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Gradient-domain machine learning (GDML) force fields have shown excellent accuracy, data efficiency, and
applicability for molecules with hundreds of atoms, but the employed global descriptor limits transferability
to ensembles of molecules. Many-body expansions (MBEs) should provide a rigorous procedure for size-
transferable GDML by training models on fundamental n-body interactions. We developed many-body
GDML (mbGDML) force fields for water, acetonitrile, and methanol by training 1-, 2-, and 3-body models
on only 1000 MP2/def2-TZVP calculations each. Our mbGDML force field includes intramolecular
flexibility and intermolecular interactions, providing that the reference data adequately describe these
effects. Energy and force predictions of clusters containing up to 20 molecules are within
0.38 kcal mol™ per monomer and 0.06 kcal (mol A)~* per atom of reference supersystem calculations.
This deviation partially arises from the restriction of the mbGDML model to 3-body interactions. GAP and
SchNet in this MBE framework achieved similar accuracies but occasionally had abnormally high errors
up to 17 kcal mol™. NequlP trained on total energies and forces of trimers experienced much larger
energy errors (at least 15 kcal mol™) as the number of monomers increased—demonstrating the
effectiveness of size transferability with MBEs. Given these approximations, our automated mbGDML
training schemes also resulted in fair agreement with reference radial distribution functions (RDFs) of
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1 Introduction

Machine learning (ML) potentials and force fields'™ have revo-
lutionized atomistic modeling by facilitating larger and longer
simulations crucial for modeling dynamic and kinetic proper-
ties.*® General-purpose ML potentials (e.g., ANI-2x,° OrbNet
Denali,” AIQM1 ) model chemical (local) interactions and can
be useful for subsets of chemical space. These approaches assist
molecular screening but require enormous data sets of
hundreds of thousands of structures. Alternatively, ML poten-
tials can be tailored to specific systems to improve desired
simulation reliability. This requires that models be retrained for
each system, so training must involve minimal human
involvement and computations to be practical.

Size transferability to hundreds of molecules is paramount
for useful ML potentials. Most ML potentials rely on local
descriptors®** or graph neural networks (GNNs)“'* that
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partition total properties into atomic contributions. Local
descriptors have been successful in numerous applications, but
they inherently neglect or limit complicated non-local interac-
tions by enforcing atomic radial cutoffs. For example, a recent
study showed that a deep neural network potential's predictions
of liquid water properties are sensitive to training data relevant
to the thermodynamic state point.** Global descriptors (such as
the Coulomb matrix and pairwise atomic distances) impose no
such constraints and capture interactions at all scales.**"” Still,
they are usually restricted to the same number of atoms.
Gradient-domain ML (GDML) uses a global descriptor and
has demonstrated remarkable success in many chemical
applications with monomers or dimers.*** Moreover, GDML
only needs energies and forces of approximately 1000 structures
to accurately learn the potential energy surfaces of molecules®
and periodic materials.” The global descriptor limits GDML to
the same system it was trained on, whether a single molecule or
a chemical reaction. Size-transferable GDML for molecular
ensembles would provide rapidly trained force fields for high-
quality molecular simulations involving solvents.
Many-body expansions (MBEs) should enable
transferable GDML because systems with non-covalent clus-
ters are naturally described in terms of n-body interactions.>>**
Data-driven, many-body potentials (e.g., MB-pol) have already

size-
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been widely successful in modeling aqueous systems.>*” This
expansion is formally exact if all N-body interactions are
accounted for with sufficient accuracy and precision. However,
the expansion is typically truncated to the third order due to
combinatorics. One can avoid truncating the expansion and
include all contributions by using a classical many-body
polarization model (e.g., a Thole-type model as in MB-pol*).
We expect training on fundamental n-body interactions found
in clusters would extend GDML force fields to be useful for bulk
liquid simulations. Alternative approaches exist; for example,
Gaussian Approximation Potential (GAP)*'* was extended to
liquid methane by decomposing energies into fundamental
interactions (e.g., repulsion, dispersion, and electrostatic
contributions) and different length scales.”® This is another
rigorous approach that requires considerable effort with large
numbers of quantum chemical calculations.

