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experimental and simulated inelastic neutron
scattering data†

Andy S. Anker, *a Keith T. Butler, ‡*b Manh Duc Le, c Toby G. Perringc

and Jeyan Thiyagalingam b

Supervised machine learning (ML) models are frequently trained on large datasets of physics-based

simulations with the aim of being applied to experimental data. However, ML models trained on

simulated data often struggle to perform on experimental data, because there is a shift in the data

caused by experimental effects that might be challenging to simulate. We introduce Exp2SimGAN, an

unsupervised image-to-image ML model to match simulated and experimental data. Ideally, training

Exp2SimGAN only requires a set of experimental data and a set of (not necessarily corresponding)

simulated data. Once trained, it can convert a simulated dataset into one that resembles an experiment,

and vice versa. We trained Exp2SimGAN on simulated resolution convolved and unconvolved INS

spectra. Consequently, Exp2SimGAN can perform a resolution convolution and deconvolution of

simulated two- and three-dimensional INS spectra. We demonstrate that this is sufficient for

Exp2SimGAN to match simulated and experimental INS data, enabling the analysis of experimental INS

data using supervised ML, which was previously not possible. Finally, we provide a domain of application

measure for Exp2SimGAN, allowing us to assess the likelihood that Exp2SimGAN will be successful on

a specific dataset. Exp2SimGAN is a step towards the analysis of experimental data using supervised ML

models trained on physics-based simulations.
Introduction

During the past few decades, research in materials science has
been accelerated by the rapid development of synchrotron and
neutron sources.1 Conventional data analysis approaches that
involve signicant human input and control cannot keep up
with the growing size of measured datasets. Moreover,
increasingly sophisticated theory and simulations are being
used to understand experimental data, the resource require-
ments for these simulations are considerably demanding, and
may not be affordable for every possible case.1–4 As a result, data
analysis oen becomes a bottleneck in many areas of materials
science research.2,3 Therefore, it is crucial to advance the
current state-of-the-art for materials science data analysis, and
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a particularly promising avenue is to exploit recent develop-
ments in articial intelligence and machine learning (ML).2–4

An outstanding issue for applying ML in many areas of
natural science is the scarcity of labelled data. For example,
advances in computer vision and natural language processing
were predicated on the existence of large, high-quality labelled
datasets, such as ImageNet.5 For problems in natural science,
obtaining data labels is oen much more challenging than for
socio-economically focused datasets, such as street scenes. For
problems in natural science, however, one oen has access to
physics-based models to simulate the phenomena of interest.
These physics-based models allow (within computation
constraints) the generation of large, labelled datasets for
training models. Some recent examples include the Materials
Project6 and JARVIS databases.7 However, models trained on
simulated data oen struggle to work on the analysis of exper-
imental data, because there is a shi in the data, introduced by
experimental artefacts such as noise and instrument resolution.
This has been a particular problem for the analysis of inelastic
neutron scattering (INS). INS is a powerful technique for
probing and understanding the dynamic behaviour of
condensed matter, and has been important for understanding
diverse properties such as charge and thermal transport8 and
more exotic phenomena such as heavy fermions, high
© 2023 The Author(s). Published by the Royal Society of Chemistry
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temperature superconductivity, topological insulators and spin
liquids.9–12

It is oen the case that information present in the INS data
cannot be extracted directly, but relies on careful comparison to
the predictions from physical models. The analysis of INS
datasets frequently involves tting physics-based models, for
example, based on spin wave theory,13 to experimental spectra.
Oen one is interested in extracting the optimal parameters for
a given magnetic Hamiltonian by comparison of simulated and
experimental INS spectra. Typically, this is achieved by
a combination of good intuition about reasonable parameters
along with local optimization of the parameters to achieve the
best t of the simulated to the experimental spectrum. This
approach has been successfully applied in numerous studies;
however, it does suffer from a number of limitations.

