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Introduction

An interpretable machine learning framework for
modelling macromolecular interaction
mechanisms with nuclear magnetic resonancet

Samantha Stuart, © 2 Jeffrey Watchorn @ ° and Frank X. Gu @ *2°¢

Macromolecular interactions, such as polymer—protein binding, determine the biological fate of
biomaterials. However, in most macromolecular binding systems, underlying interaction mechanisms are
unclear, limiting capabilities for in vitro prediction. In particular, the atomic-level structure—activity
relationships that drive protein—polymer binding are confounding. To overcome this gap, we developed
a machine learning framework that applies interaction data from direct saturation compensated nuclear
magnetic resonance (DISCO NMR) to classify polymer proton descriptors to their interactive behaviors
with mucin proteins. The framework constructs structure-interaction trends from cross-polymer atomic-
level behavior patterns, and identifies “undervalued” inert polymer groups with potential to be
engineered towards interaction. Trends are constructed from materials-agnostic interaction descriptors
that combine chemical shift fingerprints, molecular weight, and cumulative DISCO effect from saturation
transfer buildup, mapping proton chemical, physical, and conformational attributes together. In this work
we constructed a fully-trained decision tree classifier to model structure—activity after applying principal
component analysis (accuracy = 0.92, F; = 0.87) and interpreted its decision rules to improve scientific
understanding of mucin binding. Several undervalued inert protons identified by the model include: HPC
80 kDa (4.58 ppm), HPMC 120 kDa (4.48 ppm), PVA 105 kDa (1.58 ppm), DEX 150 kDa (5.20 ppm), PVP
55 kDa (3.89 ppm), CMC 90 kDa (4.58 ppm), and PEOZ 50 kDa (3.42 ppm). The model additionally
suggested a structure—activity relationship is shared by HPC, CMC, DEX, and HPMC protons in the 80—
150 kDa range. More broadly, the framework and its descriptors can be applied for data-driven discovery
of new polymer formulations using previously obscure cross-polymer sub-group trends, and is similarly
applicable to any receptor-ligand system compatible with DISCO-NMR screening.

macromolecular biomaterial design have been demonstrated in
several applications, such as: immune-instructive polymers,

A central challenge in biomaterial design remains a limited
understanding of the mechanisms that underlie bio-
macromolecular interactions, leading several investigators to
call for more research in this field."* The intractability of
manually interrogating the biomaterial interaction problem
space necessitates a paradigm shift in research from traditional
Edisonian design frameworks, to machine-learning informed
approaches for objective guidance in materials design.>**°
Consequently, successful predictive frameworks for
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protein resistant surface coatings, protein-absorbent self-
assembled monolayers, and medical nanoparticles.>****

Extending these modelling frameworks to interaction
screening for inter-macromolecular systems has proven to be
challenging. Primarily, there are countless variables that can
influence when and where interactions will result, even within
the scope of in vitro prediction.>***** Moreover, these interac-
tions are highly sensitive to variations in ligand chemical
composition, physical properties, and ligand-receptor spatial
conformation, which requires the use of modelling descriptors
that draw from each in concert.>*>**?* Additionally, mecha-
nistic influences exerted by non-bonded groups on related
bonding groups remain understudied.'”'®* We set out to meet
these challenges in the present work.

We focused on curating and modelling a high quality
experimentally derived dataset of macromolecular ligand-
receptor interaction mechanisms. Specifically, contrasting
how polymer ligand examples of a wide variety of chemical and
physical properties interact with a target protein. This
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represents a common reflection of the breadth of factors
biomaterials researchers must consider in designing polymer
delivery vehicles. Further, additional strategies are needed to
navigate small, sparse, yet high quality datasets in materials
science, as small datasets are expected to remain prevalent until
automated experimentation is more widely adopted.> Thus, we
direct our focus in this work to creating a useful workflow and
tool for researchers to descriptively navigate such problem
spaces with limited information, that is additionally capable of
facilitating predictive modelling when scaled data collection
processes, such as automation, become available.

Towards this aim, we investigated two objectives. First, we
set out to develop a reproducible framework including data
collection, preparation, feature engineering, hyperparameter
tuning, and modelling steps from which a machine learning
model can be trained to model inter-macromolecular structure
activity. To provide actionable insights, we identified the best
model of the full dataset using 5-fold stratified grid-search cross
validation, and interpreted it descriptively to report structure-
interaction trends we observed in the data collected for this
work. These descriptive insights can be directly applied by
researchers to inform design decisions across widely varying
polymer chemical and physical species, in particular by shining
a light on the normally unknown behaviors of non-bonded
groups. The second investigation assessed the predictive
performance metrics of the overall framework, using nested
leave-one-out cross validation, to establish a benchmark in
machine learning performance for this task.

Given the exploratory nature of this work, we focus on
preserving end-to-end interpretability in modelling, while
removing human bias, to both redirect intuition in this field
towards data-driven insights and build trust.*

To screen macromolecular interactions for side-by-side
comparison, while capturing a combination of chemical,
physical, and spatial ligand-receptor data, we previously devel-
oped an experimental method using saturation transfer-based
NMR (DISCO NMR).”® This transfer-based NMR relies on the
transfer of magnetic excitation through the nuclear Overhauser
effect (NOE) from a receptor macromolecule to a ligand. The
intensity of this transfer signal is proportional to the steady-
state proximity between ligand and receptor protons. Through
interaction screening with DISCO NMR, we obtain descriptors
and labels pursuant to the attributes of each macromolecular
ligand proton within a 5 A radius of the receptor's binding site.
These are, for each proton: 6 "H chemical shift (700 MHz, D,0),
a saturation transfer buildup curve, and a measure of proton
interactive fate with the receptor. Downstream feature engi-
neering, linear principal component analysis (PCA), and inter-
pretable supervised learning result in a set of design insights
derived from underlying cross-polymer interaction mecha-
nisms. In total, this data collection and interpretation pipeline
is applicable to any solution-state binding system that is freely
soluble in deuterated water. The NMR pulse sequences used in
these experiments are based upon typical saturation transfer
difference with excitation sculpting (STD-ES) experiments,
which are easily accessible in most NMR spectrometers. In
addition, this pipeline has the advantage of being minimally
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laborious as much of the handling and data preprocessing is
easily automated. In this work all stages of experimentation
were automated apart from the selection of candidate materials
and preparation of samples for NMR.

As a proof of concept, we scoped the present work to examine
the mechanism of adhesive interactions resulting between
popular biomedical polymer ligands and a mucin protein
receptor (mucoadhesive interactions). Previously, limitations
with measurement reproducibility prevented the collection of
sufficient screening data to facilitate side-by-side comparisons
of polymer mucoadhesive interactions,” > and they remain
largely unexplored in this regard."* In addition, the mucoad-
hesion process of polymeric biomaterials is complex, leading to
several competing mechanistic theories and some prominent
examples of contradictory adhesive behavior between identical
materials."**> More generally, understanding the link between
polymeric biomaterials performance and the wunderlying
chemistry and structures of those polymers has been deemed
a “formidable challenge”.>*** Data-driven approaches relying on
ML have been suggested to address this challenge, specifically
in aiding to untangle their complexity.**** To the best of the
authors knowledge, the present work is the first machine-
learning directed exploration conducted to date of mucoadhe-
sive interaction mechanisms from atomic-level data.