MBEs share characteristics with local descriptors but provide
several key advantages. First, n-body interactions are more
efficiently treated on a molecular basis instead of an atomic
basis. Second, errors associated with MBE truncation can be
corrected using a variety of schemes. For example, using long-
range physical models to capture induction and dispersion
effects.”®®®  Alternatively, one could wuse ONIOM-style*
approaches such as molecules-in-molecules (MIM)** and
molecular tailoring approach (MTA)* where low-cost calcula-
tions on the whole structure (ie., supersystem) are used to
capture all long-range interactions. Third, these n-body contri-
butions can be observed in relatively small clusters. Local
descriptors require data on large clusters to achieve similar
levels of size transferability.** This opens the door for many-
body GDML (mbGDML) force fields trained on high levels of
theory that scale poorly with system size, such as CCSD(T). In
addition, mbGDML naturally incorporates intramolecular/
monomer flexibility, which is extremely challenging for analyt-
ical potentials.

Thus, mbGDML should provide size-transferable force fields
trained on highly accurate quantum chemical methods. To
evaluate this, we developed an automated framework in Python
to facilitate training and application of mbGDML force fields
(available at https://github.com/keithgroup/mbGDML). GDML
force fields for water (H,O), acetonitrile (MeCN), and
methanol (MeOH) were trained on 1000 structures for 1-, 2-,
and 3-body interactions. GAP and SchNet*® were also
evaluated in this many-body framework. The size trans-
ferability of mbGDML was further assessed against a highly
promising graph neural network, Neural Equivariant Inter-
atomic Potentials (NequlP)."* Reference structures from the
literature were used to benchmark energy and forces predic-
tions. The following sections demonstrate mbGDML energy and
force accuracies within 0.38 kcal mol ™" per monomer and 0.06
keal (mol A)™ per atom for structures containing up to 20
monomers (120 atoms). The MBE framework itself contributes
14% to 83% of these errors depending on the system. Error
cancellation dramatically improves relative energy predictions
of mbGDML to less than 3 kcal mol™" and achieves fair to
excellent agreement with solvent radial distribution functions
(RDFs).
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2 Methods

The MBE represents the total system energy, E, composed of N
noncovalently connected (i.e., non-intersecting) fragments as
the sum of n-body interaction energies:**

E= XN:E,-W + XN: AE;@ XN: AE;S + ... (1)

i<j i<j<k

Here, N is the number of monomers; i, j, k are monomer indices;
Ei(l) is the energy of monomer 7; and AE ;. () represents the n-
body interaction energy contribution of the fragment contain-
ing monomers i, j, ... with lower order (<n) contributions
removed. For example, the 2-body contribution of the fragment
containing monomers i and j is

AEU(Z) — Eij(2) _ Ei(l) _ Ej(l) (2)
and the 3-body contribution with monomers i, j, and k are

AEijk(3) — E[j/\’(3) _ AE{/(Z) o AEl_k(z) _ AE/‘k(Z)
_ Ei(l) _ E/(l) _ Ek(l) (3)

Eqn (1) is exact when all n-body contributions up to N are
accounted for with exact accuracy and precision. This equation
also holds for properties expressed as a derivative of energy (i.e.,
gradients).

The XTB program® v6.4.0 was used to run molecular
dynamics (MD) simulations of the three solvents at 500 K. Small
clusters containing up to three molecules were sampled from
these simulations to generate data sets for training. Higher
temperatures provided configurations relevant at lower
temperatures with the added benefit of sampling high-energy
regions.”> GFN2-xTB,*® a semiempirical quantum mechanics
method, was used as a compromise between the cost of
quantum chemical methods and potentially not having clas-
sical force field parameters for species of interest. Furthermore,
simulation accuracy is not a significant concern because only
reasonable geometries are desired at this stage.

