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I-driven scientific discovery
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Tackling the most pressing problems for humanity, such as the climate crisis and the threat of global

pandemics, requires accelerating the pace of scientific discovery. While science has traditionally relied on

trial and error and even serendipity to a large extent, the last few decades have seen a surge of data-

driven scientific discoveries. However, in order to truly leverage large-scale data sets and high-

throughput experimental setups, machine learning methods will need to be further improved and better

integrated in the scientific discovery pipeline. A key challenge for current machine learning methods in

this context is the efficient exploration of very large search spaces, which requires techniques for

estimating reducible (epistemic) uncertainty and generating sets of diverse and informative experiments

to perform. This motivated a new probabilistic machine learning framework called GFlowNets, which can

be applied in the modeling, hypotheses generation and experimental design stages of the experimental

science loop. GFlowNets learn to sample from a distribution given indirectly by a reward function

corresponding to an unnormalized probability, which enables sampling diverse, high-reward candidates.

GFlowNets can also be used to form efficient and amortized Bayesian posterior estimators for causal

models conditioned on the already acquired experimental data. Having such posterior models can then

provide estimators of epistemic uncertainty and information gain that can drive an experimental design

policy. Altogether, here we will argue that GFlowNets can become a valuable tool for AI-driven scientific

discovery, especially in scenarios of very large candidate spaces where we have access to cheap but

inaccurate measurements or too expensive but accurate measurements. This is a common setting in the

context of drug and material discovery, which we use as examples throughout the paper.
1 Introduction

The climate crisis, antibiotic resistance and the prospect of new
pandemics are some of the biggest threats to humanity, posing
immense risks to global health and food security. One impor-
tant common aspect to all these threats and others is that
signicant new scientic discoveries are required to mitigate
them. According to the 2022 report by the Intergovernmental
Panel on Climate Change (IPCC),1 limiting global warming will
require the adoption of alternative fuels, as well as improve-
ments in the efficiency of energy production and material
synthesis. The discovery of new materials, such as electro-
catalysts that improve the energy efficiency of chemical reac-
tions, can therefore play a crucial role in such a transition.
Correspondingly, growing risks of antimicrobial resistance and
pandemics make it essential to accelerate the pipeline for
discovery of new drugs. Consequently, the well-being of our
societies will strongly depend on the pace of our scientic
discoveries.
oksh.jain@mila.quebec

the Royal Society of Chemistry
Historically, scientic discovery has been the outcome of
either serendipity—such as penicilin and Teon2—or the rather
slow experimental science loop: observations are accumulated
from past experiments, which are carefully analyzed by experts
who produce new hypotheses and design experiments that will
eventually yield new, valuable observations to continue the cycle
(see Fig. 1). While this model has well served the progress of
science for centuries and will continue to do so in certain
domains, the fully manual version of this cycle is too slow for
the pressing emergencies of our time. A bottleneck in the cycle
occurs when the analysis of data, production of hypotheses and
experimental specication are manual. This is further exacer-
bated when the search space of candidates is dauntingly large,
as is the case for drug discovery where there exist 1060 feasible
small molecules, according to estimations.3

The scale at which scientic experiments can be conducted
is rapidly increasing, enabled by advances in robotics,
biotechnology and computational capabilities, among others.4

For example, we can now easily and cheaply collect high-
dimensional images and videos, electron microscopy data or
the gene expression of millions of cells. Furthermore, we can
also conduct thousands or even millions of experiments in
parallel to screen new candidate molecules, experiment with
a sequence of reactions, etc. If experimental interventions can
Digital Discovery, 2023, 2, 557–577 | 557
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Fig. 1 The iterative experimental loop of scientific discovery: obser-
vations and data accumulated from past experiments are analyzed and
used to generate new hypotheses, and in turn new experiments that
will yield new data to continue to cycle. Highlighted with a blue frame
are the steps for which we discuss how GFlowNets can be used.
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be combined, we can sample from a combinatorially large space
of possible experiments at each step. The avenues opened by
such large-scale availability of data and compute have been
identied as the fourth paradigm in scientic discovery.5

Nonetheless, our current tools are not enough to truly utilize all
the information and resources at our disposal.6 In this context,
the maturation of tailored machine learning (ML) methodolo-
gies offers the possibility to not only analyze and make sense of
the data, but also to improve the generation of hypotheses and
design of experiments, accelerating the experimental science
loop.

ML techniques have been employed in all of the main steps
of the experimental science loop illustrated in Fig. 1: (a)
analyzing and modeling the data accumulated from experi-
ments, (b) characterizing and generating hypotheses compat-
ible with the data, (c) designing the next experiments, and (d)
performing the experiments. Analysis and modeling of data is
a naturally appealing scenario for ML methods, which are
typically designed for extracting predictive patterns from large
data sets. For instance, machine learning methods have been
quite successful in modeling the quantum mechanical proper-
ties of small molecules.7 ML approaches have also been studied
in the context of designing candidate experiments.8 A standard
example of this is leveraging tools from reinforcement learning
(RL) and Bayesian optimization (BO) for searching candidates
that optimize (as a reward) some property of the candidate.9,10

However, as we discuss in detail in Section 2, existing
approaches oen lack a principled treatment of the challenges
introduced by limited data, uncertainty and underspecication
of the objectives in scientic domains.

In this paper, we discuss how a novel machine learning (ML)
framework, called Generative Flow Networks11,12—or GFlowNets
for short—can help in addressing the shortcomings of existing
ML approaches in scientic domains. GFlowNets are general
purpose inference machines, which enable generating samples
with a probability proportional to some reward function. As
558 | Digital Discovery, 2023, 2, 557–577
a consequence, GFlowNets have emerged as a potentially
transformative tool for scientic discovery, as they can be used
to generate hypotheses, design experiments and model the
experimental observations, key steps of the experimental
science loop (Fig. 1)—note that ML-augmented robotics can
also be useful in the experimental step, but we do not discuss
this here.

Throughout the paper, we consider the following motivating
examples to make the discussion more concrete.

Example 1.1: An important part of ghting growing antimi-
crobial resistance and emergent infectious diseases is speeding
up the discovery of novel small organic molecules (and
peptides) that inhibit the action of target bacteria or one to
several target proteins. The primary goal is to search the space
of molecules (including peptides) for candidates that bind to
the target of interest and inhibit or activate its function. The
space of molecules is combinatorially large, and the accurate
evaluation of the desired activity (e.g. binding affinity) in vitro or
even in silico is expensive. Additionally, aside from binding to
a target, there are several other pharmacological criteria which
a molecule needs to satisfy for use as a therapeutic, such as low
toxicity to humans, good Absorption, Distribution, Metabolism,
and Excretion (“ADME”), and ease of synthesis.

Example 1.2: Discovery of novel materials for applications in
the generation, storage, and use of clean energy that have better
efficiency and rely on sustainable raw materials are critical in
aiding efforts to reduce rising global temperatures. The goal
here is discovering novel inorganic as well as organic materials,
and there are oen several specic metrics to optimize simul-
taneously. A representative example is the development of
storage materials for lithium/sodium ions in lithium/sodium
ion batteries, where the class of metal oxides (e.g. Fig. 2)
alone already represents a combinatorially large search space.
Inside a lithium/sodium ion battery, a good candidate metal
oxide for energy storage should show high energy density,
together with other metrics such as high capacity retention, low
irreversible capacity, and low cost of synthesis.

Example 1.3: Modeling the genetic pathways through which
diseases progress within humans plays a critical role in our
understanding of human biology. These causal models can help
us understand the behavior of various interventions such as
therapeutics within the complex environment of the human
body. The goal is to learn such causal models with the help of
targeted interventions. Even the causal structure of a single cell
is a major challenge and raises difficult questions to appropri-
ately scale algorithms and combine learning from data with
prior knowledge from biology.
1.1 Organization

In Section 3 we discuss existing ML methodology, highlighting
the distinctive features of GFlowNets. Next in Section 4 we
introduce ideas around amortized inference, and discuss how
GFlowNets emerge from these ideas. In Section 4.2, we high-
light scientic discovery problems where GFlowNets have been
applied successfully. In Section 4.3, we discuss how GFlowNets
can also be used to represent a distribution over causal models
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example schematics of a GFlowNet. (a) The objects whose distribution is modeled by a GFlowNet should be compositional, like graphs or
sequences, built through a sequence of actions; (b) representation of the sequences of actions by which a GFlowNet can construct amolecule by
composing smaller fragments, as a directed acyclic graph (DAG) whose nodes represent partially constructed molecules, and a reward is
provided when the molecule is completed.
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linking multiple random variables of interest and to estimate
the posterior distributions of interest along with the marginal-
ized quantities, such as Bayesian posterior densities, that are
important to evaluate the information gain from an experiment.
To conclude, in Section 5 we chart a potential path towards
a unied framework for scientic discovery driven by
GFlowNets.
2 Challenges for AI in scientific
discovery

In the last few decades, ML has enabled remarkable techno-
logical advances ranging from agents that can surpass humans
at the game of Go13 to breakthrough advances in protein folding
prediction.14 These advances have been enabled, in part, by the
availability of extremely large datasets and oen of a well-
specied objective to be optimized. In many scientic
discovery applications, however, the limited available data, the
uncertainty intrinsic to measurements and the under-
specication of objectives pose serious challenges for
© 2023 The Author(s). Published by the Royal Society of Chemistry
leveraging ML approaches. In this section, we discuss the rele-
vance of these challenges and argue how GFlowNets can
circumvent them.
2.1 Limited data and uncertainty

