge, at the B-site. Ca/Sr/Ba prefer mixing in small fractions.
Most compounds are MA-based and nearly all of them contain
Br or I. We note that our conclusions on the populations of
different species and types of mixing in the screened set of
compounds may change slightly in the future if a much larger
dataset is available, such as via machine learning-based
predictions.

The entire screened lists of compounds from PBE and HSE–
PBE-SOC are presented in Tables SII and SIII† respectively,
along with their chemical formula and (PBE or HSE–PBE-SOC)
computed DH, Egap, and SLME at 5 mm sample thickness.
Interestingly, all the compounds in the HSE–PBE-SOC list
appear in the PBE list as well. Three of the best performing
compounds are selected and their HSE–PBE-SOC computed
electronic band structures, optical absorption spectra, and
SLME vs. sample thickness plots are pictured in Fig. 11. These
compounds, namely CsPbBr3, CsPbI0.75Br2.25, and MACa0.125-
Sn0.75Pb0.125I3, show direct band gaps around 1.5 eV and SLME
> 15% in their cubic or pseudo-cubic phases.
4 Prospects and future work

What we reported in this work is one of the largest DFT datasets
to date of pseudo-cubic HaP alloys containing some of the most
commonly used cation and anion species. These data enabled
us to understand the dependence of stability and optoelectronic
properties on perovskite composition, specically the type of
mixing. However, this work is the rst step in a very long process
that will involve extensions to non-cubic phases, other proper-
ties of interest, more improved levels of theory, alternative
cation and anion choices, and other perovskite forms such as
double perovskites and 2D perovskites, ultimately leading to
more universal prediction, screening, and design. It is impor-
tant to note that while the bulk stability, band gap, and theo-
retical single-junction PV efficiency provide essential
parameters for initial screening of PV-relevant HaPs, extensions
need to be made to other crucial properties, including electron
and hole transport properties, formation energies and
Digital Discovery, 2023, 2, 856–870 | 867
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electronic levels of point defects, and the behavior of relevant
perovskite surfaces and interfaces.

In our work, the immediate next extension is towards non-
cubic perovskite phases. For instance, CsPbBr3 may prefer the
orthorhombic phase, while MAPbI3 and MA(Pb–Sn)I3 may
assume the tetragonal phase, and this work considers all such
compounds only in a cubic or pseudo-cubic rendition. In
previous work,16 it was shown that for the same composition,
unalloyed or with mixing, changing the phase could modify
the band gap by 0.5 eV or more in many cases. Cubic perov-
skite phases are oen not the ground state, and are in many
cases very unstable—as indicated by the large positive
decomposition energies for many compounds in our dataset.
Non-cubic phases are either the most stable, or metastable/
competing phases for most of the compositions studied in
this work. Currently, we have high-throughput computations
ongoing for tetragonal, orthorhombic, and hexagonal phases
of several mixed HaPs; the perovskite phase itself can be added
as an input to the compositional and elemental descriptors to
obtain new correlations. In addition, computations are being
performed for further tailoring of properties by accessing
polymorphs within each phase, e.g., via octahedral distortion
and rotation,45 or via re-optimization of the same composition
in larger supercells with slight distortions.46 As an example,
plots showing the computed decomposition energy for
selected perovskites with varying degrees of octahedral
distortion as well as in different prototypical phases are pre-
sented in Fig. S18 and S19;† it can be seen that some amount
of distortions can keep the perovskite stable, the cubic phase
is not always the ground state, and sometimes the range of
decomposition energies for a given composition can be quite
broad.

We further anticipate signicant improvements in DFT
predictions of various properties. Our attempt to utilize a few
different functionals to benchmark properties against experi-
ments was hindered by a number of factors discussed in the
manuscript, including the perovskite phase and lack of addi-
tional corrections. Our ongoing computations involve testing
the inuence of the PBEsol38 and PBE-D3 (ref. 39) functionals,
combined with static HSE06 or GW computations with SOC,47

for better optical and electronic properties. Furthermore, the
inclusion of new types of elemental or molecular species – such
as transition metals (Cd, Zn, Ni, etc.) at the B-site would
necessitate the use of specic levels of theory, such as GGA +
U.48 The consideration of other important properties, such as
defect formation energies and carrier mobilities, would involve
testing and deploying multiple functionals as well.