Eqn (1) represents the MBE framework where individual
GDML force fields are trained on intramolecular (i.e., 1-body)
and intermolecular (ie., 2- and 3-body) energies and forces.
Energies and forces were calculated with ORCA v4.2.0 (ref. 39
and 40) using second-order Mgller-Plesset perturbation (MP2)
theory,* the def2-TZVP basis set,*” and the frozen core
approximation. This level of theory was chosen for its efficiency
and accuracy for noncovalent interactions, but future applica-
tions of mbGDML are recommended to use the highest levels of
quantum chemical theory available for training data. The
Resolution of Identity (RI) approximation was only used for
calculations containing 16 or more monomers. Additional
calculation details and discussion can be found in the ESIL.}

3 Results and discussion

3.1 Small isomers

We evaluated mbGDML, mbGAP, and mbSchNet on tetramers
(4mers), pentamers (5mers), and hexamers (6mers) from the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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literature.”*** These test structures have minimal higher-order
(>3-body) contributions that increase with the number of
monomers. Furthermore, many-body ML (mbML) potentials
considered here implement a distance-based cutoff for 2- and 3-
body contributions (see the ESI for more detailst). Small clus-
ters allow us to determine whether errors are from the under-
lying MBE framework or ML predictions.

ML potentials discussed here are trained on small data sets
of only 1000 structures to showcase GDML data efficiency.
Training sets were determined through an iterative training
procedure to reduce the maximum model error.** GAP and
SchNet models were trained on the same training sets as GDML
for a fair comparison. In theory, training sets could be tailored
for GAP and SchNet to reduce errors; however, a cursory attempt
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did not substantially improve results. We reiterate that GAP and
SchNet normally require substantially large training sets. In
other words, GAP and SchNet potentials presented here are
technically underfitted compared to standard practices. More
information can be found in the ESL}

Fig. 1 shows relative isomer energies with respect to the
lowest energy structure for MBE (light color) and mbGDML
(dark color) methods. The ESIt provides comparable figures for
mbGAP and mbSchNet. Figures showing absolute energy
predictions for these structures are also shown in the ESI and
help determine where error cancellation comes into play. First,
we discuss the inherent errors in MBE data versus supersystem
MP2 data (gray). These MBE predictions generally capture the
relative energy trends of water, acetonitrile, and methanol

6mer Isomers

Fig. 1 Relative energies of isomers containing four, five, and six monomers of (A—C) water, (D—F) acetonitrile, and (G-1) methanol. Gray dashed
lines are the reference MP2/def2-TZVP calculations. Light-colored lines with squares are MBE predictions calculated with MP2/def2-TZVP with
no distance-based cutoffs for 2- and 3-body predictions. Dark-colored lines with circles are mbGDML predictions. Different y-axis scales are

used for each subplot to enhance visualization.
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isomers. Water predictions showed increasing errors with
system size, indicating the importance of higher-order contri-
butions (as expected). Acetonitrile 5mers and 6mers (Fig. 1D-F)
show small energy differences that are not monotonically
increasing. This is likely due to challenging electrostatics and
polarization from dipole-dipole interactions. Methanol isomer
MBE predictions showed this same trend as water, but higher-
energy structures now exhibit lower MBE errors. This suggests
that higher-order contributions are crucial for stabilizing low-
energy methanol structures. Incomplete basis sets and basis
set superposition errors (BSSE) are known to impact MBE
accuracy.”’~**> The def2-TZVP basis set was chosen for its balance
of cost and accuracy, as the larger aug-cc-pVTZ basis set only
improved the energy MAE by 0.15 kcal mol™". BSSE corrections
are not included here because the n-body energies and forces
would depend on the original supersystem—thereby limiting
data set transferability.