One critical challenge in leveraging learning-based approaches
for scientic discovery is the limited availability of data and the
associated uncertainty. Part of the uncertainty is due to unre-
liable measurements, called aleatoric uncertainty, and part is
due to having a limited amount of training data, called
epistemic uncertainty, which is the uncertainty associated with
theories or models and their parameters,15 due to the nite size
of datasets. Epistemic uncertainty emerges because multiple
theories or models or settings of parameters can be compatible
with the given data, and Bayesian posteriors on these can
capture the epistemic uncertainty. By design, current state-of-
the-art ML approaches rely on access to large data sets to
extract useful patterns. But owing to experimental limitations, it
can be extremely expensive or impossible to obtain large
amounts of accurate and precise data at the scale required my
Digital Discovery, 2023, 2, 557–577 | 559
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modern ML approaches in many applications of interest. In
drug discovery, for example, obtaining experimental binding
affinities for ligands with a target protein, at the scale required
for ML methods, is oen very challenging. Furthermore, the
differences in experimental techniques andmeasurement noise
can lead to different binding affinities for the same ligand by
orders of magnitude. The same is true in materials science: as
an example, in the research for new battery materials, a few
thousands of data points are already considered high-
throughput,16 and the measurement metrics such as energy
density can vary signicantly based on minute details of the
experimental setup. Thus, it is essential for models to account
for the aleatoric and epistemic uncertainty within the context of
scientic discovery.

Additionally, scientic phenomena occurring in nature tend
to be complex and oen a product of complicated processes.
Standard machine learning models that learn a function
mapping an input to an output from data can fail to generalize
to unseen scenarios where the phenomenon occurs. Incorpo-
rating the causal structure of the phenomenon can introduce
effective inductive biases that can allow models to generalize to
novel scenarios.17 Whereas a given model will account for
uncertainty in outcomes, i.e., aleatoric uncertainty, by modeling
Bayesian posteriors we can account for all the models that t
well the data, thus also capturing the epistemic uncertainty,
which is what we want to reduce through experiments. As we
discuss in Section 4.3, GFlowNets can be employed to model the
posterior distribution of causal models that t the data well.
2.2 Underspecication and diversity

ML approaches oen assume access to some reward signal or
scoring function to evaluate the quality and utility of experi-
mental designs. For instance, to design drug-like molecules, the
true objective is to nd ligands that specically inhibit the
target protein within the human body. However, this objective
can hardly be specied and conveniently quantied as a simple
scalar reward. In practice, an estimate of the binding affinity of
the molecule with the target protein is used instead as the
reward signal to search for candidate molecules. This comes
with two caveats: rst, the estimation of binding affinity is not
immune to systematic and random errors; second, the binding
energy alone cannot account for many of the factors that can
inuence the effect of the ligand within the human body. For
instance, a molecule (or a series of similar molecules) that only
optimizes this binding energy may be potentially useless or even
harmful in vivo because it could bind to many other proteins
and thus be toxic (more broadly, the molecule could have poor
ADME). These aspects make it critical to nd diverse hypoth-
eses—in this case, diverse motifs of molecules—to account for
the underspecication and uncertainty in the reward signal.
Nonetheless, popular approaches to ML-aided scientic
discovery, like RL9 and Bayesian optimization10 aim to discover
a single maximizer of the reward signal, not accounting for
underspecication of the reward signal itself. Diversity of
candidate solutions is also particularly relevant in the evolution
of new generations of technologies. For example, before the use
560 | Digital Discovery, 2023, 2, 557–577
of perovskites (or other new materials) in solar cells, optimiza-
tion of power conversion efficiency and manufacturing in
silicon-based solar cells was yielding diminishing returns, and
only the use of radically different materials was able to change
this situation. By sampling proportional to the reward, GFlow-
Nets, can mitigate the problem of missing out potentially
interesting ndings due to underspecication in the target
reward, generating a diverse set of high-reward candidate
solutions to the discovery problem at hand.
3 Background

In this section, we review the relevant fundamental areas in
machine learning and set the stage for Section 4 where we
discuss how GFlowNets can address the challenges presented in
Section 2.
3.1 Preliminaries

To establish notation, consider an example problem from
organic synthesis where chemists want to nd new and/or
efficient synthetic pathways to obtain a desired molecule (e.g.
a drug candidate).

� Design: Let x˛X be the design for an experiment, where X
denotes the design space of all possible experiments. For
Example 1.1 and Example 1.2, each experimental design, x,
species a candidate molecule, antibody or metal oxide mate-
rial. x can also represent interventions on specic genes for
Example 1.3, or experimental parameters for a specic proce-
dure (e.g. synthesis conditions). If an experiment is modeled in
silico, it can also include the delity of the approximations used,
with the associated computational cost.

� Parameters: We use q to represent the parameters of our
mathematical model of the underlying phenomenon of interest.
Like the experimental design x, q can parameterize a wide range
of objects. For instance, q could represent the parameters of the
physical process of supramolecular interactions/protein
binding in Example 1.1, or a set of parameters describing the
model of energy capacity and mechanisms of capacity loss in
a battery for Example 1.2, or a structural causal model
describing the causal interaction genetic pathways in Example
1.3, or more general cases such as parameters of a neural
network.

� Outcome: We use y to denote the experimental outcome,
for example the yield of a chemical reaction. The outcome, y,
may also be multi-dimensional, and may include all measure-
ments recorded during the experiment. y can represent the
binding affinity to a target, toxicity to humans and synthetic
accessibility in Example 1.1. For Example 1.2, y can represent
energy capacity and retention loss, as well as materials purity
and X-ray diffraction patterns. In Example 1.3, y can even
include images and videos of specic interventions on a pop-
ulation of cells. The experimental outcomes are oen structur-
ally rich but might lack the abstractions necessary for effective
modeling.

�Dataset: Finally, we denote the data collected from previous
experiments as D ¼ fðxi; yiÞgMi¼1.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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We model the outcome y as a consequence of the design x.
The likelihood—denoted p(yjq, x)—is parameterized by q, and is
a measure of how likely each experimental outcome, y, is to
occur, given a particular design, x, and model parameters, q.
This likelihood acts as our abstract model of the underlying
phenomenon. If the likelihood is known analytically or can be
computed efficiently it is called an explicit model. For example,
we might model the outcome of an experiment with a Gaussian
distribution, with mean as some function fq(x), such that
pðyrq; xÞ ¼ N ðfqðxÞ; sÞ. Alternatively, if the likelihood is intrac-
table, it is called an implicit model. Implicit models are
common in the context of scientic discovery because we oen
model processes via simulators that allow us to sample from
p(yjq, x), without being able to evaluate the likelihood.

We assume that the data set of observed variables
D ¼ fx1;.; xng, is drawn from the joint distribution p(x, q) for
some q. In order to use that data to update our model of likely
outcomes, we need an approach to solving the inference
problem: estimating the posterior probability distribution
pðqrDÞ over the latent variable given the observed data. This
problem appears in various contexts across domains. For
instance, given observations of the experimental outcomes, say
the binding affinities of several ligands to a particular target, we
might be interested in estimating the distributions over
parameters in the model that describe the process of binding.
In principle this distribution can be estimated using Bayes' rule,

pðqrDÞ ¼ pðDrqÞpðqÞ
pðDÞ : (1)

In practice, however, computing the posterior exactly is
intractable for high-dimensional q and x. Thus, approximate
inference methods have been studied extensively. We briey
summarize two broad classes of methods: Markov Chain Monte
Carlo (MCMC) and Variational Inference (VI).
3.2 Approximate inference

MCMC methods18 are designed to generate samples from
a target distribution, where a correct sampling procedure is not
known but the density of the desired distribution is known up
to a normalizing constant. They approximate sampling from the
desired distribution by constructing a sequence of samples
whose asymptotic distribution (as the sequence becomes
longer) matches the desired target distribution. At each step of
the sequence a new sample is generated by performing a small
random perturbation from the previous sample. When trying to
sample from a Bayesian posterior pðqrDÞ, we can compute the
unnormalized form of the posterior as the product of the prior
and the likelihood, pðqÞpðDrqÞ. Unfortunately, in high-
dimensional problems and problems where the modes of the
distribution occupy a tiny relative volume and can be far from
each other, MCMC methods can take exponentially more time
to properly sample from all the modes (or even just move from
one mode to another). Methods to improve the performance of
MCMC for sampling from high-dimensional distributions19–21

are limited to certain classes of distributions and do not apply
© 2023 The Author(s). Published by the Royal Society of Chemistry
to sampling complex objects such as graphs and sequences
which are important in a number of applications in scientic
discovery.

