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Feature selection is an important topic that has been widely studied in data science. Recently, graph neural

networks (GNNs) and graph convolutional networks (GCNs) have also been employed in chemistry. To

enhance the performance characteristics of the GNN and GCN in the field of chemistry, feature

selection should also be discussed in detail from the chemistry viewpoint. Thus, this study proposes

a new feature in molecular GNNs and discusses the accuracy, overcorrelation between features, and

interpretability. The feature vector was constructed from molecular atomic properties (MAPs) computed

with quantum mechanical (QM) approaches. Although the QM calculations require computational time,

we can employ a variety of atomic properties, which will be useful for better prediction. In the

preparation of feature vectors from MAPs, we employed the concatenation approach to improve the

overcorrelation in GNNs. Moreover, the integrated gradient analysis showed that the machine learning

model with the proposed feature vectors explained the prediction outputs reasonably.
Introduction

What is required for good features in molecular graph neural
networks (GNNs)? Several studies have been conducted con-
cerning feature selection in data science, and it has been
mentioned that good features should improve accuracy, over-
correlation, and interpretability.1–3 Recently, GNNs and graph
convolutional networks (GCNs) have been widely applied in
chemistry.4–7 Feature selection should also be discussed in
detail from the chemistry viewpoint in order to enhance the
performance of the GNNs and GCNs in the eld of chemistry.

Accuracy is one of the most important points in feature
selection. In chemistry, a small structural difference affects the
molecular properties. For example, the acid dissociation
constant is greatly affected by the positions of the functional
groups. Scheme 1 shows three hydroxybenzoic acid (HB)
structures. The difference is only the relative positions of the
OH and COOH groups, and the orientation of the OH group.
Despite the small difference, these conformations give different
pKa values (= −log Ka), where Ka is the acid dissociation
constant. Good features should have the ability to distinguish
the difference.

Overcorrelation is another critical point in GNN and GCN
studies. The overcorrelation in features indicates that they have
he University of Tokyo, 3-8-1 Komaba,
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irrelevant or redundant information.2,3 Jin et al. discussed the
GNN performance based on feature overcorrelation. Their
model (DeCorr) reduced feature correlation and performed
better than the standard GNN approaches.3 Feature correlation
in the convolution step was also focused on the GCN. It was
shown that the GCN shows the degradation of the performance
when the correlation of the features between the layers becomes
large.9,10 Thus, the overcorrelation in the features should be
removed in molecular GNNs.

Accuracy and overcorrelation are important points in feature
selection. However, in chemistry, interpretability is considered
more seriously. Recently, due to the development of theoretical
Scheme 1 Chemical structures of hydroxybenzoic acid (HB) and pKa
values computed with a quantum chemical approach8 in parentheses.
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methods and computers, various molecular properties can be
computed accurately. However, to understand the chemistry,
the reasons behind such physical properties must be investi-
gated. In the quantum chemical eld, an analysis of partial
charges on the atoms, such as Mulliken and natural population
analyses,11,12 is oen applied. If the atomic charges are assigned
to each atomic site, the chemists can image the charge ow in
a molecule, which leads to the design of new molecules.
Therefore, when molecular GNNs and GCNs are applied to
chemistry, the obtained results should be explained with the
employed features.

In this study, we propose a new feature for molecular GNNs
considering accuracy, overcorrelation, and interpretability. In
previous studies, most of descriptors employed in chemistry
were molecular properties13,14 or isolated atomic properties15,16 or
both,17,18 while molecular atomic properties computed with
quantum chemical approaches were employed in this study.
Although the preparation of the molecular atomic properties
computed with quantum chemical calculations requires
computational time, we can employ variety of atomic properties
as descriptors, such as atomic charges, Fukui function,19

dispersion coefficients,20,21 isotropic magnetic shielding
constant, and so on, which will be useful for better prediction. In
the preparation of feature vectors from the molecular atomic
properties, to improve the overcorrelation in GNNs, we employed
the concatenation approach. Moreover, by coupling the inte-
grated gradient approach with our model, the interpretability
can be discussed based on the atomic site, which is useful in the
design of molecules. Here, we evaluate the performance of the
proposed model by computing the pKa values.
Method

In this study, we proposed a new feature preparation process
and constructed a machine learning (ML) process using the
prepared features. Scheme 2 summarizes the owchart of the
present model. The feature preparation process comprises the
preparation of atomic properties and concatenation. This
section explains each step in detail.
Scheme 2 Schematic of the workflow in this study.