We now discuss mbGDML data, which approximates the
MBE potential energy surface. In general, mbGDML reasonably
mimics MBE data, including innate errors made by the MBE
framework, as seen in the acetonitrile 5mer and 6mer data. Note
that fortuitous error cancellations of 2- and 3-body mbGDML
predictions sometimes give the appearance of higher accuracy
than MBE. mbGAP and mbSchNet potentials occasionally are
better or worse than mbGDML; however, as previously
mentioned, these methods generally require larger training sets
and are likely to underperform here. For example, Table 1 shows
the MBE, mbGDML, mbGAP, and mbSchNet energy and force
mean absolute errors (MAEs) with respect to supersystem MP2/
def2-TZVP calculations for all 4-6émer structures considered
here. All mbML models perform similarly for water and aceto-
nitrile, but the methanol isomer errors for mbGAP and
mbSchNet are nearly double that for mbGDML.

Previous studies also investigated mbML models for water.
Nguyen et al. use permutationally invariant polynomials (PIPs),
Behler-Parrinello neural networks (BPNNs), and GAP models
for predicting water 1, 2-, and 3-body interactions.*® Their 2-
body training set included 34 431 structures containing the
global dimer minimum, saddle points, artificially compressed
geometries, and geometries from path-integral molecular
dynamics (PIMD) simulations using HBB2-pol.>* Their 3-body

Table 1 Energy (kcal mol™) and force [kcal (mol A)~Y MAEs of 4-
6mer predictions. MAEs on an energy/monomer and force/atom basis
are italicized. Best ML potential values are bolded. Energy and forces
are abbreviated as E and F, respectively

H,O MeCN MeOH
Method E F E F E F
MBE 0.925 0.426 0.110 0.019 0.503 0.157
0.169 0.026 0.020 0.001 0.100 0.005
mbGDML 1.340 0.737 0.296 0.164 1.667 0.872
0.248 0.045 0.057 0.005 0.342 0.030
mbGAP 1.906 1.014 0.264 0.235 2.908 1.369
0.345 0.062 0.049 0.007 0.600 0.046
mbSchNet 1.285 0.690 0.368 0.168 3.138 1.177
0.237 0.043 0.070 0.005 0.648 0.040
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Table 2 Energy MAEs (kcal mol™) for 2- and 3-body interactions of
small water isomers (4—6mers) from Fig. 1A-C. Reference data were
computed with MP2/def2-TZVP. Best ML potential values are bolded

n-body Training set Method 4mers 5mers 6mers
2 1000 GDML 0.030 0.047 0.035
1000 GAP 0.014 0.012 0.015
1000 SchNet 0.013 0.012 0.013
34431° PIP 0.050 0.054 0.145
34431° BPNN 0.057 0.033 0.061
34431 GAP 0.043 0.040 0.138
3 1000 GDML 0.093 0.071 0.041
1000 GAP 0.134 0.129 0.112
1000 SchNet 0.098 0.059 0.041
10001¢ PIP 0.050 0.056 0.095
10001¢ BPNN 0.040 0.070 0.123
10 001“ GAP 0.007 0.024 0.030

% Data from ref. 53.

training set contained 10 001 structures from HBB2-pol MD and
PIMD of small water clusters, liquid water, and ice phases.
Table 2 shows 2- and 3-body interaction energy MAEs with their
models and those calculated here. The PIP, BPNN, and GAP
water models trained on large data sets achieved 2- and 3-body
interaction energy MAEs on the order of 0.033-0.145 and 0.007-
0.123 kecal mol ™, respectively. Alternatively, our GDML force
fields trained on only 1000 structures achieved MAEs of 0.030-
0.047 and 0.041-0.093 kcal mol " for 2- and 3-body interaction
energies. This shows that GDML models using small training
sets can perform similarly to well-trained potentials requiring
large training sets.*® We highlight that the GAP results from ref.
53 demonstrate substantial accuracy are
possible with more extensive training sets.