Variational Inference methods22 approach the problem of
sampling from the posterior using instead an optimization-
based approach, nding a member of family of distributions
that is closest to the posterior distribution that we seek. In
particular, they search for a distribution q(q)—by optimizing the
values of q or parameters that dene it—so as to minimize the
reverse Kullback–Liebler (KL) divergence
Eq�q½logqðqÞ � logpðq;DÞ�. Because this measure of “closeness”
is a reverse KL, VI methods tend to drop most modes of the true
posterior or even focus on just one of them.23,24

GFlowNets address this issue of mode dropping that plagues
both MCMC and typical VI methods. They are similar to
amortized variational methods (i.e., they learn a parameteriza-
tion for q) but use a different training objective which favors
a greater diversity of samples by allowing the use of exploration
in the space of samples25 as we discuss in Section 4.1.
3.3 Experimental design

Experiments are the primary interface for interaction between
our abstract models and the complexities of the real world. A
key element of scientic methodology has been the careful
design of experiments that allow the acquisition of knowledge
corresponding to a reliable understanding of the underlying
phenomena. However, experiments are expensive—either
computationally, nancially or in time. Therefore, we need
methods to design experiments that maximize the amount of
information our models learn from each experiment. This task
of automated experimental design has been extensively studied
in statistics and machine learning.

The eld of experimental design studies the problem of
designing “useful” experiments effectively. The usefulness of an
experiment is dened by a utility function (or reward)
Uð$;DÞ : X/ℝ, which may change as a function of the data, D,
that we have observed from previous experiments. Given this
utility function, we are typically interested in selecting the most
useful designs, x*,

x* ¼ argmax
x˛X

Uðx;DÞ: (2)

The process of experimental science is oen iterative, as
illustrated in Fig. 1. We design an experiment, perform the
experiment and observe the experimental outcome, update our
model based on the observations and then design the next
experiment guided by the updated model. This is referred to as
sequential experimental design. The sequential experimental
design setting is thus formalized at any iteration k as follows, in
terms of the estimated utility of the experiment x considered
and the past data Dk�1:

xk ¼ argmax
x˛X

Uðx;Dk�1Þ (3)

where Dk�1 ¼ fðxi; yiÞgk�1
i¼1 consists of the designs and outcomes

of the experiments performed till iteration k.
Digital Discovery, 2023, 2, 557–577 | 561
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Designing utility functions that accurately reect the value of
an experiment while being efficient to compute has been
a problem of interest in various communities. Classical work on
experimental design relied on the Fisher information matrix to
quantify the information about parameters q contained in the
experimental outcome y.26,27 This measure of information can
be efficiently computed in linear models, where the outcome
depends linearly on the design.8 When this relationship is
nonlinear, a variety of methods exist to select among a version
space of nonlinear functions that are consistent with what we
have observed; see Settles28 for a survey. In scientic discovery,
we are not agnostic to the set of functions that could explain our
observations: we typically have signicant prior knowledge from
the literature and previous experiments that what we can use to
weigh the relative likelihood of potential experimental
outcomes. Bayesian experimental design, introduced below,
provides a principled approach to incorporating these priors
into our choice of future experiments.
3.4 Bayesian experimental design

Bayesian Experimental Design (BED) or Bayesian Optimal
Experimental Design (BOED)8,29 approaches experimental
design by modeling a rational agent that aims to maximize their
expected utility of new experiments with respect to prior beliefs.
The utility function provides a real-valued score for each
potential outcome, y, of any potential experimental design, x. At
each round of experimentation, the agent selects an experi-
mental design,† x, that gives the highest expected utility
weighted by how likely each outcome is to occur under the
agent's prior beliefs (parameterized by q). By specifying the
agent's prior belief, we can encode scientic knowledge of
known relationships and uncertainties in the observed
outcomes, thereby making the procedure more efficient at
exploring unknown parts of the experimental design space.

A common choice for the agent's utility function is the
mutual information [MI; ref. 30] between the experimental
parameters q and the outcome y observed upon performing an
experiment y, given the dataset D of previous experiments.

Uðx;DÞ ¼ Iðy; qrx;DÞ (4)

Uðx;DÞ ¼ Epðyrq;xÞpðqrDÞ

�
log

pðqry; x;DÞ
pðqrDÞ

�
(5)

Uðx;DÞ ¼ Epðyrq;xÞpðqrDÞ

�
log

pðyrq; xÞ
pðyrx;DÞ

�
: (6)

MI can be interpreted as how much information can we
expect to gather—or equivalently how much we reduce our
uncertainty—about some random variable of interest (say the
model parameters q) thanks to the experimental outcome. Eqn
(5) and (6) give two equivalent denitions of MI, but both are
intractable in general so we will need to rely on approximations.
† Sequences of experiments are also possible, but even more computationally
involved.
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Assuming access to the likelihood function, p(yjq, x), we rst
need to estimate the various posterior distributions, depending
on which of the above formulations of the MI we choose. To
sample one of the sums, we need to estimate or at least sample
from either the unknown and generally intractable posterior
over parameters pðqrDÞ, or the marginal likelihood p(yjx) (where
q has been summed out). Estimating high-dimensional poste-
riors can be challenging and marginalizing out q in p(yjq, x) can
also be intractable. Additionally, the MI itself involves a high
dimensional integral which can be intractable. Consequently,
developing efficient estimators to approximate the MI has been
one of the central challenges in BED. Estimators of MI have
been developed for both implicit and explicit models. The
estimators typically leverage tools from approximate inference,
including MCMC and VI discussed in Section 3.1, to approxi-
mate the posterior over parameters or the marginal
likelihood,31–36 and the likelihood in the case of implicit
models.37

3.4.1 Towards amortization. Conventional approaches
discussed above consist of two distinct steps: estimating or
approximating the posterior over parameters or marginal like-
lihood to estimate the MI and then maximizing this estimator
of MI to nd the optimal experiment. Despite being applied in
various contexts in scientic discovery,37,38 each of these steps
alone can be computationally expensive.39 introduced a unied
stochastic gradient method to combine estimation of MI and
the selection of the optimal experiment. They propose jointly
optimizing the parameters f of the MI estimator and the
experiment design x using gradient based methods.

Ref. 40 formalizes the conventional BED approach in terms
of a design policy p, which directly maps a history of experi-
mental data ht= [(x1, y1),.(xt, yt)] to the next experiment design
xt+1. Once this policy is trained, the next experiment can be
selected directly using the policy, instead of the usual MI esti-
mation and optimization. In essence, the training of the policy
amortizes the cost of estimating and optimizing the MI.41

extends this to implicit models.
These are examples of amortized inference: instead of

expensive Monte Carlo sampling to estimate ormaximizes some
expected value at run-time, we pre-train a function that directly
produces an approximation of the desired quantities. We
elaborate on learned amortized inference in Section 4, with
a focus on GFlowNets and a discussion of its advantages over
MCMC methods.

Current BED methods have been limited to continuous
design spaces. While recent work has considered extensions to
incorporate discrete designs,42 they are limited to small
problem domains. BED methods in general are hard to scale to
larger problem settings.
3.5 Bayesian optimization

A typical problem encountered in various domains of scientic
interest is that of optimizing the value of some expensive to
compute black-box function f. For instance, consider the task of
designing novel molecules to inhibit the activity of a particular
target protein. We are interested in searching for a molecule x*
© 2023 The Author(s). Published by the Royal Society of Chemistry
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which minimizes the binding energy of the molecule with the
target protein, f:

x* ¼ argmin
x˛X

f ðxÞ: (7)

Further, we only observe noisy measurements y on evalu-
ating f, as described by p(yjf(x)). In the context of the binding
energy, each experimental evaluation can be expensive and take
weeks to perform in the lab and the observed results are noisy.
Consequently the goal here is to discover x* with the fewest
possible evaluations of f. This problem is studied broadly within
the framework of global optimization.43 Solving the global
optimization problem for any general function f is NP-hard in
discrete spaces, and intractable without special structural
constraints (e.g. convexity) on f in the continuous case. Methods
for nding approximate solutions to this problem have received
signicant attention in the literature due to the broad applica-
bility. Among the wide variety of techniques studied, Bayesian
Optimization (BO)44–46 is a popular and widely used approach.
Bayesian optimization has been applied extensively to a wide
variety of scientic problems.47–50 Broadly, Bayesian optimiza-
tion consists of an iterative process to search for the global
optimum in a sample-efficient manner, relying on tools from
Bayesian Inference. Algorithm 1 provides a general overview of
the Bayesian optimization approach.
The two key ingredients of a Bayesian optimization algo-
rithm are the surrogate model pðf rDÞ which approximates f
(and its epistemic uncertainty) and the acquisition function
aðx; pðf rDÞÞ which quanties the utility of acquiring a point.
Gaussian Processes [GPs; ref. 51] are an appealing choice for the
surrogate model owing to simple analytical form for the
posterior. Consequently, GPs are the default choice in modern
BO methods.52

From an information theoretic perspective, in each round we
are interested in acquiring candidates that maximize the
mutual information between the observed value and the global
optimum of the function:
© 2023 The Author(s). Published by the Royal Society of Chemistry
argmax
x˛X

I
�
y; x*rx;D

�
: (8)

This objective resembles the information gain from Section
3.3, where the parameter of interest is q ¼ x* ¼ argmaxx˛X f ðxÞ.
Indeed, BO can be viewed as an instantiation of experimental
design with an implicit model f, where we are interested in
a particular random variable, the location of the maximum
value of f, rather than all the parameters.