As a whole, we expect this framework to lay a foundation for
data-driven experimentation in macromolecular design. In
particular, this framework will benefit researchers focused on
designing polymeric or other macromolecular ligands, to target
receptor interactions in vitro, by providing unbiased and
experimentally actionable mechanistic insights using descrip-
tive analysis, and establish a new machine learning perfor-
mance benchmark in the runway towards predictive design of
biomaterials for targeted interactions.

Experimental
Dataset materials

To create a dataset that mapped clear polymer structure-
interaction information at molecular resolution, we experi-
mentally characterized 18 chemically and structurally distinct
biomedical polymers (i.e. varying chemistry and molecular
weight) for their interactions with bovine submaxillary mucin in
solution with DISCO NMR, using previously reported method-
ology.”® We selected a variety of popular biomedical polymers
previously studied for their mucoadhesive, mucus-inert, or
confounding (previously reported as adhesive, and inert) prop-
erties with mucin. The total list of subject polymers, their
molecular weights, and associated protons are outlined in Table
1 (representative chemical structures are provided in ESI Table
11). All chemicals used in these experiments were purchased
from Millipore Sigma and used without additional purification,
unless otherwise noted. 131 kDa CMC was purchased from
Fisher Scientific, bovine submaxillary mucin was purchased
from Cedarlane (Burlington, ON). Proton chemical shifts are
given as 6 'H chemical shift (700 MHz, D,0). NMR integral
regions for each polymer are referenced to the literature values
for the residual HDO peak.*® We note that while the total

© 2023 The Author(s). Published by the Royal Society of Chemistry
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number of proton samples in the dataset (99) is small in the
scheme of machine learning research, other works conducted at
the intersection of experimental biomaterial interaction
screening and supervised learning have similarly analyzed
datasets on the order of 100 data points.”**** The end-to-end
analysis workflow comprising this computational framework
for interaction screening is depicted in Fig. 1.

Model task formulation

The problem was formulated as a binary proton interaction
classification task, where the positive class label (1) signified
a proton as interactive, and the negative class (0) signified it as
inert. Of the subject polymers, 6 possessed protons that showed
significant mucoadhesive interactions, while all protons in the
remaining 12 polymers were inert. This translated to 15 inter-
active protons, and 84 inert, as labeled by testing whether their
DISCO Effect (¢) saturation time dependent buildup curves were
statistically distinguishable from zero effect (Students' ¢ test, p <
0.05, n = 3) using previously reported methodology.?® Capturing
the attributes of the negative class accurately for modelling was
a primary focus in this work, as we hypothesized that inert
protons would be a robust source of information for deconvo-
luting positive class interaction behaviors.'®

Feature engineering

In supervised machine learning, the design of input descriptors
for modelling (referred to as “feature engineering”) is an essential
foundation for generating high quality machine-learned
insights.® Feature engineering polymer descriptors for biomate-
rial interaction screening with machine learning remains an
active area of study,”***> however, successful exploratory works of
this nature have been conducted previously using experimentally
derived feature sets from analytical screening.'>*® Along these
lines, here we developed a machine learning feature set using
only data obtained from DISCO NMR, and polymer molecular
weight, with the joint aims of maximizing interpretability of
macromolecular ligand design attributes, and accurately model-
ling proton-interaction relationships. We elected to derive new
modelling features from raw analytical DISCO NMR results to
avoid pooling the variance from DISCO NMR with external vari-
ance introduced by a feature representation framework. From
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DISCO NMR results, we obtain high precision, atomic-level
descriptors of polymer chemical monomers in the form of
proton 6 'H chemical shift, and polymer conformation infor-
mation, as measured by saturation transfer buildup curves.”
Polymer molecular weight, as an indicator of polymer size, was
used as reported by the manufacturer. To pool this variance with
an additional feature framework or third-party dataset introduces
the risk of diluting the precise signals we observed from these
analytical measurements during modelling. DISCO NMR results
provide chemical, physical, and conformational information at
the atomic level, and thus merit modelling by a standalone
objective function without pooled variance.*®

The meaning underlying each modelling feature, and the
workflow to vectorize them from experimental data, is outlined
below. An exemplary feature vector is shown in Table 2 for HPC
4.07 ppm proton. Specifically, the feature set includes: sample
proton ¢ 'H chemical shift, proton cumulative DISCO effect,
polymer molecular weight, and a contextual polymer-level
chemical shift fingerprint. The feature vector input to the
model training in this work had 35 columns. Each of the
features is described in more detail below.

0 *H chemical shift

The chemical shift of each proton was obtained using DISCO
NMR. Beyond being a chemical identifier for each proton, the
chemical shift provides meaningful insight into the extent of
electron shielding or de-shielding and electronegativity of
neighboring groups, present at a given polymer site. In NMR,
“upfield” chemical shifts refer to lower magnitude, electron
dense, shielded shifts, which can correlate to lower electro-
negativity of neighboring functional groups. Alternatively,
“downfield” shifts are those of higher magnitude, lower elec-
tron density, and increased neighboring functional group
electronegativity. The level of electron shielding experienced at
groups neighboring a proton during protein binding offers
essential directly measured mechanistic insight.

Polymer molecular weight

The impact of polymer molecular weight on mucoadhesion is
an ongoing area of research, given confounding reports of
increasing molecular weight being in some cases an enhancer

Table 1 Summary of dataset polymers, their target concentrations, and 6 *H chemical shift (700 MHz, D,O)

Polymer name Abbreviation Avg. MW (kDa) C (uM) 0 'H chemical shift (700 MHz, D,0)
Hydroxypropyl methyl cellulose HPMC 86, 120 20 4.48, 4.05, 3.71, 3.38, 3.08, 1.16
Hydroxypropyl cellulose HPC 80, 370 20 4.58, 4.07, 3.77, 3.46, 3.14, 1.13
Carboxymethyl cellulose CMC 90, 131 20 4.58, 4.36, 4.25, 4.09, 3.93, 3.76, 3.58, 3.35, 3.14
Dextran from Leuconostoc mesenteroides DEX 150 20 5.30, 5.20, 4.22, 4.02, 3.88, 3.72, 3.48
Poloxamer 407 P407 12.6 50 3.76, 3.60, 3.54, 3.47, 1.19
Poly(2-ethyl-2-oxazoline) PEOZ 50 40 3.62, 3.42, 2.41, 2.32, 2.22, 1.01
Poly(vinylpyrrolidone) PVP 55, 1300 20, 20 3.89, 3.60, 3.22, 2.51, 2.27, 2.03, 1.78, 1.54
Poly((2-dimethylamino)ethyl methacrylate) PDMAEMA 10 200 4.40, 3.46, 2.89, 2.05, 1.42, 1.30, 1.13, 0.92
Poly-(N-(2-hydroxypropyl)methacrylamide) PHPMA 40 20 3.92, 3.19, 3.04, 1.82, 1.16, 0.94
Poly(acrylic) acid PAA 450 20 2.03, 1.54, 1.28