1090 | Digital Discovery, 2023, 2, 1089–1097
Preparation of atom properties

Various atom features have been applied in GCN studies.22,23 For
example, Choudhary and DeCost employed the following eight
atomic features in their GNN study: electronegativity, group
number, covalent radius, valence electrons, rst ionization
energy, electron affinity, block, and atomic volume.23 They are
isolated atomic properties (IAPs) and can be prepared without
molecular information. In the quantum mechanical (QM) eld,
molecular-atomic properties (MAPs) are also employed for the
analysis. Aer the QM calculations, various atomic properties
are assigned to each atomic site using decomposition
approaches.12,20,24,25

In this study, we used the IAPs and the MAPs in feature
preparation. In IAPs, the following six atomic properties were
applied: effective nuclear charge, atomic polarizability, atomic
radius, ionization energy, electron affinity, and atomic mass.
Concerning the MAPs, the following nine properties were used:
the positive and negative values of the constrained spatial
electron density distribution (cSED) charge (Q+ and Q−),25 the
positive and negative values of the isotropic magnetic shielding
constant (s+ and s−), the positive and negative values of the
molecular electrostatic potential (MEP)26–28 change at the
nucleus (M+ and M−), the positive value of the partial Fukui
function (F−),19 volume (V), and atomic dispersion coefficient
(C6).20,21 Although the partial Fukui function also takes positive
and negative values, only the positive value is important. For
MEP, the potential negatively increases as the atomic number
increases. In order to remove the atomic number dependency of
the MEP, the M+ and M− were computed by subtracting the
MEP value computed in an isolated atom from the MEP value
computed in a molecule.
Concatenation of atomic properties

To construct the ML features from the atom properties, the
GNN was considered. The hidden feature of node v in the l-th
layer is denoted by h(l)v and h(0)v = xv, where x represents the node
features (MAPs or IAPs). Moreover, h(l) is formally given along
the update step, as follows:
© 2023 The Author(s). Published by the Royal Society of Chemistry
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h(l) = U(l)(h(l−1)), (1)

where U(l) is the update function at the l-th layer.29 By concate-
nating the obtained h(l) (l = 0, 1, ., L), we prepared the
following vector:

H(L) h h(0) 4 h(1) 4/4 h(L) (2)

where 4 is the concatenation of two vectors. This step is
a simple version of jumping knowledge networks.30 The
concatenated vectorH(L) is the feature vector for theML process.

Many processes in the update step are given in eqn (1).
Concerning the simple graph convolution (SGC),31 the update
step is given as follows:

h(l) = Sh(l−1) = Slx (3)

where S = ~D − 1/2ÃD ̃ − 1/2, Ã = A + I, A is the adjacency matrix,
and ~D is the degree matrix of Ã. Although the update step with S
is well employed, it is known that the elements of Sl converge to
a xed value when l is large.32 To overcome this problem, the
following update step was proposed:

h(l) = a(l)x (4)

where a(l) is the hollow matrix, and the off-diagonal elements
are dened as follows:

a
ðlÞ
ij ¼

8<
:

bij ðl ¼ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ðlÞ
ij a

ðlÞ
ji

q
ðl. 1Þ (5)

where
a
ðlÞ
ij ¼ dH

 X
k

bika
ðl�1Þ
kj ; max

m¼1;/l�1
a
ðmÞ
ij

!
(6)

and dH(x; l) is the hard shrinkage function; �b is dened as
follows:

�b = D−1/2bD−1/2 (7)

where {bij} is the Wiberg bond index.33 When a(l)ij has a nonzero
value, the path i4 j at the l-th step is either the shortest, or not,
but it comprises strong bonds, such as double and triple bonds.
Because the shortest path and the path through strong chemical
bonds are important to transfer the information to each node,
the new convolution process is termed an important graph
convolution (IGC).