3.5.1 Acquisition functions. The acquisition function plays
a critical role in Bayesian optimization and over the years
various acquisition functions have been proposed. Expected
improvement53 was one of the earliest acquisition functions.
Upper-Condence Bound [UCB; ref. 54] and Thompson
Sampling [TS; ref. 55 and 56] were inspired by the bandit
learning literature. More recently, there have been signicant
developments in entropy search methods which adopt the
information theoretic perspective introduced in eqn (8).57 and58

introduced Entropy Search (ES) and Predictive Entropy Search
(PES) as acquisition functions based on eqn (8).59,60 instead
considered the mutual information between the outcome and
the max value of f rather than the arg max, resulting in the Max
Value Entropy Search (MES) acquisition function:

argmax
x˛X

I
�
y; f

�
x*

�
rx;D

�
: (9)
Ref. 61 further proposed considering a lower-bound on the
mutual information resulting in a general purpose information-
theoretic acquisition function GIBBON, which is also applicable
to various extensions we discuss below.

3.5.2 Extensions. Inspired by various practical applica-
tions, several extensions to the standard Bayesian optimization
setting have been studied. A common scenario is where f can be
evaluated on multiple different candidates in parallel. In prac-
tice, we can oen evaluate multiple candidates with nearly the
same cost as a single candidate. For example, phage display can
produce libraries of millions of antibodies in one batch. Batch
Bayesian optimization62,63 is an extension of BO where in each
Digital Discovery, 2023, 2, 557–577 | 563
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round we acquire a batch of candidates instead of a single
candidate. Additionally, we might have access to oracles with
different costs and delities to evaluate f; for example, to obtain
the simulated binding affinity of amolecule to a protein, oracles
can include free energy perturbation and molecular docking,
where the former is substantially more accurate but the
computational cost is orders of magnitude higher. This setting
is studied in multi-delity Bayesian optimization.64–66 Another
important aspect in practical applications is multiple objec-
tives. For example, we are interested in multiple properties such
as the drug-likeness, toxicity to humans, and synthesizability in
addition to binding energy in the drug discovery setting. Multi-
objective Bayesian optimization58,67,68 methods study this
problem setup. Recent work has also incorporated physical
inductive biases as priors for efficient Bayesian optimiza-
tion.69,70 Finally, while traditional BO methods mainly consider
continuous x, recent work has enabled BO on discrete
spaces.71,72 Despite recent progress, BO methods have typically
been limited to small problems due to challenges in scaling
surrogate models to larger domains. Additionally, as mentioned
in Section 2, as BO is concerned withmaximizing or minimizing
a function, it can miss out on diversity which is critical for many
scientic applications.
3.6 Causal discovery

An important goal of the scientic methodology is under-
standing the causes and effects of certain phenomena based on
prior observations and experiments. Causal discovery studies
the problem of learning the causal structure from data.

A Bayesian Network73 is a representation of the joint distri-
bution over d random variables {Y1, ., Yd}, whose conditional
independencies are encoded in a compact graphical way. These
random variables correspond to the nodes of a directed acyclic
graph (DAG) G that determines the factorization of the joint
distribution as

PðY1;.;Yd ; qÞ ¼
Yd
i¼1

PðYirPaGðYiÞ; qiÞ;

where PaG(Yi) is the set of parent nodes of Yi in the graph G, and
qi are the parameters of the conditional distribution associated
with the random variable Yi.

Although in a Bayesian Network the edges connecting the
nodes in G only encode associations between random variables,
a causal graphical model enhances this framework with notions
of causality. In a causal graphical model, again represented by
a DAG, G, over the random variables, any directed edge Yi / Yj
represents a direct causal inuence of Yi on Yj. This allows the
model to not only represent the joint distribution of the system
(i.e., passively observing the system), but also the effects of
actively experimenting on it. A causal model species the
distribution that would be obtained under any intervention. For
example, a “DO-intervention” sets the value of a variable,
ignoring its usual causes. However, because the same causal
mechanisms (the conditionals P(YijPaG(Yi); qi)) are shared
across all interventions, if the causal mechanisms (i.e. q) and
the graph G have been inferred correctly, a causal model can
564 | Digital Discovery, 2023, 2, 557–577
generalize to distributions never seen during training (i.e., out-
of-distribution), corresponding to new interventions.

3.6.1 Causal structure learning. The structure G of a causal
graphical model is oen assumed to be known, where for
example the causal relationships are determined using expert
knowledge. This allows us to perform a number of tasks using
these models, such as inference (either probabilistic, or causal),
or learning the parameters q of the causal model from obser-
vations of the system.

However in the context of scientic discovery, the objective is
precisely to discover causal relationships that may have eluded
experts thus far. For example, in the development of a disease,
we want to nd what factors (e.g. social factors, proteomes,
pathogens) are involved. In this situation, we would like to learn
the structure of the causal graphical model (or at least part of it)
using data, stored in a dataset D. This data could either come
from passive observations of the system (called observational
data, e.g. the statistics of protein expressions in patients), or
from active experiments (called interventional data, e.g.
genome-wide gene perturbation). This problem is known as
causal structure learning, or causal discovery.74–78

3.6.2 Bayesian causal discovery. Similar to how there may
be multiple theories explaining the same phenomenon, there
may also be multiple models that could explain our observa-
tions equally well, even in the limit where we have a very large
amount of data. Concretely, this means that many standard
structure learning methods would typically choose an arbitrary
model, which could lead to undesirable (and potentially
harmful) outcomes. For example, if we had a system with only
two (correlated) random variables A and B, there would be no
way in general to distinguish between the two causal models A
/ B and B / A using observational data only, even though
both models have signicantly different causal conclusions.
Moreover, in practice, the amount of data available in D to
identify the causal model may be scarce, and this introduces
another source of variability: since causal discovery methods
only return a single candidate, some theory may be favored only
due to the limited evidence. Ideally, we would like to quantify
our epistemic uncertainty to avoid model misspecication. This
can be done using the Bayesian posterior over the causal
structures G, given a dataset D, similar to the description in
Section. 4.1.6. Using Bayes' rule, the posterior is given by

PðGrDÞ ¼ PðDrGÞPðGÞ
PðDÞ : (10)

In the expression above, P(G) represents our prior belief, and
may encode some a priori knowledge about the structure G. For
example, we may encourage causal graphs to be sparse, i.e. to
limit the number of parents for any node in the graph. While
this prior may be designed based on expert knowledge, this
usually encodes only so beliefs about the causal model, and
does not represent a single graph G unlike when the structure is
assumed to be known. The term PðDrGÞ is called the marginal
likelihood, and is dened by integrating over all possible values
of the causal mechanisms
© 2023 The Author(s). Published by the Royal Society of Chemistry
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PðDrGÞ ¼
ð
Q

PðDrq;GÞPðqrGÞdq; (11)

where PðDrq;GÞ is the likelihood of the data under a specic
choice of causal structure andmechanisms, and P(qjG) is a prior
distribution over causal mechanisms. The marginal likelihood
represents how well the dataD ts a certain hypothesis, given by
the causal model G, regardless of the choice of the causal
mechanisms themselves.

As is typically the case in Bayesian statistics, the difficulty in
evaluating eqn (10) arises from the marginal evidence PðDÞ,
which is almost always intractable. To circumvent this issue,
approximations of the Bayesian posterior are oen necessary,
for example based on MCMC,79–83 bootstrapping,84,85 or more
recently variational inference.86–90

3.6.3 Active learning of causal structures. With an
approximation of the Bayesian posterior over causal graphs, we
can also leverage the tools from Bayesian experimental design
in Section 3.3 in order to design interventions on the system
that would rene our beliefs about its causal structure.91 This
creates a feedback loop between the estimation of our uncer-
tainty about the causal graph based on data, the decisions about
which experiments to perform, and the acquisition of new
experimental data (see Fig. 1). Active causal discovery can be
used to learn the causal structure of either the whole system,92–95

or part of it.85 Recently, Toth et al.96 proposed a novel framework
called Active Bayesian Causal Inference (ABCI) to infer not only
the causal graph, but also jointly learning the posterior over
causal queries of interest.
4 Generative Flow Networks

We begin by introducing the broader ideas around using neural
networks to efficiently learn a mapping from sampled obser-
vations to proposed high-dimensional probability distributions
and intractable sums, as a general substitute for the popular
MCMC-based inference. These ideas lead into GFlowNets,
which provide a general framework for amortized inference
with neural networks.
4.1 Learning to perform amortized inference

Let us rst look at how neural nets can be used to amortize the
inference problem introduced in Section 3.1, i.e., by being
trained to approximately perform the sampling or summing
task that is otherwise intractable. Specically, we consider how
an intractable expectation or sum can be transformed into
a tractable training task to approximate the desired sum. This is
the fundamental principle underlying GFlowNets.

4.1.1 Simple mean squared error criterion to amortize an
intractable expectation. Consider a set of intractable expecta-
tions that we would like to approximate, for a pair of random
variables x and y that can both take an exponential number of
values or live in a high-dimensional space:

SðxÞ ¼
X
y

pðyrxÞRðx; yÞ (12)
© 2023 The Author(s). Published by the Royal Society of Chemistry
which is then intractable because of the exponential number of
terms in the sum.