Polyethylene glycol PEG 2, 10, 20 20 3.70

Poly(vinyl) alcohol 86-89% PVA 105 20 4.08,2.12, 1.58

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Workflow diagram describing the computational framework for polymer—protein interaction screening and insight generation. (Left)
Polymer—protein interaction data is screened experimentally using DISCO NMR. Experimental results yield a labeled dataset describing the
attributes of polymer protons within 5 A of the protein binding site and their interaction behavior. (Center) Proton modelling features are
engineered, principal component analysis transforms the feature set, and the highest importance features are applied to interpretably relate
protons to their interaction outcome by a supervised decision tree classifier. (Right) Final model decision rule junctions are interpreted using
principal component biplots to summarize cross-polymer trends and inspire scientific hypotheses.

of mucoadhesion, yet in others reducing it.*>*” The influence
that polymer molecular weight exerts on resulting interactions
is unclear," therefore it is unlikely to be a standalone predictor,
though it provides a proxy measure for physical macromolec-
ular structural influences on proton level interaction.

0 'H chemical shift fingerprint vector

Given there are cooperative forces occurring among polymer
sub-groups that influence global polymer interaction
outcomes'****® we used an additional vector to one-hot-encode
chemical identities of the full proton set detected in a given
polymer, in terms of their binned interval of the NMR spectrum.
Herein, the term “cohort” refers to the set of chemical identities
(6 "H chemical shift) of all protons detected at a given polymer's
binding site using DISCO NMR, excluding that of the sample
proton being represented (fcohort = Mpolymer — 1) The hashing
workflow applied to encode the cohort vector, and some guid-
ance for post hoc interpretation of cohort shifts is described in
the ESL.t

To convey the idea of a “cohort proton” versus a “sample
proton”, consider the feature vector representation (Table 2),
where the 4.07 ppm chemical shift in HPC 370 kDa is a sample
proton. In the vector, two columns map to the unique attributes
of the sample proton: chemical shift (ppm), and cumulative
DISCO effect (CDE). Molecular weight is encoded from the

parent polymer of the sample proton. The cohort vector is then
appended to coarsely represent chemical context relevant to the
sample proton. In HPC, there are 6 total protons detected at the
binding site, meaning its data representation always has one
dedicated sample proton, and the other five encoded as cohort
chemical shifts. Hence, the cohort vector changes within
a polymer to exclude the interval of the sample proton. Every
proton measured in the dataset is represented once as a sample
proton, with the corresponding cohort.

Cumulative DISCO effect

To incorporate cross-polymer positional differences measured
with respect to the receptor, we created the Cumulative DISCO
Effect (CDE) descriptor. CDE is computed from a weighted
cumulative sum of the standardized DISCO Effect (¢) saturation
transfer buildup curve of each proton. The DISCO Effect (¢)
buildup curve is a time-series that relays the relative spatial
positioning of ligand protons with respect to the receptor at
each time point, regardless of the interaction outcome of the
ligand. The effect curve is computed at each NMR saturation
time point (0.25 s, 0.50 s, 0.75 s, 1.0 5, 1.25 s, 1.50 5, and 1.75 s)
and averaged across technical replicates. In addition to CDE, we
benchmarked alternative pipelines using various DISCO Effect
(¢) derived modelling features and compared pipeline holdout
performance metrics with nested cross validation. Detailed

Table 2 Example feature vector, HPC 370 kDa 4.07 ppm proton sample

Sample proton

attributes Cohort proton fingerprint vector
ppm mW CDE (1.0,1.1] (1.1, 1.2] (3.1,3.2] (3.2,3.3] (3.3,3.4] (3.4,3.5] (3.7, 3.8] (4.0, 4.1] (4.5, 4.6]
4.07 370 —0.61 O 1 0 1 0 0 1 0 1 0 0 0 1 0
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Fig. 2 Incorporating DISCO Effect as a modelling feature significantly
improved modelling pipeline performance in terms of Holdout F;
scores from nested cross validation (n = 3 random seeds, p <« 0.05,
independent two sample t-test). The error bars depict standard error
of the mean. The feature set without CDE comprised only the
chemical shift, cohort fingerprint, and molecular weight descriptors.
Models trained without CDE performed worse on average than the null
model baseline F; = 0.46, indicating DISCO Effect is essential to
mapping an objective function for the dataset.

Table 3 Fully-trained decision tree classification metrics

Precision Recall F, score Accuracy
Inert protons 1.0 0.9 0.95 —
Interactive protons 0.65 1.0 0.79 —
Macro average 0.83 0.95 0.87 0.92
Weighted average 0.95 0.92 0.93 —

Table 4 Null model metrics. All examples predicted as majority class

Precision Recall F, score Accuracy
Inert protons 0.85 1.0 0.92 —
Interactive protons 0.0 0.0 0.0 —
Macro average 0.42 0.50 0.46 0.85
Weighted average 0.72 0.85 0.78 —

description of the benchmarking workflow and results are
provided in ESI Tables 2 and 3.7 CDE is computed specifically by
linear PCA of the time-series DISCO Effect (¢) buildup curve for
each proton. Only the first principal component is retained,
reducing the signal from seven dimensions (¢ = 0.25 s, 0.50 s,
0.75 s, 1.0 s, 1.25 s, 1.50 s, 1.75 s) to one. CDE, the retained
principal component, is thus interpretable as a weighted
cumulative sum of the DISCO Effect (t) for a given ligand
proton, over the entirety of the receptor-ligand saturation time
series. 68.8% of proton buildup curve variance in the final

© 2023 The Author(s). Published by the Royal Society of Chemistry
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model was explained by CDE. Further discussion of the
computation and interpretation of CDE is provided in the ESL.}

Feature transformation by principal component analysis

For each analysis, all data preprocessing steps prior to cross
validation were conducted through a single pipeline (sklearn.-
pipeline). A pipeline is a method for assembling steps to be
cross validated together, such that defined steps are trained on
only training data folds, and applied to transform validation
data folds. The first step in the pipeline computed the CDE
feature as previously described. Next, the CDE feature alongside
the chemical property and physical property features (i.e.
sample proton 6 'H chemical shift, molecular weight, cohort
fingerprint, and CDE, totalling 35 features) were passed into
a principal component analysis workflow. We added this prin-
cipal component analysis workflow to the pipeline as a means of
removing intercorrelations in the modelling features while
keeping underlying information intact.*®*®

A challenge characteristic of polymer machine learning is
that polymer attributes are often inherently intercorrelated,*
which impedes the ability of a model to learn independent
relationships.* The retained number of principal components
for modelling,** was selected by Minka's MLE.*® The scree plot
and factor loadings for the retained principal components are
provided in ESI Fig. 2 and 3.f Principal component factor
loadings are generally interpreted as linear combinations of the
input variables, and represent the criteria used to score protons
on each component. The magnitudes of the loadings corre-
spond to the magnitude of the underlying proton attribute
importance to the associated component. The sign of the
loadings corresponds to the direction of the correlation
between the attribute and the principal component score.