The simulation of spectra with realistic instrument effects
can be computationally demanding so tting may neglect
experimental artefacts that can originate from dead pixels,
other detector artefacts, phenomena caused by multiple scat-
tering from the sample and nearby instrument components
(colloquially known as ‘spurions’), and signals originating from
the sample alone but arising from phenomena not included in
the theory underlying the simulation. Additionally, it is
computationally expensive to perform the convolution of the
simulation and spectrometer resolution function to ensure that
the simulated data correctly mimic the experimental signal and
background.14 In recent years, there has been a concerted effort
in the INS community to develop methods to properly account
for the effects of resolution broadening of experimental signals
and experimental artefacts in order to better match simulated
to measured data.15–24

In this work, we seek to improve this situation using ML to
help us effectively analyze neutron datasets. Our approach is
inspired by work in unpaired image-to-image translation, using
ML to match two domains of data.25–28 Ideally, training requires
a set of experimental data and a set of (not necessarily corre-
sponding) simulated data. As a proof of principle, we train on
computationally expensive simulated resolution convolved and
computationally cheap resolution unconvolved INS spectra.
More specically, we develop generative adversarial networks
(GANs) that can perform a resolution convolution and decon-
volution of simulated two- and three-dimensional INS spectra.
We show that our approach successfully matches and can
convert between simulated and experimental INS data. We
demonstrate that a classication ML model trained on simu-
lated data without resolution convolution performs badly on
experimental data. However, using our GAN to perform
a “resolution deconvolution” of the experimental data (hence
making them similar to the simulated data), the classication
model can make accurate predictions on the experimental data.
We note that the results would possibly be further improved
using a set of experimental data and a set of simulated data for
training, which would allow the GAN to additionally account for
phenomena not included in the theory underlying the simula-
tion. Finally, we provide a domain of application measure for
our GAN, demonstrating that our technique possesses not only
predictive capacity but also a measure of the success probability
© 2023 The Author(s). Published by the Royal Society of Chemistry
of the model. Our approach is trained in a patch-wise manner
on the input data, which means that the framework can exibly
extend to different sizes of data. So, for example, the method
could be used to perform inference on a much larger experi-
mental spectrum than any included in the training set. This
exibility is critical to ensure that the approach applies across
varied data.
Exp2SimGAN and previous work

The Exp2SimGAN framework, illustrated in Fig. 1 and discussed
below, is a GAN. GANs are a class of unsupervised deep learning
(DL) methods that can be used to create realistic synthetic
instances of a target dataset from either noise or a conditional
input. GANs are trained by setting up two competing neural
networks (NNs), the generator and discriminator. During
competition (training), the generator learns to create synthetic
instances similar to the target distribution, which the discrim-
inator classies to be either in or out of the target distribution.
Thus the generator gets better at creating synthetic instances
that truly match the target dataset. The process is optimized via
a minmax loss;

L Exp2Sim
GAN ðG; D; X ; YÞ ¼ Εy�Y ½logðDðyÞÞ� þ Εx�X ½logð1

�DðGðxÞÞÞ�;
where G is the generator (Exp2Simnetwork in Fig. 1), D is the
discriminator (DSim in Fig. 1), Ex is the expected value over all X
instances (experimental data in Fig. 1), and Ey is the expected
value over all Y instances (simulated data in Fig. 1). A similar
L Sim2Exp

GAN is used for the simulated to experimental data
conversion. The GAN network is further explained elsewhere.29

A class of GANs, CycleGANs, have, in recent years, attracted
signicant attention due to their ability to translate information
between two domains in an unsupervised setting, i.e. without
matched domain pairs.27,28,30 A popular example is to translate
between 2D images of horses and zebras, where a GAN is used to
translate a horse to a zebra and back again.25,26,28 While GANs
have been applied a few times in materials science,31–36

unpaired image-to-image translation, which is frequently done
with CycleGANs, has only been applied in few instances.37,38

While CycleGANs are somewhat restricted in their applica-
bility;25,26,39 recent papers have employed contrastive learning to
ensure similarity by teaching the network to ensure a degree of
structural similarity between the corresponding patches in the
input and output images (white–white pairs, Fig. 1) but not
necessarily between non-corresponding patches of the input
and output images (white–grey pairs, Fig. 1).25,26 The process is
optimized via a patch-wise contrastive loss;