We reiterate that ML potential accuracy is intricately linked
to reference data sets, but we specifically opted to show the
promise of GDML with small training sets. In almost all cases,
the water 2-body models prepared here outperformed those
from ref. 53 that used larger training sets. Presumably, our
smaller data sets may contain structures that enhance the
perceived accuracy of these models. The 3-body data exhibit the
opposite trend, which can be attributed to data set quality. In
general, additional sampling of configurational spaces would
improve our mbML models; however, the objective here is to
evaluate ML potentials that can be trained with minimal
computational cost.

improvements

3.2 16mers

Predictions of medium-sized structures provide a straightfor-
ward test of size transferability. There are additional, albeit
typically small, higher-order contributions in larger structures.
Also, the n-body cutoffs are now in effect to reduce the number
of computations. Table 3 shows energies and forces of hex-
adecamers (16mers) from the literature®*” computed with RI-
MP2/def2-TZVP and compared against mbGDML, mbGAP, and
mbSchNet results. The truncated MBE contributes a few-
kecal mol ™" errors depending on the system. For example, the
MBE prediction of (H,0);6 results in a 3.3 kcal mol™' error

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 MBE and mbML absolute energy errors (kcal mol™) and force
MAEs [kcal (mol A)™Y] of 16mers with respect to RI-MP2/def2-TZVP.
Errors on an energy/monomer and force/atom basis are italicized. Best
ML potential values are bolded. Energy and forces are abbreviated as E
and F, respectively

(H,0)16 (MeCN), (MeOH),
Method E F E F E F
MBE 3.320 0.456 0.243 0.067 1.589 0.262
0.207 0.010 0.015 0.001 0.099 0.003
mbGDML 4.013 0.903 0.282 0.239 5.561 1.070
0.251 0.019 0.018 0.002 0.348 0.011
mbGAP 3.749 1.105 6.741 0.614 17.580 1.789
0.234 0.023 0.421 0.006 1.099 0.019
mbSchNet 4.560 0.767 16.066 0.552 3.422 1.189
0.285 0.016 1.004 0.006 0.214 0.012

whereas (MeCN); has only a 0.2 kcal mol™" error. Missing
higher-order contributions or basis set errors are the most likely
causes. All mbML models performed similarly well with
(H,0)16. Most errors originated from 3-body predictions, with
error cancellation improving model performance.

3.2.1 Analysis of (MeCN),¢. We find that both mbSchNet
and mbGAP models trained from smaller data sets have
abnormally high errors for (MeCN);¢ and (MeOH);¢, respec-
tively. In both cases, the 3-body model has substantial error
accumulation. Cutoffs are not the issue because only —0.006 of
the 16.1 kcal mol ™" error in mbSchNet's prediction of (MeCN);6
is from cutoffs implemented in the 2- and 3-body models.
Prediction errors contribute the most; a massive —15.2 kcal-
mol " error comes from the 3-body SchNet model.

Assessing inadequacies of training data is more compli-
cated. If 3-body structures from (MeCN);¢ are substantially
different from the data sets, then the model may break down.
To investigate this, we used dimensionality reduction to
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visualize high-dimensional similarity in 2D space. Similar
structures in feature space should be clustered together and vice
versa.

Fig. 2A shows the GDML feature space, a 2D embedding of
trained and 3-body structures from (MeCN),, using Uniform
Manifold Approximation and Projection (UMAP).”® There is
a significant overlap between the GDML training set feature
space and the structures from (MeCN);. High overlap suggests
that GDML should have low prediction errors, which is the case.
SchNet, on the other hand, has several test structures isolated
from training data, resulting in higher errors (shown in the
ESIY).

Not all structures with a high error are dissimilar in feature
space. Models should have learned similar structures and thus
should have performed well. A simple, ad hoc geometry
descriptor (discussed in the ESIt) applied in Fig. 2B shows that
all high-error structures are dissimilar to anything in the data
set. SchNet has some difficulty with these structures, which
results in a substantial 16.1 kcal mol " error. Many-body GAP's
17.6 keal mol " error in (MeOH) is likely for the same reason.
However, GAP uses a local descriptor, making feature space
more complicated to analyze. Models under these circum-
stances were excluded from further analyses (namely,
mbSchNet for acetonitrile and mbGAP for methanol).