Modeling structure-interaction with decision tree learners

The first objective of this framework was to improve our
scientific understanding of macromolecular interaction mech-
anisms, and construct descriptive polymer interaction design
guidelines without human-bias. Hence, we focused on inter-
pretable modelling approaches. Decision trees are best known
for their “glass box” interpretability among supervised classi-
fiers, providing traceable explanations for each prediction
made."*" Accordingly, decision trees have been popular for
similar biological modelling tasks dependent on interpret-
ability, such as deconvoluting toxicological interaction mecha-
nisms pursuant to medical nanoparticle design.'®**-** On these
merits, we selected a decision tree classifier to interpretably
relate proton attributes to their interactive fate. Decision trees
were trained using the DecisionTreeClassifier estimator from
the scikit-learn Python package (scikit-learn package version
0.23.2, Python version 3.8.8 used throughout) which is provided
as an optimized implementation of the Classification and
Regression Tree (CART) algorithm.*

A decision tree classifier constructs a set of interpretable
rules that split the dataset into subsets, as a function of maxi-
mizing class purity. To this effect, the decision tree automati-
cally selects training features in the dataset (j) that are optimal

Digital Discovery, 2023, 2,1697-1709 | 1701
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chemical shifts of protons are annotated. Marker shapes correspond to polymer species. (C) Decision tree subsection indicates the node
describing rule 5. (D) Principal component biplot showing the data underlying rule 5, which classifies a subset of protons from HPC 370 kDa as
interactive from the inert subset possessed by HPC 80 kDa. *H chemical shifts are annotated. Interactive protons from HPC 370 kDa (1.13, 3.46,
3.77, 4.07), inert protons from HPC 370 kDa (3.14) HPC 80 kDa (1.13, 3.77, 4.07). Marker shapes correspond to polymer species, identities for

relevant species are annotated.

for splitting at fixed threshold values (s). Consequently, each
node of the tree can be considered a characteristic region of the
dataset (R), whose proton samples share similar structure-
interaction behaviors. For example, two characteristic regions
R; and R, would be created by splitting the proton dataset X at
feature j and threshold s as follows:**

Rl(]',.\‘) = {X‘A/] = S} and Rz(j,_y) = {Xl/\/] > S}

Such that feature j and threshold s are learned by the algo-
rithm. Where a region is terminal (a leaf node), the hyper-
parameters of the tree constrain further splitting, and
classification labels are assigned based on a predefined decision
threshold, such as a percentage of a given class present in the leaf.

Here, the algorithm optimized tree leaf nodes to maximize
proton-level interaction classification purity (ie. interactive

© 2023 The Author(s). Published by the Royal Society of Chemistry

protons cluster together, inert together). However, given the
polymer-proton hierarchy in the data, the tree also naturally
captures interpretable polymer-level interaction trends in
intermediate nodes.

To select hyperparameters for the descriptive model's deci-
sion tree, we employed 5-fold stratified grid search cross vali-
dation, using the hyperparameter grid in ESI Table 3.1 The
process returned a tree with a cross-validated AUC of 0.635,
having a maximum depth of 5, minimum samples per leaf of 3,
and no constraint on minimum samples per split. Choosing
descriptive model hyperparameters based on a cross validated
grid search served to mitigate overfitting.

Finally, we fully trained a decision tree having the architec-
ture returned from grid search cross validation to create
a descriptive tree to interpret for insights. The principal
component biplots shown in this work correspond in entirety to
the set of decisions made in the descriptive tree.
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Fig. 5 Principal component biplots summarizing decision rules 6 and 7. (A) Decision tree subsection indicates the nodes describing decision
rules 6 and 7. (B) Principal component biplot showing decision rules 6 and 7 and the underlying data. Abbreviated polymer names, MW, and *H
chemical shifts of classified protons, as well as protons immediately bordering the decision boundary, are annotated. Decision rule 6 (PC9 =1.03)
groups protons from PVA, HPC, HPMC, DEX, CMC with the following average properties: chemical shift ppmo.1 03 = 4.14 ppm, avg. CDEg.1 03 =
3.63, avg. MWy, o3 = 111 kDa. Decision rule 7 (PC11 = 0.22) identifies the three true proton interactions within the proton subset across polymer
species and MW. Marker shapes correspond to polymer species, identities for relevant species are annotated.

Decision tree descriptive model performance assessment

The descriptive fully trained tree is depicted in Fig. 2A, along-
side its feature importance plot (Fig. 2B), and confusion matrix
(Fig. 2C). Leaf nodes were predicted as interactive by the model
where a 20% or greater fraction of its protons were interactive in
computing the metrics.

There are no pre-existing benchmarks for model perfor-
mance in this task, as atomic-level mucoadhesive interactions
have not previously been modelled with machine learning.
Thus, for a performance baseline we use a null model,
a majority “dummy classifier,” where all samples are reported
as the majority class (all protons classified inert). Class-specific
F, scores, precision, and recall for the descriptive model are
provided in Table 3 (F; = 0.87). The model's 0.87 F; score
represents an 89% improvement over the null model F; = 0.46
(Table 4).

Predictive assessment of modelling pipeline

Towards the second objective of establishing a predictive
benchmark for this task, we report estimates of pipeline out of
sample performance using nested grid-search cross validation.
The inner loop comprised a 5-fold stratified grid search cross
validation, and the outer loop leave-one-out cross validation, to
provide a test set assessment of the modelling pipeline and
compute holdout F; score. We benchmarked the holdout F;
score of the modelling pipeline with a cumulative DISCO effect
feature against the null model baseline, and a version of the

1704 | Digital Discovery, 2023, 2, 1697-1709

modelling pipeline with the same feature set only excluding
a feature from DISCO Effect (Fig. 2). Two pipelines with alter-
native DISCO Effect feature representations were also bench-
marked, which are described in further detail in ESI Table 2 and
Fig. 1.1 Each benchmark was conducted at three random seeds.

Holdout F; for the cumulative DISCO effect feature set, ie.
the pipeline used to create the descriptive model, demonstrated
a 20% improvement over the null model (Average Holdout F; =
0.547, n = 3), indicating that the modelling pipeline performed
well in the classification task. In contrast, the assessment for
the feature set using only the chemical shift, cohort fingerprint
and molecular weight features failed to beat the null model
baseline (Average Holdout F; = 0.440, n = 3).