If we know how to sample from p(yjx), we could, however,
train a neural net Ŝ with input x, stochastic target output R(x, y)
and Mean Squared Error (MSE) loss

Lðx; yÞ ¼
�
ŜðxÞ � Rðx; yÞ

�2

(13)

where y ∼ p(yjx), to train the estimator Ŝ with parameters q.
When we sample training examples (x, y), the stochastic gradi-

ents
vLðx; yÞ

vq
would make Ŝ converge to S if it has enough

capacity and is trained long enough.97

For any new x, we would then have an amortized estimator
Ŝ(x) which in one pass through the network would give us an
approximation of the intractable sum S(x). We can consider this
an efficient alternative to doing a Monte Carlo approximation

ŜMCðxÞ ¼ meany�pðyrxÞRðx; yÞ; (14)

which would require a potentially large number of samples and
computations of R(x, y) for each x at run-time, especially if p(yjx)
R(x, y) is a rich multimodal function (for which averaging just
a few samples of y does not give us a good estimator of the
expectation).

Besides the advantage of faster run-time, a crucial potential
advantage of the amortized version is that it could benet from
generalizable structure in the product p(yjx)R(x, y): if observing
a training set of (x, y, R(x, y)) triplets can allow us to generalize to
new (x, y) pairs, then we may not need to train Ŝ with an expo-
nential number of examples before it captures the generalizable
structure and provides good answers (i.e., approximates EYjx[-
R(x, Y)] well) on new x's. This ability to generalize from structure
in the data is actually what explains the remarkable success of
ML (and in particular of deep learning) in the vast set of modern
AI applications.

When we do not have a p(yjx) that we can sample from easily,
we can, in principle, use MCMC methods that form chains of
samples of y's whose distribution converge to the desired p(yjx),
and where the next sample is generally obtained from the
previous one by a small stochastic change that favors increases
in p(yjx). Unfortunately, when the modes of the summand,
p(yjx)R(x, y), occupy a small volume in the search space (i.e.
throwing darts does not nd them) and these modes are well-
separated (by low-probability regions), especially in high
dimension, it tends to take exponential time to mix from one
mode to another. However, such an MCMC approach leaves
money on the table: the attempts (x, y, R(x, y)) contain infor-
mation that one could use to train an ML model. To the extent
that the space is sufficiently structured, such a model could
guess where the yet unseen modes might be given the location
of the already observed modes, as illustrated in Fig. 3.

4.1.2 GFlowNet criterion to obtain a sampler and estimate
intractable sums. Let us consider the situation where we do not
have a handy p(yjx) and our objective is just to approximate a set
of intractable sums (for any x)

SðxÞ ¼
X
y

Rðx; yÞ (15)
Digital Discovery, 2023, 2, 557–577 | 565
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Fig. 3 An illustration of the feasibility of systematic generalization
enabled by ML methods: if we have already discovered the three
modes shown of a reward function, a learner that can generalize may
guess the presence of a 4thmode, because the first threemodes seem
to align on a grid. The existence of such generalization structure is why
amortized ML samplers can potentially do much better than MCMC
samplers.

‡ Note that there can be multiple trajectories resulting in the same object at the
end.
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where we have the constraint that R(x, y) $ 0 and S(x) > 0. This
may be useful to estimate a normalization constant for energy-
based models or Bayesian posteriors (where y corresponds to
learnable parameters and x to observed data). Hence we may
also be interested in the sampling policy

pðyrxÞ ¼ Rðx; yÞ
SðxÞ fRðx; yÞ: (16)

Now, GFlowNet losses are derived from a set of constraints
that we would like to be true:

c(x, y): p(yjx)S(x) = R(x, y) (17)

We can dene estimators p̂ and Ŝ and train them with a loss
such as

L(x,y) = (p̂(yjx)Ŝ(x) − R(x,y))2 (18)

or with an interpretation of R as unnormalized probabilities
that we want well calibrated in the log-domain,

L(x,y) = (log(p̂(yjx)Ŝ(x)) − logR(x,y))2 (19)

where (x, y) are sampled from a training distribution ~pðx; yÞ that
has full support. It can then be shown11,12 that with p̂ and Ŝ with
enough capacity and trained for long enough they both
converge to their desired value:

ŜðxÞ/SðxÞbpðyrxÞ/pðyrxÞfRðx; yÞ:
566 | Digital Discovery, 2023, 2, 557–577
This is a crucial property of GFlowNets: they are trained to
sample objects y (given x) with probability proportional to
a given reward function R(x, y).

4.1.3 Marginalizing over compositional random variables.
To make the notion of intractable sum more concrete, it is
good to think of y (and potentially x as well) as a compositional
object, like a subset of variable-value pairs or a graph. For
example, we can construct compositional objects sequentially
through a series of steps where a new piece of the composi-
tional object is inserted at each step, such as the molecular
fragments composed to form a larger molecule in Fig. 2b. The
sampling policy p then sequentially and stochastically choo-
ses a constructive action at each step, and aer each step we
get a partially constructed object s which we call a GFlowNet
state. A sequence of such states and actions forms a GFlowNet
trajectory s. In the basic GFlowNet framework, the actions are
stochastic, but the next state is deterministically obtained
from the previous state and the action, because they are not
happening in an external environment but are part of the
internal computation of a sampler. In addition, the GFlowNet
mathematical results, as they currently stand, assume that
each step is constructive, i.e., we cannot return to the same
partially constructed object s twice. This means that the set of
all possible trajectories forms a directed acyclic graph (DAG),
illustrated in Fig. 2. Because the transitions are deterministic,
we can specify a trajectory s with a sequence of states (or,
equivalently, an initial state and a sequence of actions). A
special “exit” action is also dened to declare the construction
of the object y is completed. The policy p(yjx) is now specied
by a forward transition distribution PF(sjs′) which species
how to generate each constructive step given the previous
state, and we are interested in parameterizing and learning
this PF.

For instance, consider the molecule graph example illus-
trated in Fig. 2. We can construct a molecule graph sequentially
using nodes representing atoms as building blocks. Starting
from a special empty state, which we denote as s0 (this can be an
empty graph, null set or empty sequence or chosen based on the
value of a conditioning variable x, maybe specifying some
desired characteristics of the molecule), the object y can be
constructed through a sequence of steps, each consisting of
adding a single block a˛A. We assume that the actions are
limited to be constructive, and deletion of blocks is not allowed.
At each step, we have a partially-constructed object s˛S, where
S denoted the space of all possible partially-constructed objects
and Y3S. Another assumption we make throughout is that
these states are Markovian, that is, they incorporate all the
information from their history. This results in a directed acyclic
graph (DAG) G which is dened by a tuple ðS; EÞ, where the set
of nodes corresponds to S, and an edge s/s0˛E indicates that
object s′ can be constructed by adding a block a˛A to s, s/

a
s
0
.

We can dene a trajectory as a sequence of steps describing the
construction of an object s ¼ ðs0 !a1 s1.!an yÞ.‡ Let R(x, y) denote
the utility (reward) for a given object y in context x. For instance,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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it can be the binding energy for the ligand molecule y with
a given target protein x.

Formally, the training objective is to learn a stochastic policy
p which sequentially generates an object y with a probability
proportional to its reward, i.e., p(yjx) f R(x, y).

4.1.4 Multiple parent states. Besides the sequential nature
of the generative process for y, an interesting complication is
that there may be many ways (in fact exponentially many
trajectories) to construct y from some starting point and
context x. This means that a partially constructed object, i.e.,
a state s, may have multiple parents s′ for which an action
a exists that leads to s. Otherwise (when each state only has
one parent), the DAG is a tree, which makes the computation
much simpler. But when it is not a tree, it turns out to be
convenient to consider and parameterize a backward transi-
tion probability function PB(s

′js) which is consistent with that
DAG and the associated forward transition probabilities PF.
The constraint in eqn (17) can be reformulated in several
ways, in particular what is called the detailed balance
constraint:

c(s, s′): PF(sjs′)F(s′) = PB(s
′js)F(s) (20)

where F(s) is called the ow at state s and plays a role similar to
S(x) above, i.e., it is an intractable sum, and there is a starting
state s0 = x from which a trajectory is initiated, as well as
a constraint that the ow into a terminal state s = y equals R(x,
y). Similarly to the simpler case above, this can be turned into
a training loss that we want to minimize, but now over all (x, s)
pairs or over all (s, s′) pairs. As a consequence of satisfying the
detailed balance constraint at all (s, s′) pairs, the initial ow
becomes equal to the normalizing constant:11

Fðs0Þ ¼ SðxÞ ¼
X
y

Rðx; yÞ: (21)
§ Code implementing various GFlowNet learning objectives on simple synthetic
4.1.5 Learning objectives. In practice, we would like to
approximate PF($j$; q), PB($j$; q), and F($; q) with learnable
parameters q, and we want to choose those parameters to satisfy
as well as possible the detailed balance constraintcs; s0˛S. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
detailed balance constraint can be converted to the following
loss to learn the parameters q:

LDB

�
s; s

0
; q
� ¼ �

log
PFðs0rs; qÞFðs0; qÞ
PBðsrs0; qÞFðs; qÞ

	2

: (22)