3.3 20mers

Truncated higher-order contributions could be pertinent for
accurate absolute energies, as seen in the previous 16mer data.
In practice, relative energy accuracy is of primary importance.
Yao et al.* trained mbML methanol potentials and analyzed
their performances on five (MeOH),, isomers. They used
a Generative Adversarial Network (GAN) trained on RI-MP2/cc-
PVTZ energies with the Coulomb matrix descriptor. Training
included 80% of their data sets that contained 844 800 mono-
mers, 74 240 dimers, and 36 864 trimers.
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y Vo
A 125 §
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Fig.2 UMAP embeddings of acetonitrile, 3-body GDML feature space of the training set (circles) and (MeCN)y¢ structure (triangles). Points near
each other are similar in high-dimensional feature space. (A) GDML absolute prediction error of 3-body structures from (MeCN);g—the maximum
error is 0.116 kcal mol™ . (B) Geometry descriptor of each structure. Similar values (i.e., colors) indicate similar geometries.
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Table 4 Relative energies (kcal mol ™) of four (MeOH),q with respect
to the lowest energy structure (isomer 0). Errors are provided within
the parentheses. Best ML potential values are bolded

Isomer
Method 1 2 3 4
RI-MP2* 31.0 40.9 50.8 52.0
MBE* 27.5 39.6 48.0 48.6
(=3.5) (~1.3) (—2.8) (—3.4)
mbGAN* 26.1 39.8 49.2 49.8
(—4.9) (—1.1) (-1.6) (~3.0)
RI-MP2” 28.5 38.9 49.9 49.5
mbGDML 29.1 38.9 51.2 48.4
(0.6) (0.0) (2.2) (-1.1)
mbSchNet 33.6 414 52.7 53.0
(5.1) (2.5) (2.8) (3.5)

¢ RI-MP2/cc-pVTZ, MBE, and mbGAN (trained on 675 840 monomers,
59392 dimers, and 29491 trimers) data are from ref. 59. ” RI-MP2/
def2-TZVP data calculated here.

Relative isomer energies of their methods are reported in
Table 4. Their mbGAN potential accurately captures the isomer
ranking trend within 5 kecal mol~'. mbGDML and mbSchNet
(trained on MP2/def2-TZVP) were within 2.2 and 5.1 kcal mol "
of RI-MP2/def2-TZVP calculations on the same (MeOH),,
structures. Note that the supersystem calculations here differ
from Yao et al.;*® for example, our calculations predict that
isomer 4 is lower in energy than isomer 3.

3.4 Size transferability of local descriptors

As previously mentioned, many ML potentials use local
descriptors for size transferability. Recent developments of ML
potentials with local descriptors have involved GNNs.***
NequlP uses equivariant, continuous convolutions where edges
connect every atom within a cutoff radius.”® NequlP has ach-
ieved remarkable accuracy and data efficiency on the MD17 data
set, bulk water, formate dehydrogenation, and amorphous
lithium phosphate.

Such models are inherently size transferable, but the accu-
racy is not typically studied when trained exclusively on small
clusters. In theory, these potentials can train on the same data
sets here, but instead of n-body interactions, they would use
total energies and forces. This would eliminate the need for an
MBE framework. We trained NequlP on total energies and
forces of 1000 trimers for water, acetonitrile, and methanol to
assess this approach. Another 2000 trimers were used as a vali-
dation set.

We emphasize that this is an edge case of GNN potentials. If
energies and forces of larger structures were readily available,
these data would improve size transferability if they were
included in the validation set. However, mbGDML models were
never exposed to these larger clusters during training since the
objective was to reproduce the 1-, 2-; and 3-body PES. Thus,
training a NequlIP on only trimers represents a straightforward
comparison to mbGDML. These models were then tested
against the identical isomers discussed above, with the results
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Table 5 Energy MAEs (kcal mol™) of various sized isomers for
mbGDML  (many-body global descriptor) and NequlP (local
descriptor). MAEs on a per monomer basis are italicized. Best ML
potential values are bolded