Thus, we learned that information at the intersection of
proton chemical shift, polymer molecular weight, and physical
conformation (DISCO Effect) was necessary to map an objective
function of cross-polymer trends in interaction surpassing the
null model. With these positive results, we next sought to
interpret the descriptive model's representation of the data for
insights in polymer interaction design at the intersection of
chemical, physical, and conformational behavior.

Results and discussion

We interpreted the model's eight decision tree classification
rules to study mucoadhesive interaction mechanisms across
polymers in the dataset. In this work, the set of decision rules
constructed by the model directly corresponds to areas in the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Principal component biplot summarizing decision rule 8. (A) Decision tree subsection indicates the node describing rule 8. (B) Principal

component biplot showing the data underlying rule 8. Abbreviated

polymer names, MW, and 'H chemical shifts of classified protons are

annotated. Protons across species are bimodally distributed on chemical composition as indicated by PC15 factor loadings. The cluster scoring
lowest on PC15 contains a true interactive proton, whereas the cluster scoring higher in PC15 contains purely inert protons. Marker shapes

correspond to polymer species, identities are annotated.

dataset to investigate for interaction behaviour insights. To
assess the similarities or differences between classified data
points, we used principal component biplots, a popular meth-
odology to ease interpretability of classification.*® Each biplot
illustrates a two-dimensional representation of essential varia-
tions in the data the model used to distinguish inert and
interactive proton classes by constructing a rule. We can study
the boundary between inert and interactive classes by visually
examining which inert-labelled protons are proximal to inter-
active protons in the biplots.

The modelling exercise provided a path to data interpreta-
tion in several ways within this complex problem space: first by
identifying which principal components enabled interaction
classification, second by segregating subsets of data to leaf
nodes that should be considered together, and finally con-
structing decision rule boundaries themselves. We follow an
approach to data analysis as such, by examining the principal
components and datapoints segregated to each decision node
holistically.

In addition to constructing principal component biplots for
each decision tree rule, we further examined the principal
component factor loadings underlying the decision rules to
ascertain the polymer attributes that correlated to each inter-
action classification, in the form of heuristics. Detailed

© 2023 The Author(s). Published by the Royal Society of Chemistry

description of each decision tree heuristic, including principal
components, and factor loadings are provided in ESI Table 5.7
To simplify the loadings for interpretation of the heuristics,
only loadings greater than or equal to 0.1 are examined in the
discussion.

Herein, from a bird's eye view, we draw attention to several
key insights from the interpretation of principal component
biplots that teach us about the behavior of mucoadhesive
materials. The principal components used in the biplots are, in
all cases, the pairings that create the decision rule in the tree
being plotted, in the sequence shown in Fig. 3.

Identifying inert proton candidates for tuning towards
designed polymer interactions

Each principal component biplot distilled high dimensional
information from problem space interrogation into simple 2D
planes. By visual examination of the boundary between inert
and interactive classes in decision regions of the model, we
identify which inert protons exhibited similar principal
component scores to interactive protons. Herein, we discuss the
identities of protons present at each decision rule, with partic-
ular interest in inert labelled protons having scores close to the
interactive class.

Digital Discovery, 2023, 2,1697-1709 | 1705
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In general, polymer interaction mechanisms having three or
more strongly contributing protons (PAA, PDMAEMA, HPC),
had sufficient interactive subset size to yield individual classi-
fication branches in the tree (Fig. 4). Where polymer interac-
tions were specific to one or two proton sites, or where the
dataset contained multiple examples of the same polymer with
altered physical properties and interaction outcomes (CMC,
HPMC, PVA, HPC) the model was forced to draw more nuanced
cross-polymer comparisons to achieve its optimization objective
(Fig. 5 and 6). It is in these nuanced cross-polymer comparisons
we can elucidate the shared characteristics of interactive
protons across polymer species, and the identities of the inert-
labelled protons that closely border interactive decision
regions. In other words, we can identify and enumerate
“undervalued” inert protons that are worthy targets for engi-
neering towards interaction.

An example of this phenomenon is demonstrated by the HPC
proton decision boundary (Fig. 4D). In HPC, the model learned
that tuning molecular weight, without additional chemical
functionalization, enabled interaction. HPC 370 kDa achieved
stable mucoadhesive interactions at 4.07, 3.77, 3.46, and
1.13 ppm, and remained inert at 3.14 ppm. No interactions
resulted at any HPC 80 kDa molecular weight protons. In
addition to changes in molecular weight, we observed the
average CDE of HPC protons below the decision boundary was
lower than those above it, and ppm were shifted more downfield
(avg. CDEpci1=0.65 = —0.74, avg. CDEpci1-0.65 = —0.62), (avg.
PPMpci1=0.65 = 3.77 ppM, avg. ppMpci10.65 = 2.64 ppm). While
in this example, CDE, ppm and molecular weight data exhibit
clear directional trends across the decision rule, across different
polymer species the nature of these relationships is increasingly
complex. However, despite this complexity, by simple visual
examination of the decision rule plots for inert-labelled protons
from materials that border the interaction boundary, we can
identify undervalued, inert labelled protons. In this instance,
these are the three inert protons from HPC 80 kDa that
appeared in this decision region (4.07, 3.77, 1.13).

The ability to create such an objective function from data-
points that vary across diverse polymer species in a small
dataset is granted by the CDE descriptor (Fig. 2), which provides
orthogonal continuous numeric data contextualizing the
coarser changes in chemical shift, molecular weight, and cohort
fingerprint. The hierarchy of descriptors, combining atomic-
level data with polymer-level property data accounts for vari-
ance sources at multiple length scales.

The model's decision rules as an engine for identifying
“undervalued” inert-labeled protons is best demonstrated in
Fig. 5B. Chemically identical proton sites from CMC (4.58 ppm),
and HPMC (4.48 ppm) at two molecular weights respectively,
have opposite interaction outcomes in this region. At 131 kDa
molecular weight the 4.58 ppm site in CMC interacts, however
this interaction is lost at 90 kDa. In HPMC the direction of the
trend is opposite, interaction occurred at 86 kDa molecular
weight, yet was lost at 120 kDa. In spite of the conflicting
directionality of the trend, the model correctly identified the
true interactive protons across these species, and scored their
chemically identical inert counterparts on the exterior of the
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decision boundaries in Fig. 5B. Here, we posit that other inert-
labeled protons scoring within or near the decision boundaries
of rules 6 & 7 are similarly “undervalued”, and correspond to
candidates for within-species physical property tuning to
unlock dominant interactions. These protons are: HPC 80 kDa
(4.58 ppm), PVA (1.58 ppm), DEX150 (5.20 ppm), PVP 55 kDa
(3.89 ppm), PEOZ 50 kDa (3.42 ppm), CMC 90 kDa (4.58 ppm),
and HPMC 120 kDa (4.48 ppm), annotated in Fig. 5B. As
described previously, the latter two inert protons are experi-
mentally verified to unlock interaction through within-species
tuning of molecular weight.*?