Several alternative learning objectives for GFlowNets have
been proposed, especially for longer trajectories to sample the
object y.98,99 Trajectory balance [ref. 98, TB] is a prominent
learning objective for training GFlowNets. Contrary to the
detailed balance objective, which considers constraints on pairs
of states, trajectory balance jointly applies the detailed balance
constraint over entire trajectories. A learnable parameter Z is
introduced which at convergence is equal to the desired sum.
The trajectory balance loss over a trajectory s is dened as
follows:

LTBðs; qÞ ¼
�
log

Zq

Q
s/s0˛sPFðs0rs; qÞ

Rðx; yÞQs/s0˛sPBðsrs0; qÞ
	2

: (23)

Algorithm 2 illustrates the typical approach for training
GFlowNets, by sampling trajectories from a sampling policy P̂F
which is typically a tempered PF or a mixture of PF with
a uniform policy to enable exploration, and optimizing the loss
induced by the learning objective with respect to q, with
stochastic gradient descent.§ As a result of this procedure, we
learn a PF with the objective that the marginal likelihood of
a trajectory terminating at a terminal state x, denoted as p(x)
become proportional to the reward R(x). The learnable objects
PF, PB, F are typically parameterized by neural networks. These
neural networks must have appropriate inductive biases
depending upon the type of objects we are constructing. These
neural networks must also have enough capacity to model the
underlying distribution. In Section 4.2 and Section 4.3 we
discuss specic cases of leveraging GFlowNets for problems of
molecule generation and causal modeling respectively.
domains: saleml/gfn.
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4.1.6 Implications for Bayesian ML. Let us consider the
special case where y = q is a latent parameter, i.e., in a Bayesian
setting, and x ¼ D is the available data. Then we can dene the
reward function

RðD; qÞ ¼ PðqÞPðDrqÞ (24)

from the parameter prior P(q) (how plausible are these param-
eters a priori) and the data likelihood PðDrqÞ (how well does this
choice of parameters t the data). Training a GFlowNet provides
us with an approximate sampler for the posterior over param-
eters (the policy pðqrDÞ) given data as well as an estimator of the
normalizing constant of the Bayesian posterior, through the
learned initial ow SðDÞ. Hence, we have used amortization to
turn a tractable function (prior times likelihood, as a function of
q) into estimators of these generally intractable quantities. We
get a fast sampler for the posterior with no need for a Markov
chain going through a large number of candidate samples. With
that sampler, we can generate many independent samples qrD
(possibly in parallel) that are likely to visit the larger modes of
the posterior (where the reward is larger).

To make computations more ML-friendly (especially for
large datasets) while training the GFlowNet, we can note that
the GFlowNet squared loss objectives naturally lend themselves
to the case where the reward or log-reward is stochastic and is
an unbiased estimator of the true reward. For example, we can
typically decompose the overall dataset log-likelihood logPðDrqÞ
into a sum of per-example or per-minibatch terms, and we can
introduce a multiplicative correction to account for the prior
P(q):

logR̂ðZ; qÞ ¼ logPðqÞ þ jDjlogPðZrqÞ
EZ

h
logR̂ðZ; qÞ

i
¼ logPðqÞ þ

X
Z˛D

logPðZrqÞ ¼ logRðD; qÞ

where the expectation over Z is just a sum over the Z's inD. This
makes it possible to train the GFlowNet posterior estimator
using stochastic gradient descent on single examples or mini-
batches, which is the state-of-the-art to train deep nets.

4.1.7 Why GFlowNets? Let us look at how GFlowNets differ
from other related conceptual frameworks:

� Markov Chain Monte Carlo: GFlowNets do not construct
Markov chains with semantics like those in MCMC methods.
GFlowNets and MCMC approaches differ fundamentally: with
MCMC approaches, the chain is irreducible (every state is
reachable from every other state), and the stationary distribu-
tion of this chain is of interest. In order to generate samples
from this stationary distribution, we need to run long chains
(ideally innitely long ones). In GFlowNets, however, the chains
only need every state to be accessible from the initial state, and
what we have is a bounded sequence of stochastic transitions.
The expensive stochastic “search” (to reach low energy cong-
urations) normally performed by MCMC is replaced by the
training phase of the GFlowNet, using the principle of amor-
tized inference, so that during inference a sample can be
generated in a single short trajectory by the policy. To exemplify,
if we were to run an MCMC to generate samples of desirable
molecules, we would probably have a molecule at every state,
and we would have actions that can stochastically transform
568 | Digital Discovery, 2023, 2, 557–577
one molecule into a nearby one,100 whereas a typical way to
sample a desirable molecule with GFlowNets is constructive,
where we start from an empty object (which is not really
a molecule) and we sequentially and stochastically add molec-
ular fragments: the state corresponds to these intermediate
objects, which may or may not correspond to a well-formed
molecule.11 That being said, the overall objective is the same:
turn a given energy function (or unnormalized distribution)
into a generative procedure for obtaining samples from that
distribution. Both MCMC and GFlowNets can also be used to
marginalize, i.e., compute intractable sums, although again in
different ways. MCMC turn the exact sum into a Monte Carlo
approximation of it while GFlowNets perform amortized infer-
ence, i.e., they train a neural net whose output will, aer
training, approximate the sum. This becomes useful when we
have more than one marginalization to do, say given a context,
and thus the neural net can take that context as input and
rapidly produce an estimator of the intractable sum as output.

� Reinforcement learning: GFlowNets learn policies to
sample trajectories that land in a terminal state with probability
proportional to the reward of the terminal state rather than
trajectories that maximize the expected reward, as in standard
deep reinforcement learning. As shown by Bengio et al.,11 Jain
et al.,101 this results in a diversity of samples which is important
when the reward function is an imperfect proxy for the property
that we actually care about: it avoids putting all our eggs in the
wrong basket.

� Deep generative models: traditional generative models in
deep learning such as variational auto-encoders or VAEs102,103 or
GANs104 require positive samples to model the distribution of
interest, whereas GFlowNets are trained from a reward
function.

� Variational inference: variational inference trains an
approximate sampler (and the corresponding density) so as to
reduce the forward KL-divergence (the evidence lower bound or
ELBO) with a given distribution function (playing the same role
as the reward). This requires on-policy training (sampling from
the learned sampler), which has a tendency for focusing on
a single mode rather than nd a diversity of modes. Instead (see
Malkin et al.25 for details), GFlowNet objectives enable off-policy
training without requiring the high-variance importance
sampling correction necessary with the ELBO.

To summarize, GFlowNets shine in problems with the
following properties:

� It is possible to dene or learn a non-negative reward
function which will specify from what distribution the GFlow-
Net should sample.

� The reward function of interest is highly multimodal. This
emphasizes the advantage of GFlowNets in terms of diversity of
samples. If the reward function was unimodal, existing RL or
variational inference methods (which tend to focus on a single
mode) could be used instead.

� It is advantageous to sample sequentially, e.g., there is
compositional structure that can be exploited by sequential
generation.

4.1.7.1 Current limitations. Until recently, GFlowNets have
been limited to sampling from distributions over discrete
© 2023 The Author(s). Published by the Royal Society of Chemistry
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objects (e.g. graphs). Recent work by Lahlou et al.105 presents
a theoretical framework for extending GFlowNets to sample
from distributions over continuous spaces. Leveraging this
framework for sampling from distributions over high-
dimensional continuous or mixed (discrete and continuous)
spaces remains an open problem. Another potential limitation,
shared with other reinforcement learning methods, is that
effective credit assignment over very long trajectories (for
generating large objects, such as proteins) is more difficult. Pan
et al.106 take initial steps to tackle this problem, proposing a way
to assign partial rewards earlier in the generated trajectory
which results in more effective credit assignment. Another open
question is that of the best policy for sampling training trajec-
tories for a GFlowNet. Existing theoretical results from Bengio
et al.12 assume that the policy sampling trajectories should have
full support over the space of trajectories, but designing this
policy (beyond the heuristics discussed in Section 4.1.5) for
sample-efficient learning is an open problem.
4.2 Diverse candidate generation

A fundamental problem in chemistry is the synthesis of novel
chemical structures (e.g. molecules) that satisfy some criteria.
As alluded to in Section 4.1, generation of molecules to optimize
for a particular chemical property is an appealing use case for
GFlowNets, because GFlowNets will tend to generate a diverse
set of molecules optimizing that property. An important
problem in the context of drug discovery, which we introduced
in Example 1.1 is to discover molecules that bind to a particular
target, potentially inhibiting the target in the process. From the
computational design perspective, molecular docking simula-
tions can give scoring functions to approximately evaluate
proposed molecules. More recently, graph neural networks
which approximate the binding energy107 are used to approxi-
mate docking as they are much faster. As discussed in Section 2
as these scoring functions serve as approximations to the
underlying process, it is important to generate diverse candi-
dates for downstream applications, to avoid putting all our eggs
in the same basket.