The employed atomic properties are dened with
different units, and the maximum values in the properties
differ. To remove the bias, we employed min–max normaliza-
tion to H(L). The element h(l)i (0 # l # L) in H(L) was normalized
with

~h
ðlÞ
i ¼ h

ðlÞ
i

hmax
i

; (8)

where hmax
i is the maximum value of the i-th property deter-

mined from the training and validation datasets.
© 2023 The Author(s). Published by the Royal Society of Chemistry
ML process

To discuss the performance of the prepared features, the
supervised learning algorithm for pKa recognition was
employed. The feature vector H(L) of the dissociated proton is
chosen as an input vector X(0) in the multilayer perceptron
(Scheme 2). The output Y (pKa in this study) is obtained as
follows:

X(m) = s(X(m−1)Q(m) + b(m)), (9)

Y = X(M−1)Q(M) + b(M), (10)

whereQ(m) and b(m) are the weight matrix and the bias vector of
the layer m, respectively, and s is a nonlinear activation func-
tion, e.g., a ReLU. The number of layer M is set to 4.

Y depends on the weight and the hyperparameters, such as
the number of nodes in the hidden layers and the dropout ratio.
If the weight is optimized with different hyperparameters,
different trained networks are produced. A linear combination
of the corresponding outputs was taken as follows:34,35

Y ¼
Xp
j

ajYj ; (11)

where Yj is the output obtained with the j-th trained network, p
is the number of trained networks, and aj is the associated
combination weight; p = 5, and an equal combination-weight
was employed. The hyperparameters were chosen from the
top ve best in the hyperparameter tting process.
Computational details
Datasets

The pKa values and molecular information were obtained from
the training and test sets prepared in the previous study.36 The
number of molecules in the training and test sets are 2216 and
740, respectively. The datasets employed in this study were
carefully cleaned and curated from the training and test sets by
adopting the following steps. First, the molecules that have
a CAS registry number were selected from the training and test
sets. Next, we remove the molecules from the datasets when the
pKa values are far from those of the analog or the deprotonation
site is not clearly identied. In addition, the calculation was
restricted to molecules with no iodide atom because of the
current program limitation. Finally, 1014 and 316 pKa values
were obtained for the training and test sets, respectively. The
training datasets (1014 pKa values) were divided into training
and validation datasets with a 80 : 20 ratio (811 and 203 pKa

values, respectively).
Hyperparameters

There are three layers, and the hidden size of the layers is n0, n1,
and n0, respectively, which are summarized in Fig. S1 (ESI†). A
hyperparameter search for the optimal hidden size (n0 and n1)
and the dropout rate was computed using Optuna,37 where the
Bayesian hyperparameter optimization was employed. The
number of trial steps and epochs were 100 and 3000 epochs,
Digital Discovery, 2023, 2, 1089–1097 | 1091
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respectively. The weight was further trained to 8000 epochs to
improve its nal accuracy.
Calculations of molecules

The molecular geometries were computed at the CAM-B3LYP/
aug-cc-pVDZ level of theory.38,39 The cSED charge, partial
Fukui function, volume, atomic C6 dispersion coefficient, and
MEP were computed using the GAMESS program package,40 and
isotropic magnetic shielding constants on an atom were
computed using the Gaussian program package.41

The MAPs were also computed at the Hartree–Fock (HF)/6-
31G** level of theory. Although a large difference in computa-
tional cost exists between HF/6-31G** and CAM-B3LYP/aug-cc-
pVDZ, the difference in the predicted pKa was small, as shown
in Fig. S2 (ESI†).
Results and discussion