It should be noted again that there might not be one best
functional that works for the entire chemical space when
considering organic vs. inorganic A-site cations, and Pb/Sn vs.
other B-site cations. A likely solution is the use of an ensemble
of functionals as well as experimental estimates (which might
need to be averaged as well, given the range of values generally
reported by different experimental researchers for the same
materials) for hundreds of HaP compositions, and training of
multi-delity ML models.49 Large quantities of low-delity data
combined with more modest amounts of high-delity data can
868 | Digital Discovery, 2023, 2, 856–870
lead to highly accurate predictions of experiment-level property
estimates.

In general, ML has a massive role to play here, as has been
demonstrated for HaPs in multiple prior studies.16,22 Concur-
rent manuscripts are planned to report rigorously optimized
predictive models for multiple properties and delities, based
on the datasets and descriptors discussed in this work. Such
models can easily be extended to new choices for A/B/X ions
such as transition metals,16 as well as other phases, by addition
of new dimensions to the descriptors. The inclusion of more
general crystalline structure representations as inputs for ML,
such as using crystal graphs and graph neural networks,50–52

would be essential for treating same compositions and struc-
tures with a variety of distortions or lattice strains. Once
composition-based and/or structure-based ML predictive
models are rigorously optimized and validated, they could be
deployed for the prediction of over thousands of ABX3

compounds available in databases such as the Materials
Project53 or Open QuantumMaterials Database,54 as well as over
millions of hypothetical materials, for prediction, screening,
and discovery. Finally, inverse design techniques, such as using
the genetic algorithm55 or generative neural networks,56 could
be applied upon the DFT-ML surrogate models to drive the
efficient discovery of new HaP compositions/structures with
multiple desired properties. For instance, our ongoing work
involves generating populations of novel HaP compositions
using GA while optimizing a tness function that includes
metrics for chemical feasibility, negative DH, Egap between 1
and 2 eV, and SLME > 15%; this process can yield thousands of
promising compounds beyond the scope of the current work
and beyond brute-force enumeration. The dataset and analysis
presented in this work serve as a springboard for efforts that are
currently underway, to ultimately accelerate the prediction and
design of novel perovskites for optoelectronics and to extend
such approaches to other material classes and applications.

5 Conclusions

In this work, we present a high-throughput DFT dataset of
pseudo-cubic ABX3 halide perovskite alloys, with mixing of
multiple ions permitted at the A, B, or X sites, using the GGA-
PBE functional and three types of hybrid HSE06 approaches.
This dataset contains 495 unique compositions with PBE
computed decomposition energies, band gaps, and spectro-
scopic maximum limited efficiencies (SLME) from the optical
absorption spectra, and the same properties for 299 compounds
from full HSE relaxation, 282 compounds from HSE relaxation
with spin–orbit coupling (SOC), and 244 compounds from static
HSE computations on PBE relaxed structures with SOC. Pearson
correlation analysis reveals the extent of positive or negative
correlation of the amount of any A/B/X species as well as their
well-known elemental/molecular properties with the computed
stability and optoelectronic properties, reproducing known
trends and unraveling interesting new relationships. Screening
is performed for materials resistant to decomposition, with
photovoltaic-suitable band gaps and high SLME, as well as
including other perovskite formability factors such as
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Goldschmidt tolerance and octahedral factors and the deviation
of the perovskite structure from cubicity, to obtain 32 promising
compounds from PBE and 14 from HSE–PBE-SOC. This work
forms the basis for predictive machine learning models which
will accelerate the design of novel perovskites with attractive
properties.
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(1) All Density Functional Theory (DFT) computations are
performed using the Vienna Ab initio Simulation Package
(VASP), version 6.2. The soware can be found at https://
www.vasp.at/.

(2) Starting structures for this work, as well as a subset of
reported structures and properties, can be found in our
previous publication: A. Mannodi-Kanakkithodi and M. K. Y.
Chan, Energy Environ. Sci., 2022, 15, 1930–1949, https://doi.org/
10.1039/D1EE02971A.