Fig. 6 shows the remaining unclassified protons in the
dataset. The final decision rule in PC 15 intersects a cluster
subset of the datapoints, a largely inert group containing
a single interactive proton. The interactive proton is a secondary
interaction from CMC 131 kDa at 3.76 ppm. We identify and
enumerate the neighboring undervalued protons clustering this
decision rule, which may correlate to secondary interactions in
their respective species. These are: CMC 131 kDa (4.09 ppm),
CMC 90 kDa (4.58 ppm, 4.09 ppm), DEX 150 kDa (3.72 ppm,
4.02 ppm), HPMC 120 kDa (3.71 ppm, 4.05 ppm), HPMC 86 kDa
(3.71 ppm, 4.05 ppm), PHPMA 40 kDa (0.94 ppm, 1.82 ppm),
PVP 55 kDa (1.54 ppm, 3.89 ppm), PVP 1300 kDa (1.54 ppm),
P407 13 kDa (3.76 ppm), PEOZ 50 kDa (3.42 ppm).

For the protons of the larger second cluster, which does not
contain a decision rule, we make no additional distinctions.

Identifying cross-polymer structure-activity trends

The data suggests a structure-activity relationship may exist at
select proton sites across materials, in the molecular weight
range of 80-150 kDa. The relevant proton sites were identified
by detailed examination of decision rules 7 and 8 in the ESL,}
alongside review of Fig. 5 and 6.

DEX, CMC, HPC, and HPMC in molecular weight range 80-
150 kDa shared a cohort chemical shift interval of (4.0, 4.1]
where downfield dominant interactions were either correctly
identified, or were “undervalued” by the model in Fig. 5B.
Specifically, we observed the (4.0, 4.1] cohort shift was present
with: DEX 150 kDa (5.20 ppm, undervalued), CMC 131 kDa
(4.58 ppm, interactive), HPMC 86 kDa (4.48 ppm, interactive),
HPC 80 kDa (4.58 ppm, undervalued).

This trend is expanded to secondary interactions, with the
observation that the (4.0, 4.1] and (3.7, 3.8] chemical shift
intervals repeatedly appear together in the secondary interac-
tion cluster apparent in Fig. 6B and the analysis of decision rule
8. These observations were: CMC 131 kDa (4.09 ppm, 3.76 ppm
(interactive)), CMC 90 kDa (4.09 ppm, 3.76 ppm), DEX 150 kDa
(4.02 ppm, 3.72 ppm), HPMC 86 kDa (4.05 ppm, 3.71 ppm), and
HPMC 120 kDa (4.05 ppm, 3.71 ppm). P407 at 3.76 ppm addi-
tionally clustered, without a (4.0, 4.1] shift.

Hypothesis generation and interpretation from undervalued
proton candidates

There are many approaches to investigate the hypotheses
generated in this work, such that physical property adjustments
without additional functionalization may enable inert to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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interactive polymer transitions. Approaches that constrain
polymer mobility merit further investigation as a means of
inducing changes to polymer orientation, and subsequently
interactions such as mucoadhesion. For example, given neither
molecular weight PVP (55 kDa, 1300 kDa) incurred any
mucoadhesive interactions, we expect physical property tuning
approaches other than molecular weight may be beneficial for
adjusting the interaction conformation of PVP protons towards
mucoadhesion, particularly at 3.89 ppm and 1.54 ppm sites.
In general, the dynamic, multivariate, and counterintuitive
nature of the cross-species interaction mechanisms modelled in
this work emphasizes that researchers will achieve the best
designed polymer interaction outcomes by applying data-driven
frameworks such as this, that outsource the interrogation of
problem spaces to a computational model informed by chem-
ical, physical, and conformational data, while clearly informing
human researchers of the most efficient path to proceed.

Conclusions

In this work we developed a knowledge framework for extract-
ing and interpreting structure-interaction trends in macromo-
lecular systems and applied it to extract descriptive insights. We
additionally established a benchmark for the framework's
predictive capability. The framework uses ligand proton inter-
action data obtained from saturation transfer-based NMR
(DISCO NMR) experiments, principal component analysis, and
supervised decision tree classification to interpretably relate
proton descriptors to their binarized interactive fate. To build
structure-activity models, we developed a set of materials-
agnostic macromolecular proton descriptors that apply
a combination of ligand chemical shift fingerprinting, ligand
molecular weight, and cumulative DISCO effect data captured
from proton saturation transfer buildup curves. The descriptors
encapsulated proton chemical, physical, and conformational
attributes together. The predictive assessment of modelling
pipelines demonstrated that incorporating a DISCO effect
feature alongside chemical shift and molecular weight was
essential to beat a null model performance benchmark and
convey trends. For proof of concept, we applied the framework
to descriptively highlight differences in the mucoadhesive
interaction mechanisms underlying a variety of popular
biomedical polymer ligands with mucin protein. We interpreted
the decision rules of a fully trained descriptive model created
using 5-fold stratified grid search cross validation (F; = 0.87),
yielding several key insights in polymer design. Firstly, under-
valued protons chemically suitable for interaction, yet in need
of physical property tuning to unlock stable interaction, were
identified by complex hierarchical patterns in proton cumula-
tive DISCO effect. Some undervalued candidates belonging to
this class were: HPC 80 kDa (4.58 ppm), HPMC 120 kDa (4.48
ppm), PVA (1.58 ppm), DEX 150 kDa (5.2 ppm), PVP 55 kDa (3.89
ppm), CMC 90 kDa (4.58 ppm), and PEOZ 50 kDa (3.42 ppm).
The model additionally revealed a potential structure-
interaction relationship shared by HPC, CMC, DEX, and
HPMC pursuant to influences of their (4.0, 4.1] and (3.7, 3.8]
chemical shifts on various downfield interactive sites, within

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the 80-150 kDa molecular weight range. Globally, the mecha-
nistic understanding obtained from this framework reinforces
the multivariate nature of inter-macromolecular interactions
and underscores the need to shift the design paradigm to data-
driven discovery for targeted biomaterial interactions. Along
these lines, our results provide an actionable foundation for
data-driven research in mucoadhesive polymer design. Looking
ahead, we expect this framework to be readily applied for
screening and interpreting the interaction mechanisms
underlying other polymer—protein systems with DISCO NMR
and accelerate progress towards predictive macromolecule
designs for targeted interactions, or lack thereof.

Data availability

The experimental data and python code used to conduct this
study are available in a public GitHub repository at: https://
github.com/Frank-Gu-Lab/infrno.