The correlation between features was evaluated using Pearson's
correlation coefficient,

rk;l ¼
P
i

t
�
h
ðkÞ
i � h

ðkÞ�
$
�
h
ðlÞ
i � h

ðlÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

���hðkÞi � h
ðkÞ���2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

���hðlÞi � h
ðlÞ���2

s ; (12)

where h(k)
i is the feature vector in the k-th layer of the molecular

i, and �h(k) is the mean value of h(k)
i . The input feature of

molecule i was prepared by taking the concatenation of
{h(k)

i } (eqn (2) and Scheme 2). A large rk,l means that h(k)
i and

h(l)
i are similar and they have common information, while

a small rk,lmeans that h(k)
i and h(l)

i have unique information and
Fig. 1 Heatmap of Pearson's correlation coefficient rk,l between h(k) and
MAPs were employed for (a) and (c), and IAPs were employed for (b) and (

1092 | Digital Discovery, 2023, 2, 1089–1097
their overlap became small. When the common features among
h(k)
i and h(l)

i are repeated in the concatenation (eqn (2)), the
concatenated vector H(L) and input vector X(0) contain the
redundant data.42 In Fig. 1, the heat maps of rk,l computed with
IGC and SGC are shown. In the correlation calculations, IAPs
and MAPs were employed as the atomic properties. Because
h(0)
i computed with IAPs have the same values among the

molecules, the correlation coefficients (r0,l and rk,0) cannot be
dened, which were colored black in Fig. 1. As shown in
Fig. 1(a), the correlation between h(0) and h(k) (k $ 1) was small
in the case of SGC(MAP), whereas the correlations between h(k)

and h(l) (k, l $ 1) were large in both cases of MAPs and IAPs
(Fig. 1(a) and (b)). Therefore, the redundancy in the features of
constructed X(0) should be large when SGC(IAP) is employed. By
contrast, the correlation between the x-th and y-th layer vectors
is small when IGC is chosen (Fig. 1(c) and (d)). From the results,
we concluded that the redundancy in the X(0) constructed with
IGC should be reduced.

It is useful to consider the meaning of the small correlation
between h(k) and h(l) (k s l) in IGC(MAP) based on spectral
ltering. When vi and li are the i-th eigenvector and eigenvalue
of Laplacian, respectively, the spectral ltering on graph signal x
can be written as follows:

y ¼
X
k

yðkÞ; (13)

y(k) h f(lk)vkv
T
kx (14)

where y is the ltered signal and f(lk) is the lter kernel. From
the denition, y(k) and y(l) (k s l) are perpendicular to each
other. From the similarity of eqn (4) and (14) and the absence of
h(l); h(l) and h(k) were prepared with (a and b) SGC and (c and d) IGC.
d). The pairs with undefined correlation coefficients are shown in black.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Rootmean square errors (RMSEs) of pKa values obtained by two
types of atomic features (IAPs and MAPs) and convolution processes
(IGC and SGC) with different numbers of convolution layers (1, 2, 3, 5,
7, and 10). In the case of MAPs, the convolution of a simple graph
convolution network (SGCN) was also checked. For comparison, the
RMSEs computed with MolGpka and OPERA are also shown with black
dashed and dotted lines, respectively.
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correlation between y(k) and y(l) (ks l), h(k) can be considered to
be a ltered vector, as in the case of graph spectral ltering.43

The redundancy in the feature vector X(0) probably affects the
accuracy of the predicted pKa values. To discuss the relationship
between the accuracy and the redundancy in X(0), the root mean
square errors (RMSEs) of the pKa values were calculated.
Because X(0) is the concatenated vector H(L) of the dissociated
proton, the size of X(0) is controlled by the convolution layers (L).
In Fig. 2, the RMSEs computed with L = 1, 2, 3, 5, 7, and 10 are
shown. For comparison, the RMSEs were also computed with
a freely available pKa prediction tool called OPERA36 and
MolGpKa.44 In the case of MolGpKa, the model was optimized
using the dataset employed in this study. To evaluate the
effectiveness of the concatenation in eqn (2), we performed an
ablation study about SGC without the concatenated module. In
the ablation study, SLx was employed as the feature vector X(0),
which is the analogue of a simplied graph neural network
(SGCN).31 When an IAP was employed, there was a large differ-
ence in the accuracy between the convolution approaches, SGC
and IGC. Although the error in IGC(IAP) and SGC(IAP) decreases
as L increases, the error in IGC(IAP) is largely improved as L
increases when compared with that in SGC(IAP). This is because
the redundancy in X(0) of IGC(IAP) is smaller than that of
SGC(IAP) (Fig. 1). When a MAP was employed, the RMSE is
Table 1 pKa of 4HB, 2HBa, and 2HBb computed with IGC, SGC, MolGpK
study were also shown.8 In IGC and SGC, IAPs and MAPs were employe