(3) Tabulated data and scripts for extracting all properties of
perovskites are available on our Github repo: https://
github.com/yjq829/perovskite_dataset.git. The Tabulated data
is also provided as an .xlsx le in the supporting documents.

(4) The code for calculating Spectroscopic Limited Maximum
Efficiency (SLME) analysis can be found at https://github.com/
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17 I. E. Castelli, J. M. Garćıa-Lastra, K. S. Thygesen and

K. W. Jacobsen, APL Mater., 2014, 2, 081514.
18 H. Park, R. Mall, F. H. Alharbi, S. Sanvito, N. Tabet,

H. Bensmail and F. El-Mellouhi, Phys. Chem. Chem. Phys.,
2019, 21, 1078–1088.

19 W. Pu, W. Xiao, J.-W. Wang, X.-W. Li and L. Wang, Mater.
Des., 2021, 198, 109387.

20 J. C. Stanley, F. Mayr and A. Gagliardi, Adv. Theory Simul.,
2020, 3, 1900178.

21 B. D. Lee, W. B. Park, J.-W. Lee, M. Kim, M. Pyo and
K.-S. Sohn, Chem. Mater., 2021, 33, 782–798.

22 J. Yang and A. Mannodi-Kanakkithodi, MRS Bull., 2022, 47,
940–948.

23 Z. Jiang, Y. Nahas, B. Xu, S. Prosandeev, D. Wang and
L. Bellaiche, J. Phys.: Condens. Matter, 2016, 28, 475901.

24 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–
11186.

25 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558–561.
26 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6,

15–50.
27 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758–1775.
28 G. Kresse and J. Hafner, J. Phys.: Condens. Matter, 1994, 6,

8245–8257.
29 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,

1996, 77, 3865–3868.
Digital Discovery, 2023, 2, 856–870 | 869

https://www.vasp.at/
https://www.vasp.at/
https://doi.org/10.1039/D1EE02971A
https://doi.org/10.1039/D1EE02971A
https://github.com/yjq829/perovskite_dataset.git
https://github.com/yjq829/perovskite_dataset.git
https://github.com/ldwillia/SL3ME.git
https://github.com/ldwillia/SL3ME.git
https://doi.org/10.1103/PhysRevLett.108.068701
https://doi.org/10.1103/PhysRevLett.108.068701
https://petreldata.net/mdf/detail/abx3_perovs_alloys_v1.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00015j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/1
6/

20
25

 8
:0

1:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
30 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys.,
2003, 118, 8207–8215.

31 Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba and I. Tanaka,
Comput. Mater. Sci., 2017, 128, 140–184.

32 A. M. Ganose, A. J. Jackson and D. O. Scanlon, J. Open Source
Sow., 2018, 3, 717.

33 S. Steiner, S. Khmelevskyi, M. Marsmann and G. Kresse,
Phys. Rev. B, 2016, 93, 224425.

34 L. Yu and A. Zunger, Phys. Rev. Lett., 2012, 108(6), 068701.
35 L. Williams, Sl3me – a Python3 Implementation of the

Spectroscopic Limited Maximum Efficiency (SLME) Analysis of
Solar Absorbers, https://github.com/ldwillia/SL3ME.

36 S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz
and S. Olthof, Nat. Commun., 2019, 10, 2560.

37 O. Almora, D. Baran, G. C. Bazan, C. Berger, C. I. Cabrera,
K. R. Catchpole, S. Erten-Ela, F. Guo, J. Hauch,
A. W. Y. Ho-Baillie, T. J. Jacobsson, R. A. J. Janssen,
T. Kirchartz, N. Kopidakis, Y. Li, M. A. Loi, R. R. Lunt,
X. Mathew, M. D. McGehee, J. Min, D. B. Mitzi,
M. K. Nazeeruddin, J. Nelson, A. F. Nogueira,
U. W. Paetzold, N.-G. Park, B. P. Rand, U. Rau,
H. J. Snaith, E. Unger, L. Vaillant-Roca, H.-L. Yip and
C. J. Brabec, Adv. Energy Mater., 2021, 11, 2002774.

38 G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen,
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