L Exp2Sim
PatchNCEðG; H; XÞ ¼ Εx�X

XL
l¼1

XSl
s¼1

‘
�
ẑsl ; zsl ; z

S=s
l

�
;

where H is a multilayer perceptron-based NN which extracts
features that embed L layers in S spatial locations to an
embedding space where the cross entropy loss,40 ‘, is calculated
on the patches. The denitions of z and ẑ are given as
Digital Discovery, 2023, 2, 578–590 | 579
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Fig. 1 Training Exp2SimGAN to translate between the domains of simulated and experimental data. (a) During training, Exp2SimGAN learns to
translate between experimental (left) and simulated (right) data by using a dual setting setup translating from experimental to simulated data
(orange) and vice versa (blue) in two different networks, Exp2Simnetwork (orange) and Sim2Expnetwork (blue), simultaneously. Exp2SimGAN also
uses contrastive learning to ensure similarity between patches of white–white pairs and dissimilarity between patches of white–grey pairs. After
training, Sim2Expnetwork and Exp2Simnetwork can be used independently to convert simulated data to experimental data or vice versa. Note that
Exp2SimGAN does not need the corresponding image-to-image datasets, and it can be used on any shape of 2–3D data. (b) An example of
a translation between simulated and experimental data using Exp2SimGAN.
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zl = Hl
Sim(Sim2ExplEncoder(y)),

and

ẑl = Hl
Sim(Sim2ExplEncoder(G(x)))
580 | Digital Discovery, 2023, 2, 578–590
A similar L Exp2Sim
PatchNCE is used for the simulated to experimental

data conversion. This is further explained elsewhere.25,26

Our work extends on a novel algorithm taking advantage of
contrastive learning for unpaired image-to-image translation:
dual contrastive learning GAN (DCLGAN).25 Exp2SimGAN
exploits a dual-GAN setting, with one GAN, Exp2Simnetwork
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00147k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 9
/3

0/
20

24
 7

:0
3:

26
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
(orange), that translates the experimental data to simulated
data and another GAN, Sim2Expnetwork (blue), for the opposite
translation. DCLGAN also uses contrastive learning using
similar (white–white) and dissimilar (white–grey) patches, as
shown in Fig. 1. It has been demonstrated that this setting is
highly versatile taking any input shapes while reconstructing
state-of-the-art performance synthetic data.25 While DCLGAN is
limited to images in 2D, our extension makes it possible to do
unpaired instance-to-instance translation of 2D and 3D
instances. We call the model Exp2SimGAN.

Additionally, we have included an auxiliary loss that was
found to help stabilize the training of small datasets with a high
signal-to-noise ratio, a situation which is frequently encoun-
tered in the eld of materials science. The auxiliary loss is
dened as themean square error (MSE) between the real class, Y
(simulated data in Fig. 1), and the class predicted by the
discriminator network, D(G(x)) used on Exp2Simnetwork applied
on the experimental data. This loss function is inspired by41,42

L Exp2Sim
auxiliary ðG; D; x; Y Þ ¼ MSEðY ; DðGðxÞÞÞ

A similar L Exp2Sim
auxiliary is used for the simulated to experimental

data conversion.
As can be observed from Fig. 1, Exp2SimGAN learns to

translate between experimental (le) and simulated (right) data.
Exp2SimGAN does not need corresponding pairs of instances
(2–3D data) and Exp2SimGAN can be applied to any 2–3D data
shape inputs, even those that differ from the training data,
while retaining the predictive power. The four NNs in the
architecture of Exp2SimGAN can make it memory intensive for
Fig. 2 Experimental and simulated INS data of the half-doped bilayer m
(PCSMO). 2D representation of (a) the experimental data of PCSMO m
arranged in terms of incident neutron energy (Ei) and bins of energy trans
and unconvolved simulated INS spectra using the Dimer and the Goode
Fig. 1a. The calculations are described in the Methods section.

© 2023 The Author(s). Published by the Royal Society of Chemistry
training. Exp2Simnetwork or Sim2Expnetwork can, however, be
used independently aer training for inference, freeing up RAM
for considerably bigger input shapes. The Exp2SimGAN archi-
tecture is further explained in the Methods section.
Results and discussion
Removing instrumental resolution from 2D INS data with
Exp2SimGAN and vice versa

Here we demonstrate that Exp2SimGAN can be used to translate
between the domains of experimental-like and simulated 2D
INS data by the convolution or deconvolution of the resolution
function. As a metric of success, we use a spin wave model
classier trained on INS spectra, which some of the authors of
this work have previously shown to work better on simulated
data than on experimental data.14 Exp2SimGAN is used to
bridge this gap between simulated and experimental data.