Author contributions

S. S. contributed the majority of the methodology, formal
analysis, software, visualization, and writing (original draft). S.
S. and J. W. contributed equally to the conceptualization, data
curation, investigation, writing (review & editing), and valida-
tion. F. X. G. contributed to the project administration, super-
vision, and funding acquisition. All authors contributed to the
revision and editing of this manuscript and have given approval
to the final version of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was undertaken thanks in part to funding provided to
the University of Toronto's Acceleration Consortium from the
Canada First Research Excellence Fund. This work was also
supported by NSERC Discovery Grant #06441 and the NSERC
Senior Industrial Research Chair program. The authors would
like to acknowledge J. Tram-Su and M. Oliveira for refactoring
and unit testing the data processing python code. S. Stuart is
supported by the NSERC Alexander Graham Bell Canada
Graduate Scholarship and the Canadian Federation of Univer-
sity Women 1989 Ecole Polytechnique Commemorative Award.
J. Watchorn is supported by the Queen Elizabeth II/Dupont
Canada Scholarship in Science and Technology and the
Mclean Foundation Graduate Scholarship in Science and
Technology.

Notes and references

1 A. R. Mackie, F. M. Goycoolea, B. Menchicchi,
C. M. Caramella, F. Saporito, S. Lee, K. Stephansen,
I. S. Chronakis, M. Hiorth, M. Adamczak, M. Waldner,

Digital Discovery, 2023, 2,1697-1709 | 1707


https://github.com/Frank-Gu-Lab/infrno
https://github.com/Frank-Gu-Lab/infrno
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00009e

Open Access Article. Published on 21 July 2023. Downloaded on 1/14/2026 2:10:19 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

H. M. Nielsen and L. Marcelloni, Macromol. Biosci., 2017, 17,
1600534.

2 D. K. Brubaker and D. A. Lauffenburger, Science, 2020, 367,
742-743.

3 J. Lazarovits, S. Sindhwani, A. J. Tavares, Y. Zhang, F. Song,
J. Audet, J. R. Krieger, A. M. Syed, B. Stordy and
W. C. W. Chan, ACS Nano, 2019, 13, 8023-8034.

4 D. K. Brubaker, J. A. Paulo, S. Sheth, E. J. Poulin, O. Popow,
B. A. Joughin, S. D. Strasser, A. Starchenko, S. P. Gygi,
D. A. Lauffenburger and K. M. Haigis, Cell Syst., 2019, 9,
258-270.e6.

5 J. J. Richardson and F. Caruso, Nano Lett., 2020, 20, 1481-
1482.

6 P. McGillivray, D. Clarke, W. Meyerson, J. Zhang, D. Lee,
M. Gu, S. Kumar, H. Zhou and M. Gerstein, Annu. Rev.
Biomed. Data Sci., 2018, 1, 153-180.

7 A. Suwardi, F. K. Wang, K. Xue, M. Y. Han, P. Teo, P. Wang,
S. Wang, Y. Liu, E. Ye, Z. Li and X. ]J. Loh, Adv. Mater., 2022,
34(1), 2102703.

8 R. ]J. Kwaria, E. A. Q. Mondarte, H. Tahara, R. Chang and
T. Hayashi, ACS Biomater. Sci. Eng., 2020, 6, 4949-4956.

9 Z.Ban, P. Yuan, F. Yu, T. Peng, Q. Zhou and X. Hu, Proc. Natl.
Acad. Sci. U. S. A., 2020, 117, 10492-10499.

10 B. Fadeel and C. Alexiou, Biochem. Biophys. Res. Commun.,
2020, 533, 36-49.

11 R. Marchetti, S. Perez, A. Arda, A. Imberty, J. Jimenez-
Barbero, A. Silipo and A. Molinaro, ChemistryOpen, 2016, 5,
274-296.

12 H. M. Rostam, L. E. Fisher, A. L. Hook, L. Burroughs,
J. C. Luckett, G. P. Figueredo, C. Mbadugha, A. C. K. Teo,
A. Latif, L. Kdimmerling, M. Day, K. Lawler, D. Barrett,
S. Elsheikh, M. Ilyas, D. A. Winkler, M. R. Alexander and
A. M. Ghaemmaghami, Matter, 2020, 2, 1564-1581.

13 M. Germain, F. Caputo, S. Metcalfe, G. Tosi, K. Spring,
A. K. O. Aslund, A. Pottier, R. Schiffelers, A. Ceccaldi and
R. Schmid, J. Controlled Release, 2020, 326, 164-171.

14 Y. Zhu, W. Xu, ]J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang and
S. Wu, 2022, preprint, arXiv:2103.03036, DOIL: 10.48550/
arxiv.2103.03036.

15 R. Kumar, ACS Appl. Bio Mater., 2022, 5, 2507-2535.

16 J. Watchorn, A. J. Clasky, G. Prakash, I. A. E. Johnston,
P. Z. Chen and F. X. Gu, ACS Biomater. Sci. Eng., 2022, 8,
1396-1426.

17 H. S. Leong, K. S. Butler, C. J. Brinker, M. Azzawi, S. Conlan,
C. Dufés, A. Owen, S. Rannard, C. Scott, C. Chen,
M. A. Dobrovolskaia, S. V. Kozlov, A. Prina-Mello,
R. Schmid, P. Wick, F. Caputo, P. Boisseau, R. M. Crist,
S. E. McNeil, B. Fadeel, L. Tran, S. F. Hansen,
N. B. Hartmann, L. P. W. Clausen, L. M. Skjolding,
A. Baun, M. ;&gerstrand, Z. Gu, D. A. Lamprou, C. Hoskins,
L. Huang, W. Song, H. Cao, X. Liu, K. D. Jandt, W. Jiang,
B. Y. S. Kim, K. E. Wheeler, A. J. Chetwynd, I. Lynch,
S. M. Moghimi, A. Nel, T. Xia, P. S. Weiss, B. Sarmento,
J. das Neves, H. A. Santos, L. Santos, S. Mitragotri, S. Little,
D. Peer, M. M. Amiji, M. ]J. Alonso, A. Petri-Fink, S. Balog,
A. Lee, B. Drasler, B. Rothen-Rutishauser, S. Wilhelm,
H. Acar, R. G. Harrison, C. Mao, P. Mukherjee, R. Ramesh,

1708 | Digital Discovery, 2023, 2, 1697-1709

View Article Online

Paper

L. R. McNally, S. Busatto, J. Wolfram, P. Bergese,
M. Ferrari, R. H. Fang, L. Zhang, J. Zheng, C. Peng, B. Du,
M. Yu, D. M. Charron, G. Zheng and C. Pastore, Nat.
Nanotechnol., 2019, 14, 629-635.

18 A. V. Singh, D. Rosenkranz, M. H. D. Ansari, R. Singh,
A. Kanase, S. P. Singh, B. Johnston, J. Tentschert, P. Laux
and A. Luch, Adv. Intell. Syst., 2020, 2, 2000084.