Ref. 11 leverage GFlowNets for the problem of diverse
molecule generation.{ Soluble epoxide hydrolase (sEH) in the
4JNC conguration is studied as a target in the paper. It is
a useful target as it plays a role in certain respiratory and heart
diseases.108,109 Autodock Vina110 was used for docking the
generated molecules to evaluate the binding energy. Docking
each molecule with Autodock Vina can be quite slow and takes
several minutes to run, making it prohibitively expensive to
train a policy directly using it as a reward. Instead, the authors
rely on a graph neural network, trained using a data set of
docking scores for 300 000 molecules, as the reward for training
the policy. The molecules are generated using fragments, as
illustrated in Fig. 2. At each step, the policy picks a fragment
from a library to add to the partially constructed molecule, and
choose where to place that fragment. The library of fragments is
derived from the Zinc database.111
{ Code for molecule generation recursionpharma/gownet.

© 2023 The Author(s). Published by the Royal Society of Chemistry
The molecule design problem possesses all the key proper-
ties discussed in Section 4.1.7 for GFlowNets to be effective− (a)
there is compositional structure in generation as molecules are
built using subgraphs with unique chemical properties (b) the
reward function is an approximation of what we really care
about, as the docking score and its approximation by a neural
network (which has epistemic uncertainty associated with it due
to nite training) are approximations of the underlying
phenomenon of a molecule binding to a target and inhibiting it,
and (c) the reward is multi-modal since there can be multiple
motifs of molecules that bind well to a given target.

Ref. 11 showed that GFlowNets result in substantial
improvements over existing methods on this molecule genera-
tion task. In particular, as shown in Fig. 4a, GFlowNets discover
signicantly more modes of the reward function (i.e. many
different molecules that have high predicted docking score)
relative to other reinforcement learning (PPO) and MCMC
(MARS) approaches. Sampling proportional to the reward
results in high reward and diverse samples. Though it is
important to note that while using GFlowNets results in
signicant improvements in the diversity of generated samples,
they do not always lead to the highest scoring candidates,
because there is a natural trade-off between diversity and
reward.112 introduce metrics to study the ability of GFlowNets to
explore novel regions in molecular space.

Further,11 also consider an active learning setup, starting
with a data set of 2000 molecules. In each round, a surrogate
model is trained on the data set. This surrogate model is used as
the reward for the GFlowNet. Next, molecules are generated
with the GFlowNet policy, evaluated with docking, and added to
the data set for the next round. Using GFlowNet to acquire the
batches of molecules results in signicant improvements in the
reward over the initial data set, shown in Fig. 4b, demonstrating
the potential of GFlowNets to accelerate large-scale virtual
screenings.

From a practical perspective, we are oen interested in
multiple objectives rather than a single one. For instance, in the
context of drug discovery, an ideal drug candidate should
specically inhibit the target but also be synthesizable in large
quantities, soluble, and harmless to humans; alternatively, in
material science, to have an efficient solar cell means the opti-
mization of current, voltage, and ll factor. Typically, there are
very few candidates which simultaneously satisfy all the objec-
tives, which might even be conicting with each other (e.g. in
solar cells, photocurrent can increase with a photoactive
material with lower bandgap, but the voltage decreases).
Instead, there exists a set of candidates with the optimal trade-
offs between the objectives where further optimizing an objec-
tive is impossible without compromising another, i.e. the Pareto
front. Moreover, as with the single objective case, diversity is
still critical in the multi-objective case. Multi-Objective GFlow-
Nets [ref. 113, MOGFNs;] extend GFlowNets to tackle multi-
objective optimization problems. Building upon scalarization
approaches in multi-objective optimization,114 MOGFNs
decompose the multi-objective optimization problem into
a family of sub-problems which can solved simultaneously. This
family of sub-problems is modeled simultaneously with
Digital Discovery, 2023, 2, 557–577 | 569
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Fig. 4 (a) Molecules generated with GFlowNets cover significantly more modes of the reward distribution, resulting in diverse high reward
molecules. (b) Acquiring molecules generated with GFlowNets results in significant improvements over the starting pool of molecules. Figures
taken from 11 with permission.
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a reward conditional GFlowNet.12 MOGFNs demonstrate state-
of-the-art performance on a variety of small molecule genera-
tion and protein design tasks. MOGFNs consistently generate
diverse pareto-optimal candidates. For instance, MOGFNs are
able to generate molecules that bind to the sEH target, while
achieving a high synthesizability and QED score.

The active learning setting is further explored by.101k Incor-
porating ideas from Bayesian optimization discussed in Section
3.4, GFlowNet-AL101 incorporates information about the
epistemic uncertainty of the surrogate model in the reward for
the GFlowNet with an acquisition function. This epistemic
uncertainty helps in guiding the GFlowNet to optimize the
promising less explored regions in the state space. As such,
instead of maximizing the acquisition function in Algorithm 1,101

propose sampling proportional to the acquisition function.
Equipped with information about the epistemic uncertainty in
the reward and other improvements, GFlowNet-AL outperforms
various existing methods on a variety of biological sequence
design tasks, including generation of peptide sequences with
antimicrobial properties. The state space S consists of partially
constructed sequences with each action being the addition of
a token from a vocabulary (e.g. a residue from a set of amino
acids) to the end of the current partial sequence. Candidate
sequences generated by GFlowNets are signicantly more diverse
and have high rewards. The diversity of generated candidates
demonstrates the potential of GFlowNets to accelerate the
process of discovering novel antibiotics to tackle the growing and
highly concerning phenomenon of antimicrobial resistance.115

These initial empirical successes demonstrate the potential
of GFlowNets to make a signicant impact in improving
experimental design for a wide variety of scientic problems.
4.3 Modeling posteriors over causal models

4.3.1 Bayesian causal discovery with GFlowNets. As we have
seen in Section 4.1.6, GFlowNets offer a general solution to
approximate Bayesian posteriors, like the one in eqn (10).
GFlowNets are all the more adapted to the problem of Bayesian
causal discovery that causal structures G, represented as a DAG,
are compositional objects. Deleu et al.116 ** used this
k Code for active learning with biological sequences: mj10/BioSeq-GFN-AL and
alexhernandezgarcia/gownet.

** Code for modeling posterior over causal models: tristandeleu/jax-dag-gownet.

570 | Digital Discovery, 2023, 2, 557–577
observation to introduce a GFlowNet whose states are DAGs,
and where some graph G is created sequentially by adding one
edge at a time, starting from the completely disconnected graph
over d nodes; the structure of this GFlowNet is shown in Fig. 5
(le). Similar to eqn (24), for a xed dataset D, the reward
function of the GFlowNet is dened as RðGÞ ¼ PðDrGÞPðGÞ. By
constraining the set of valid actions at every state, the edges are
added in such a way that they will never introduce a cycle, which
guarantees that graphs remain acyclic at every stage of the
construction. Therefore, all the states of the GFlowNet are valid
causal structures. Deleu et al.116 leveraged this property and
showed that such a GFlowNet may be trained using a modi-
cation of the detailed balance loss [ref. 12, see also eqn (20)],
specically adapted to the case where all the states are
terminating.

To evaluate the reward function R(G) though, one needs to
evaluate the marginal likelihood PðDrGÞ in eqn (11), which is in
general intractable.117 Deleu et al.116 experimented only with
models such as multinomial-Dirichlet (for discrete data) and
linear-Gaussian (for continuous data), for which the marginal
likelihood may be computed efficiently in closed form. Alter-
natively though, instead of approximating the (marginal)
Bayesian posterior PðGrDÞ over structures only, we could
approximate the posterior Pðq;GrDÞ over both the causal
structures G and the causal mechanisms q,118 to avoid the
intractable integration in eqn (11).

4.3.1.1 Beyond DAGs. Work on causal discovery focuses
primarily on the causal graphical model framework introduced
in Section 3.5 that assumes a DAG structure, but acyclicity is
indeed an assumption that may not hold in certain domains.
For instance, in gene regulatory networks, there are feedback
loops between multiple genes interacting with one another.119

Nevertheless, when we consider the temporally unfolded cyclic
graph, i.e., the dynamics, we are back to a DAG. Some recent
work has studied the problem of learning the structure of non-
acyclic causal models.120–122 The GFlowNet approach discussed
above naturally extends to cases where the causal graph might
be cyclic. The masking mechanism introduced by Deleu et al.116

prevents cycles from being introduced at every step where an
edge is being added, ensuring the generated graphs are DAGs. If
we remove this additional constraint and allow the GFlowNet to
introduce cycles in the generated graph, then it would
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 GFlowNet for Bayesian causal discovery. (Left) The structure of the GFlowNet introduced in ref. 116, where directed acyclic graphs (DAGs)
are constructed one edge at a time. Each DAG is associated with a reward R(G). (Right) Comparison between the edgemarginals computed using
the exact posterior distribution, and approximated using the GFlowNet; the GFlowNet is capable of accurately approximating the exact posterior
PðGrDÞ. Used with permission from Tristan Deleu.116
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approximate the posterior distribution over cyclic causal
models which t the given observations.