We previously demonstrated that the resolution function
signicantly inuences how INS data are interpreted in ML
models.14 To distinguish between two parameterized spin wave
models (denoted ‘Dimer’ and ‘Goodenough’) of INS data,
Fig. 2a, measured on the half-doped bilayer manganite
Pr(Ca,Sr)2Mn2O7 (abbreviated as PCSMO), we applied a deter-
ministic uncertainty quantication (DUQ) classier.14,43 The
data were arranged into a 2D representation with incident
neutron energy (Ei) and bins of energy transfer on the axes. The
two spin wave models produce comparable but distinguishable
INS spectra for equivalent parameters in their different
Hamiltonians. Fig. 2b illustrates the input data including and
excluding instrumental resolution. In ref. 14, the instrument
anganite Pr(Ca,Sr)2Mn2O7 in its spin, charge, and orbital ordered phase
easured at 4 K using the MAPS spectrometer.43 The INS spectra are
fer u = 0.10–0.16Ei, etc. 2D representation of (b) resolution convolved
nough spin wave models. Note that the INS spectra are the same as in

Digital Discovery, 2023, 2, 578–590 | 581
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resolution convolutions were calculated using the Horace
package.15 See the Methods section for more information about
both the experimental INS spectrum, Fig. 2a, and the simulated
INS spectra, Fig. 2b. In ref. 14 it was demonstrated that a clas-
sier trained on simulated INS data that did not include accu-
rate resolution functions cannot be used to predict the spin
wave model from experimental INS data because the experi-
mental data differs too much from the training set (simulated
INS data).14 We evaluated a number of computationally inex-
pensive methods for resolution functions but found that these
were not accurate enough, and had to use a more accurate but
computationally expensive Monte Carlo integration method to
calculate the resolution convolution for the training data, in
order to obtain condent predictions on the experimental
data.44

Here, we execute a resolution deconvolution from the
experimental 2D INS spectra to enable classication with an ML
model trained on computationally cheap (unconvolved)
simulations.

Using the Dimer and Goodenough spin wave models, we
simulated resolution convolved and unconvolved 2D INS
spectra and trained Exp2SimGAN to conduct a resolution
convolution (Sim2Expnetwork) or deconvolution (Exp2Simnetwork)
operation (Fig. 3a). We use 80% of the data (training set) to train
the networks, whereas the last 20% of the data (test set) are used
to evaluate their performance (Fig. 3b). Finally, we use
Exp2SimGAN on an experimental INS spectrum (Fig. 3c). See
Section A in the ESI† for more details about the INS 2D data
distribution.

Fig. 4 graphically demonstrates the performance of
Exp2Simnetwork for translation from the simulated convolved to
unconvolved 2D INS data. The unconvolved INS data have
signicantly sharper features and for some incident energies
Fig. 3 Flowchart illustrating the training procedure of Exp2SimGAN/Sim
Exp2SimGAN and Sim2ExpGAN are trained simultaneously using a set of s
The DUQ classifier is only trained on the computationally cheap INS spe
classifier on the computationally expensive simulated INS spectra that is r
a low accuracy in classifying the Dimer or Goodenough spin wave mode
the data before the DUQ classifier classifies them. It now achieves a highe
of an experimental dataset with high certainty. However, Exp2SimGAN
DUQ classifier enabling the classification of the spin wave model with h

582 | Digital Discovery, 2023, 2, 578–590
the intensity is faint. Exp2SimGAN learns both the deconvolu-
tion (Exp2Simnetwork, running le to right in Fig. 1a) and
convolution (Sim2Expnetwork, right to le in Fig. 1a) operations
(Section B in the ESI† shows the GAN resolution convolution).
Fig. 1b additionally shows a zoom-in view of the Exp2SimGAN
translation in the Ei = 35 meV and u = 0.22–0.28Ei range. Note
that Exp2SimGAN did not have the corresponding datasets to
do the translation during training.