19 P. Bannigan, M. Aldeghi, Z. Bao, F. Hise, A. Aspuru-Guzik
and C. Allen, Adv. Drug Delivery Rev., 2021, 175, 113806.

20 M. M. Cencer, J. S. Moore and R. S. Assary, Polym. Int., 2022,
71, 537-542.

21 R. Upadhya, S. Kosuri, M. Tamasi, T. A. Meyer, S. Atta,
M. A. Webb and A. J. Gormley, Adv. Drug Delivery Rev.,
2021, 171, 1-28.

22 F. Cravero, S. A. Schustik, M. J. Martinez, G. E. Vazquez,
M. F. Diaz and 1. Ponzoni, J. Chem. Inf. Model., 2020, 60,
592-603.

23 J. Watchorn, S. Stuart, D. C. Burns and F. X. Gu, ACS Appl.
Polym. Mater., 2022, 4, 7537-7546.

24 P.Xu, X. Ji, M. Li and W. Lu, npj Comput. Mater., 2023, 9, 42.

25 C. Rudin, Nat. Mach. Intell., 2019, 1, 206-215.

26 J. Watchorn, D. Burns, S. Stuart and F. X. Gu,
Biomacromolecules, 2022, 23, 67-76.

27 E. Jabbari, N. Wisniewski and N. A. Peppas, J. Controlled
Release, 1993, 26, 99-108.

28 G. Uccello-Barretta, S. Nazzi, F. Balzano and M. Sanso, Int. J.
Pharm., 2011, 406, 78-83.

29 M. P. Brown and C. Royer, Curr. Opin. Biotechnol., 1997, 8,
45-49.

30 L. Wu, W. Shan, Z. Zhang and Y. Huang, Adv. Drug Delivery
Rev., 2018, 124, 150-163.

31 A. Popov, E. Enlow, J. Bourassa and H. Chen, Nanomedicine,
2016, 12, 1863-1871.

32 Y. Y. Wang, S. K. Lai, J. S. Suk, A. Pace, R. Cone and J. Hanes,
Angew. Chem., Int. Ed., 2008, 47, 9726-9729.

33 A. Suwardi, F. Wang, K. Xue, M. Han, P. Teo, P. Wang,
S. Wang, Y. Liu, E. Ye, Z. Li and X. J. Loh, Adv. Mater.,
2022, 34, 2102703.

34 S. Stuart, J. Watchorn and F. X. Gu, npj Comput. Mater., 2023,
9, 102.

35 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem.,
1997, 62, 7512-7515.

36 T. C. Le, M. Penna, D. A. Winkler and I. Yarovsky, Sci. Rep.,
2019, 9, 265.

37 C. Yan, X. Feng, C. Wick, A. Peters and G. Li, Polymer, 2021,
214, 123351.

38 R. Kumar, N. Le, Z. Tan, M. E. Brown, S. Jiang and
T. M. Reineke, ACS Nano, 2020, 14, 17626-17639.

39 R. A. Patel and M. A. Webb, ACS Appl. Bio Mater., 2023, DOI:
10.1021/acsabm.2c00962.

40 S. Kosuri, C. H. Borca, H. Mugnier, M. Tamasi, R. A. Patel,
I. Perez, S. Kumar, Z. Finkel, R. Schloss, L. Cali,
M. L. Yarmush, M. A. Webb and A. ]J. Gormley, Adv.
Healthcare Mater., 2022, 11(10), 2102101.

41 S. Kosuri, C. H. Borca, H. Mugnier, M. Tamasi, R. A. Patel,
I. Perez, S. Kumar, Z. Finkel, R. Schloss, L. Cai,

© 2023 The Author(s). Published by the Royal Society of Chemistry


https://doi.org/10.48550/arxiv.2103.03036
https://doi.org/10.48550/arxiv.2103.03036
https://doi.org/10.1021/acsabm.2c00962
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00009e

Open Access Article. Published on 21 July 2023. Downloaded on 1/14/2026 2:10:19 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

M. L. Yarmush, M. A. Webb and A. J. Gormley, Adv.
Healthcare Mater., 2022, 11, 2102101.

42 B. Panganiban, B. Qiao, T. Jiang, C. DelRe, M. M. Obadia,
T. D. Nguyen, A. A. A. Smith, A. Hall, I. Sit, M. G. Crosby,
P. B. Dennis, E. Drockenmuller, M. Olvera de la Cruz and
T. Xu, Science, 2018, 359, 1239-1243.

43 M. J. Tamasi, R. A. Patel, C. H. Borca, S. Kosuri, H. Mugnier,
R. Upadhya, N. S. Murthy, M. A. Webb and A. J. Gormley, Adv.
Mater., 2022, 34, 2201809.

44 C. Kuenneth, A. C. Rajan, H. Tran, L. Chen, C. Kim and
R. Ramprasad, Patterns, 2021, 2, 100238.

45 E. R. Antoniuk, P. Li, B. Kailkhura and A. M. Hiszpanski, J.
Chem. Inf. Model., 2022, 62, 5435-5445

46 T. A. Meyer, C. Ramirez, M. J. Tamasi and A. J. Gormley, ACS
Polym. Au, 2023, 3, 141-157.

47 S. K. Lai, Y. Y. Wang and ]. Hanes, Adv. Drug Delivery Rev.,
2009, 61, 158-171.

48 R. Fino, R. Byrne, C. A. Softley, M. Sattler, G. Schneider and
G. M. Popowicz, Comput. Struct. Biotechnol. J., 2020, 18, 603-
611.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

49 T. Sirimongkolkasem and R. Drikvandi, Ann. Data Sci., 2019,
6, 737-763.

50 T. Minka, in Advances in Neural Information Processing
Systems, ed. T. Leen, T. Dietterich and V. Tresp, MIT Press,
2000, vol. 13.

51 T. Hastie, R. Tibshirani and J. Friedman, The Elements of
Statistical Learning, Springer New York, New York, NY, 2nd
edn, 2009.

52 D. E. Jones, H. Ghandehari and J. C. Facelli, Beilstein J.
Nanotechnol., 2015, 6, 1886.

53 A. Gajewicz, T. Puzyn, K. Odziomek, P. Urbaszek, A. Haase,
C. Riebeling, A. Luch, M. A. Irfan, R. Landsiedel, M. van
der Zande and H. Bouwmeester, Nanotoxicology, 2018, 12,
1-17.

54 G. Chen, W. J. G. M. Peijnenburg, V. Kovalishyn and
M. G. Vijver, RSC Adv., 2016, 6, 52227-52235.

55 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg and others, J. Mach. Learn. Res., 2011, 12,
2825-2830.

56 R. Bro and A. K. Smilde, Anal. Methods, 2014, 6, 2812-2831.

Digital Discovery, 2023, 2,1697-1709 | 1709


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3dd00009e

	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e

	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e

	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e
	An interpretable machine learning framework for modelling macromolecular interaction mechanisms with nuclear magnetic resonanceElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3dd00009e