Solvent Method 4mers 5mers 6mers 16mer
H,O0 mbGDML 0.793 1.088 1.765 4.013
0.198 0.218 0.294 0.251

NequlP 0.727 1.650 3.609 37.903

0.182 0.330 0.601 2.369

MeCN mbGDML 0.260 0.317 0.288 0.282
0.065 0.063 0.048 0.018

NequlP 1.671 2.116 2.970 28.510

0.418 0.423 0.495 1.782

MeOH mbGDML 1.260 1.805 2.089 5.561
0.342 0.374 0.382 0.348

NequlP 4.006 6.661 7.902 21.732

1.002 1.332 1.317 1.358

shown in Table 5. While NequlIP can expectedly extrapolate to
larger clusters, the errors are substantially higher than
mbGDML. For example, the NequlP error on (H,0);¢ was more
than 33 kcal mol " higher than mbGDML.

These static cluster results demonstrate that mbGDML is
a reasonably accurate, size-transferable force field. The desired
level of theory for reference data determines the MBE frame-
work's viability. Training on large clusters or bulk systems is
likely more efficient if a lower scaling method is satisfactory.
However, mbGDML becomes particularly useful when applica-
tions require force fields based on higher-scaling methods.
Recovering truncated higher-order contributions would also
expectedly improve errors, but explicit 4-body interactions are
rather challenging due to high demands on precision and
combinatorics.*®*® Electrostatic®* and more general quantum
embedding approximations may be a practical route to avoid
calculating higher-order contributions, but they are not
considered here.

3.5 Molecular dynamics simulations

While accurate predictions of static clusters are essential,
compelling applications for mbGDML would involve molecular
simulations. Low energy and force errors are not conclusive of
accurate molecular simulations,* but experimentally measur-
able dynamic properties are an alternative and rigorous way to
evaluate ML potentials. For example, the radial distribution
function (RDF) is a vital bulk property that quantitatively
defines liquid structure. Locations and intensities of peaks and
valleys represent the solvation shells and liquid ordering.
Accurately reproducing reference RDF curves is crucial for
a practical size-transferable potential.

Periodic NVT simulations driven by mbGDML force fields
were performed at 298.15 K for 10-30 ps in the atomic simu-
lation environment (ASE).** Note that NVT simulations could
artificially bias intermolecular distances due to the volume
constraint. NPT simulations would be a more rigorous metric,
but these are not yet implemented in mbGDML, and this will be

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the focus of future work. The minimum-image convention was
used with cubic boxes with lengths of 16 A (137 molecules), 18 A
(67 molecules), and 16 A (61 molecules) for water, acetonitrile,
and methanol, respectively. Production trajectories were used to
compute all possible RDFs. Some RDF curves are shown in
Fig. 3. Water,* acetonitrile,* and methanol®**” reference RDF
curves are from neutron diffraction experiments. Results from
classical MD simulations®®7* are also shown in Fig. 3. Note that
classical references often include some fitting to empirical
data,®®”*7* whereas mbGDML and others®7° run calculations
with no explicit empirical fitting. Individual figures of all RDF
curves, along with labeled classical references, are shown in the
ESLT

Dispersion and polarization are not always accurately treated
with MP2 theory,”>”® and likewise, the underlying model
chemistry (MP2/def2-TZVP) to train mbGDML force fields may
not accurately reproduce experimental liquid properties. For
example, MP2 yields excellent results for liquid water simula-
tions when appropriate density corrections or basis set error

s A mbGDML
= = Experimental
I\ Classical
=2 |
] \
o | \
1 | ™ e ——TTT—
f H>0
2
0 —4
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Fig.3 Simulated RDF curves from NVT MD simulations with mbGDML
for (A) goolr) in water, (B) gnn(r) in acetonitrile, and (C) goolr) in
methanol. Reference RDF curves from the literature are shown in
dashed gray lines. Examples of classical results in the literature are
shown in solid, light gray lines.
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cancellation schemes are employed,”””® but these were not used
here. To our knowledge, a thorough investigation has not been
performed for liquid acetonitrile and methanol with MP2, so
the agreement with experiments is more uncertain. Note that
molecular simulations using Kohn-Sham density functional
theory (DFT) results in comparable differences in RDFs shown
in Fig. 3, depending on the exchange-correlation functional and
dispersion treatment used.”®