IGC(MAP) IGC(IAP) SGC(MAP)

4HB 3.58 4.00 3.46
2HBa 3.23 4.10 3.47
2HBb 1.71 3.97 2.49

© 2023 The Author(s). Published by the Royal Society of Chemistry
small in both cases of IGC and SGC because X(0) has unique
information even with a small L value (Fig. 1(a) and (c)). In both
cases of SGC and IGC with a concatenated module, the
prediction performance was improved up to L = 10, while the
SGCN model with MAPs gave the best performance with L = 2.
This difference shows that the concatenation in eqn (2) plays an
important role in accurate prediction.

Although the RMSE shown in Fig. 2 is one of the good
properties to discuss accuracy, it is also important to check
whether the prepared features can reproduce the pKa difference
stemming from the structural difference (Scheme 1). In Table 1,
the pKa values of hydroxybenzoic acids predicted with
IGC(MAP), IGC(IAP), SGC(MAP), SGC(IAP), MolGpKa, and
OPERA are shown. As a reference, the pKa values computed with
QM approaches are also shown.8 The obtained pKa values
reproduced the pKa values computed with the QM, except for
MolGpKa. Moreover, IGC(MAP), SGC(IAP), and OPERA can
reproduce the QM result where the pKa of 4HB is larger than
that of 2HB, suggesting that SGC and IGC can include structural
isomerism through convolution. However, the pKa difference
between 2HBa and 2HBb was reproduced only with IGC(MAP),
IGC(IAP), and SGC(MAP). The results show that the IGC(MAP)
gave a good feature to reproduce the pKa difference stemming
from the structural difference.

From the viewpoint of accuracy and the correlation between
features, IGC with MAPs is superior to others. However, with
accuracy, it is difficult to say if the concatenated vector
computed with IGC(MAP) is a good feature. To discuss the
interpretability of the IGC(MAP), the integrated gradients (IGs)
were computed.

IGi

�
Xð0Þ� ¼ �X ð0Þ

i � X
ð0Þ
i

� ð1
a¼0

vF
�
X

ð0Þ þ a
�
Xð0Þ � X

ð0Þ��
vXi

da;

(15)

where F represents the machine learning process shown in
Scheme 2, X(0) is the concatenated vector of a dissociated
proton, and �X(0) is the baseline. Although it is well known that
the baseline is important in calculating IGs, there is no
universal rule to dene the baseline. It is also difficult to
determine the baseline of pKa. As shown in a previous study,36

most of the DataWarrior acidic pKa values, which are a freely
available pKa dataset,45 are within the range (0 < pKa < 14).
Therefore, the middle of the pKa range (pKa = 7) is a candidate
for the baseline. In this study, the H-value of 4-nitrophenol was
chosen as the baseline �X(0) in eqn (15) because the pKa value is
close to 7. With this baseline, we can say that the positive IGi

suggests that the i-th feature contributes to less acidic character
a, and OPERA. For comparison, the QM data computed in a previous
d as atomic properties and the number of layers is 10

SGC(IAP) MolGpKa OPERA QM

3.93 7.61 4.47 4.40
3.42 7.88 3.53 4.10
3.42 7.88 3.53 2.69

Digital Discovery, 2023, 2, 1089–1097 | 1093

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00010a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
10

:5
4:

25
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
(pKa > 7) and the negative IGi suggests that the i-th feature
contributes to more acidic character (pKa < 7).