4.3.2 Bayesian posteriors for scientic discovery
4.3.2.1 Posterior predictive. Once the structure of the causal

graphical model is known, we can use the model to perform
inference, i.e. answering (possibly causal) questions about the
system of interest, in the context of different interventions
(which we can interpret as setting some variables, i.e., designing
an experiment). If we have information about the epistemic
uncertainty, through the Bayesian posterior PðGrDÞ, we can
even go one step further and average out the predictions made
with all possible causal models, weighted using the posterior
distribution. Concretely, given a new observation y in the
context of an intervention x this corresponds to evaluating

Pðyrx;DÞ ¼
X
G

Pðyrx;G;DÞPðGrDÞ: (25)

This is called the posterior predictive, or Bayesian model
averaging.123,124 The advantage of eqn (25) over making predic-
tions using a single causal model is that multiple concurrent
theories may now participate in those predictions. In this way,
we avoid using only theory, which may be incorrect, and we
obtain a more conservative answer, thus avoiding catastrophic
outcomes due to a single theory (say a particular causal graph G)
being condently wrong.

4.3.2.2 Amortized posterior predictive. Instead of performing
a Monte Carlo average to estimate Pðyrx;DÞ for each candidate x
as per eqn (25) (which may be fairly expensive if we want to train
a policy that is trained by considering a large number of
possible x's), we can use a neural network gf(x, y) to amortize
that calculation. This can be done by training g over (x, y, G)
triplets with squared loss

LðfÞ ¼ EPðGrDÞ
h
EPðyrx;G;DÞ

h�
gfðx; yÞ � Pðyrx;G;DÞ�2ii: (26)
© 2023 The Author(s). Published by the Royal Society of Chemistry
Other amortization approaches are possible. For example,
using the GFlowNet framework, a policy Q(yijxi,yi−1

1 ,xi−1
1 ) can be

trained to rst sample one outcome yi at a time, given the input
experiment specication xi and the previous experimental
results yi−1

1 of the previous experiments xi−1
1 . The GFlowNet

constraint to satisfy is that

PðD;GÞ ¼ QðD;GÞ (27)

PðGÞPðDrGÞ ¼ QðDÞQðGrDÞ (28)

PðGÞ
YjDj

i¼1

Pðyirxi;GÞ ¼ QðGrDÞ
YjDj

i¼1

Q
�
yirxi; y1

i�1; x1
i�1

�
(29)

where the trained posterior predictive takes explicitly a partial
dataset (xi−1

1 , yi−1
1 ) as input, similarly to neural processes125 and

QðGrDÞ is the GFlowNet causal graph sampler as described
above, except that we allow interventions (different choices of x)
in the data.

4.3.2.3 Interpretability. Bayesian posteriors over causal
models also provide a natural tool for interpretability, since they
encode the belief that a causal structure ts the observed data.
By inspecting which causal structures contain a certain edge, we
can obtain a belief that certain causal relationships between two
random variables exist.126 This is called the edge marginal
distribution:

(30)

Fig. 5 (right) shows a comparison of the edge marginals
computed with the posterior approximation returned by DAG-
GFlowNet116 against the exact edge marginals, highlighting the
capacity of GFlowNets to accurately approximate the posterior
over graphs PðGrDÞ. Note that this kind of comparison is typi-
cally limited to small problems where the true posterior PðGrDÞ
may be computed efficiently in closed-form, and in general one
Digital Discovery, 2023, 2, 557–577 | 571
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may be concerned with the calibration of these estimated
marginals.90

5 Towards a unified framework for
scientific discovery with GFlowNets

In this paper, we have introduced GFlowNets as a tool for
modeling and for experimental design in the context of the
scientic discovery loop (Fig. 1). We have summarized how they
have been used and could be further used on both fronts. In this
concluding section, we outline research directions based on
this early work and aimed at providing scientists with a power-
ful ML-based framework applicable when it is possible to iter-
atively generate informative experimental data.

5.1 Exploiting amortized causal Bayesian modeling for
dening the utility of an experiment

An appealing theoretical framework for dening the objective of
an experiment is that of information gain introduced in Section
3.2: “howmuch information about a random variable of interest
can we expect to gain through the experiment?” A good policy
for experimental design should propose experiments with
a high value of this information gain as a reward. Note that this
framework is broadly applicable to a wide range of interactive
learning domains, such as reinforcement learning and active
learning, encapsulating the fundamental problem of explora-
tion. In general, the decision to perform an experiment may not
simply be based on the number of bits of information gained
but also on the risks and costs involved.127 We can however
incorporate the notion of a cost or budget by considering the
information gain per unit of cost incurred as the reward.

Information gain can be measured in principle by the
mutual information between the outcome of an experiment (a
random variable since the experiment has not taken place yet)
and the variable of interest (about which we seek to gain
information), given the experimental specication and any
other knowledge (including data) we may already have. In the
simplest and purely unsupervised knowledge-seeking scenario,
the variable of interest may be the causal model explaining the
outcomes of experiments. In a more targeted scenario, for
example in drug discovery, it would be the set of molecules that
have certain desirable characteristics (e.g., affinity with a target
protein is above a threshold and toxicity is below a threshold
and synthesis cost is below a threshold). Let Y be the experi-
mental outcome, x be the experiment specication, and V the
variable of interest about which we seek to gain information.
The information-theoretic utility for our experimental design
would then be dened as

IðY ;Vrx;DÞ ¼
X
y;v

Pðy; vrx;DÞlog Pðy; vrx;DÞ
Pðyrx;DÞPðvrx;DÞ (31)

IðY ;Vrx;DÞ ¼
X
y;v

Pðy; vrx;DÞlogPðyrv; x;DÞ
Pðyrx;DÞ (32)

where D is our dataset of prior experimental results {(x, y)} and
any other constraint we want to exploit to condition the
572 | Digital Discovery, 2023, 2, 557–577
probabilities. With V typically being a much higher-
dimensional object than Y, eqn (32) tends to be more prac-
tical numerically. To evaluate the expression in eqn (32) we can
leverage the ideas of amortization and GFlowNets to estimate
(a) the numerator and denominator probabilities
Pðyrv; x;DÞ; Pðyrx;DÞ (b) a sampler for the joint Pðy; vrx;DÞ, and
(c) an estimator Î of the MI itself, as a function of x. In the case
where the variable of interest are the parameters of some
underlying process v = q (as introduced in Section 3.2), we can
follow the amortization approach outlined in Section 4.3.2 to
estimate the posterior predictive Pðyrx;DÞ in the denominator.
On the other hand, the likelihood in the numerator
Pðyrq; x;DÞ ¼ Pðyrq; xÞ is available in the case of explicit models,
and can be approximated in the case of implicit models as
discussed in Section 3.3. Next to learn a sampler for the joint
Pðy; qrx;DÞ we rst approximate samples from the posterior
over parameters QðqrDÞ following Section 4.1.6. By combining
the samples from the posterior QðqrDÞ and the likelihood P(yjx,
q) we can learn a sampler Qðy; qrx;DÞ ¼ QðqrDÞPðyrx; qÞ to
approximate the joint Pðy; qrx;DÞ.

As for the estimator of MI itself, one possibility is to train
a neural network ÎðxÞ to amortize the expected value over (q, y)
given ðx;DÞ using the samples from the joint Qðy; qrx;DÞ and
the estimators for the probabilities in the log-prob ratio from
with a squared loss�

ÎðxÞ � log
Pðyrx; qÞ
Qðyrx;DÞ

	2

(33)

where x is sampled from a dataset or a generative model of
inputs, q � QðqrDÞ and y ∼ P(yjx, q). With enough capacity and
training time,Q converges to P and Î(x) converges to IðY ; qrx;DÞ.
What is particularly interesting if x is in a high-dimensional
space is that it generally won't be necessary to see more than
one value of y and q for each value of x in order to train Î, as
usual in supervised learning. This can work if it is possible for
the learning procedure for Î to generalize from the (q, x, y)
triplets used to train it.
5.2 Additional open challenges

5.2.1 Modeling and causality. One open challenge on the
modeling side is to leverage GFlowNets to model Bayesian
posteriors beyond causal models.128 take an initial step in this
direction, using GFlowNets to model the posterior over dropout
masks in a neural network. Moreover, in the context of causal
models, many challenges remain to extend the work done by.116

This includes (a) accommodating larger causal graphs effi-
ciently (b) making it possible to handle unobserved causal
variables by also learning how the raw inputs (e.g., images) may
be related to the causal variables (c) learning how experimental
choices relate to interventions on the causal variable when this
is not known perfectly a priori.

5.2.2 Experimental design. Our discussion has focused
primarily on the case where we are interested in information
gain about the parameter q to drive knowledge acquisition in
the experimental design loop. As we discussed in the previous
section, it is possible to incorporate any random variable V (eqn
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(31)) that we can learn to model and sample. An interesting case
is one where the random variable V is an extremum, e.g., the top
molecular candidates, for some task, as in eqn (9). Furthermore,
in many practical experimental settings, we have access to
measurements of varying delities as the outcome of our
experiments (e.g., computer simulations with varying accuracy-
computational cost trade-offs). Such a multi-delity setting is
discussed above (Section. 3.4) but needs to be incorporated
within the GFlowNet framework. Another important practical
scenario also introduced in the same section is the existence of
multiple objectives, with early work to incorporate that in the
GFlowNet framework by Jain et al.113

Finally, as introduced in Section 3.5 these experimental
design tools could be integrated within the causal discovery
framework, by focusing the knowledge acquisition on the
causal graph itself, an object of great value to scientists from an
interpretability point of view. This could be achieved by using
the graph itself as the target variable V (or a part of it), to drive
the experimental design to accelerate the discovery of the causal
structure.
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