The simulated RDFs with mbGDML fairly agree with the
reference curves. In particular, the water goo(7) in Fig. 3A agrees
remarkably well with experimental data. This is consistent with
fragment-based ab initio MD (AIMD) simulations.?*** However,
these AIMD simulations include higher-order contributions
through electrostatic embedding. Deviations in the gou(r) and
gun(r) curves are partially due to the neglect of quantum nuclear
effects.®

In all cases, acetonitrile peaks from mbGDML are less
intense than the reference curves. This indicates that the pre-
dicted liquid structure with mbGDML is less ordered than the
deuterated neutron diffraction data.®® Notably, gnn(r) is wide
with two distinct peaks that deviate from the experimental
reference. However, classical RDFs from the literature can vary
substantially. Some classical potentials’®”® result in a similar
gnn(7) shape while others®7»72 better resemble the experimental
reference.

Methanol simulations appear more challenging for
mbGDML. RDF peaks with respect to experimental data are less
intense (same as acetonitrile). The shape of goo(r), Fig. 3C,
agrees well with the digitized experimental data. Classical
simulations using GROMOS96 and OPLS/AA potentials have
significantly more ordered liquid structure.” For instance, their
gou(r) peaks are around 1.24 higher in intensity than mbGDML.
While the goo(r) is in good agreement with the experiment
beyond 5 A, the gop(r) and gyy(r) curves are missing long-range
liquid structure. Even though GDML employs a global
descriptor, mbGDML is not capturing these long-range inter-
actions. We suspect this is caused by truncations and cutoffs
used in the MBE framework.

To summarize, even though the mbGDML models used here
only included up to 3-body contributions, they generally predict
the liquid structure of water, acetonitrile, and methanol well.
Moreover, these force fields automatically include fully flexible
molecules and perform no fitting to experimental properties.
Further improvements could be made with more expansive
training sets and higher-order contributions. For systems
without classical parameters, mbGDML can be rapidly trained
on relatively small amounts of data and provide valuable
dynamical insights for explicitly solvated systems.

4 Conclusions

We have introduced a GDML-driven, many-body expansion
framework that enables state-of-the-art size transferability
toward molecular simulations of solvents. mbGDML force fields
trained on only 1000 1-, 2-, and 3-body interactions accurately
modeled small and medium isomers of water, acetonitrile, and
methanol. Size-extrapolated predictions on static clusters of up
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to 20 monomers had energy errors of less than 0.38 kcal mol "
per monomer for all three solvents. These results outperform
NequlP trained on the same trimer data set by up to
34 keal mol ™" for 16mers. Dynamic simulations of bulk systems
using our mbGDML force fields provide semi-quantitative
insights while avoiding expensive training data on bulk
systems and fitting to experimental data.

It is important to note that the accuracy of mbGDML is
generally limited to that of the underlying MBE framework.
More extensive and diverse n-body data sets can help minimize
mbGDML deviations from the MBE reference. If further accu-
racy improvements are desired, explicit 4-body ML force fields,
classical models, or hybrid methods like MIM and MTA could
be required. While these approaches are certainly possible to
implement, we focused on providing a proof-of-concept of
mbGDML. We thus anticipate promising applications for
complex, explicitly solvated systems where high levels of theory
are desired.

Data availability

Code for preparing and using many-body ML potentials can be
found at https://github.com/keithgroup/mbGDML (DOI:
10.5281/zen0do.6270373). All other code and data supporting
this paper are available at https://github.com/keithgroup/
mbgdml-h20-meoh-mecn (DOI: 10.5281/zenodo.7802196) and
further detailed in the ESI.t
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