Fig. 3(a) summarizes the IGs of 4HB, 2HBa, and 2HBb

computed with the baseline. Because the pKa values of 4HB,
2HBa, and 2HBb are <7, the negative IGs are important. Fig. 3(a)
shows that the difference among the molecules mainly comes
from the properties, M+ (k = 0) and M+ (k = 2), where M+ is the
positive MEP value. Previous studies27,28 have shown that the
MEP had a strong negative correlation with the sum of valence
natural atomic orbital energies. Therefore, the IGs in Fig. 3(a)
show that the pKa value decreases as the atomic orbital energy
becomes increasingly negative. Because the electron-
withdrawing atom makes the atomic orbital energy of the next
atom more negative, the IGs in Fig. 3(a) also indicate that the
pKa value decreases when the sites of k = 0 and 2 are sur-
rounded by the more electron-withdrawing atoms.

As shown in Scheme 3(a), in the case of 2HBa, and 2HBb, the
sites of k = 0 and 2 are the proton H and carbonyl C sites,
respectively. When the chemical structure is considered, the
carbonyl O atom of 2HBb can withdraw the electron on the
Fig. 3 (a) Integrated gradients on the carboxylic acid hydrogen site of hy
gradients for k = 10 averaged in three pKa ranges (pKa < 4, 4# pKa < 10, a
molecules.

1094 | Digital Discovery, 2023, 2, 1089–1097
carbonyl C atom more strongly than that of 2HBa. From the pKa

difference between 2HBa and 2HBb, and Scheme 3(a), the
explanation by IGs is reasonable.

Although the interpretation in Scheme 3(a) is reasonable for
an acidic compound (2HB), checking the interpretation along the
pKa value is also important. To discuss the interpretation change,
the average of IGs in the three pKa ranges (pKa < 4, 4 # pKa < 10,
and 10 # pKa) was obtained. In Fig. 3(b), the averaged IGs are
shown. Although the averaged IGs in the range pKa < 4 are similar
to those in Fig. 3(a), the averaged IGs in the range 10# pKa differ
totally from those in Fig. 3(a). Under weak acid conditions (10 #

pKa), the IGs ofM+ (k= 0) andM− (k= 1) are positively large. The
obtained IG is reasonable because of the following reasons.
When the M+ and M− values increase, the orbital energy differ-
ence decreases (Scheme 3(b)), and the polarity of the bond
decreases. The large positive IG suggests that the low polarity in
the chemical bond makes the pKa value positive (less acidic),
which is reasonable from the chemical viewpoint, if the size effect
is omitted. Scheme 3 shows that the ML model obtained with
IGC(MAP) gives a reasonable interpretation for chemists.
droxybenzoic acids (4HB, 2HBa, and 2HBb) for k = 10 and (b) integrated
nd 10 # pKa). Moreover, 4-nitrophenol was employed for the baseline

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 (a) Interpretation of the pKa difference between 2HBa, and
2HBb derived from IGs. The deprotonated site is colored red, and the
arrow size shows the electron-withdrawing strength schematically. (b)
Interpretation of a large pKa value in the range (10# pKa) based on the
chemical bonding between the H and X atoms. The chemical bond
(H–X) comprises the 1s orbital on the H site and 2s, and 2p orbitals on
the X site. The red arrows indicate orbital energy changes induced by
increased M+ and M− values.
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Conclusions

In this study, a new feature in molecular GNNs was proposed,
and the accuracy, overcorrelation between features, and inter-
pretability were discussed in detail. The overcorrelation and
accuracy indicate that the IGC with MAPs is superior to others.
The prediction output with the IGC(MAP) was analyzed using
the IG method. From the analysis, positive values of MEP (k = 0
and 2) are important under acidic conditions, whereas the
positive value of MEP (k = 0) and the negative value of MEP
(k = 1) are important under basic conditions, which leads to
a reasonable interpretation from a chemistry viewpoint.

In this study, a part of the concatenated vectors {H(L)} was
employed in the ML model. In the future study, we will employ
all {H(L)} in a molecule to construct the ML model for predicting
molecular properties, such as the solvation free energy and
octanol/water partition coefficient.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Data availability

The program to predict pKa from the concatenated vectorH(L) is
available as open access via GitHub (https://github.com/
dyokogawa/pKa_prediction). The training, validation, and test
sets used in this paper were also included in the repository
(Opt1_acidic_tr.csv and Opt1_acidic_tst.csv).
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