The training and evaluating process of Exp2SimGAN is
illustrated in Fig. 3. We trained the DUQ classier45 on 80% of
the resolution unconvolved data and tested it on the remaining
20% (test set data), obtaining an accuracy of 98.9% (dened as
the fraction of correct predictions) which can be seen as the
ground truth performance. We then see that by deconvolving
the convoluted data using Exp2Simnetwork the classication
network performs noticeably better (96.0%) than when applied
to convoluted data (93.7%) (Fig. 3). This demonstrates that
Exp2Simnetwork has successfully deconvolved the 2D INS spectra
but, in the meantime, retained important information to
distinguish between the spin wave models. The accuracies in
Fig. 4 are for the DUQ classier trained on simulated data
without resolution convolution.

We can also apply our model in the reverse direction,
applying Sim2Expnetwork, which performs a resolution convo-
lution of the simulated data. We can thereby train the DUQ
classier on simulated resolution convolved data achieving
accuracies of 98.6% on simulated data with full resolution
convolution, but only 71.8% when applied to simulated data
without resolution convolution. However, when we use
Sim2Expnetwork to do a resolution convolution of the uncon-
volved data, we achieve an accuracy of 93.6% (we achieve 75.1%
when we GAN-deconvolve the data). This show that our network
2ExpGAN and how we use it on simulated and experimental data. (a)
imulated INS spectra with and without convolved resolution functions.
ctra, which are resolution function unconvolved. (b) We use the DUQ
esolution convolved. These data mimic experimental data. We achieve
l. We now use Exp2SimGAN to perform a resolution deconvolution of
r accuracy. (c) The DUQ classifier cannot identify the spin wave model
matches the experimental dataset to the simulated training set of the
igh certainty.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Evaluating Exp2SimGAN on simulated 2D INS spectra from the test set. The INS data are split into an 80% training set and 20% test set.
After the network has trained on the training set, we apply it on the test set data. Here is shown an example of performing resolution decon-
volution on 2D INS spectra simulated with the Dimer spin wave model and an example using the Goodenough spin wave model. Note that the
experimental axis is the same as in Fig. 1a. The highlighted accuracies are the performance of the DUQ classifier, trained on simulated INS spectra
without resolution convolution, on the test set. Section B in the ESI† shows the results of conducting the GAN convolution. If the DUQ classifier is
trained on simulated resolution convolved INS spectra the accuracies are 93.6% applied to GAN-convolved data and 71.8% applied to simulated
data without resolution convolution.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 9
/3

0/
20

24
 7

:0
3:

26
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
can be used in either direction: from experimental to simulated
data or from simulated to experimental data.

We have used a DUQ classier to assign the simulated
spectra to their respective spin wavemodels, as in previous work
for classifying these data.14 The DUQ classier outputs a corre-
lation value between 0 and 1 to indicate the distance between
the output classes and the weight vector associated with the
input. Values close to the extremes (0 and 1) are associated with
a prediction of high certainty; 1 implies no distance from the
class centroid, while 0 implies a very large distance from the
class centroid, and values that are not close to any of the class
centroids implies that the example is far from the training
distribution and there is high uncertainty about the
classication.
Matching experimental and simulated INS data in 2D

We now proceed and use the Exp2SimGAN approach to perform
resolution deconvolution on a real experimental INS dataset
(Fig. 3c) and predict the magnetic model with the DUQ classi-
er. Fig. 5a shows the raw experimental PCSMO INS spectrum
© 2023 The Author(s). Published by the Royal Society of Chemistry
and the GAN deconvolved INS spectrum (upper right), where the
features are signicantly sharper in the GAN deconvolved INS
spectrum. The DUQ classier (trained on unconvolved simu-
lated data) predicts the raw experimental PCSMO INS spectrum
to be [Dimer: 0.19jGoodenough: 0.92] showing that the network
correctly predicts the Goodenough spin wave model but with
a signicant uncertainty as indicated by the relatively high
correlation value for the Dimer class. This contrasts with the
GAN deconvolved INS spectrum, which is predicted to be
[Dimer: 0.07jGoodenough: 0.99] where it also correctly infers
the Goodenough spin wave model but with a signicantly
smaller uncertainty. We also apply the DUQ classier on the
same experimentally based negative control as our previous
work that combines experimental INS spectra measured with
the same instrumental settings (and hence instrumental reso-
lution) on various different materials.14 The negative control has
equivalent instrumental settings to the PCSMO dataset but
signicantly different Hamiltonians (further details in the
Methods section). Both the raw-[Dimer: 0.61jGoodenough: 0.55]
and the GAN cleaned negative control [Dimer:
Digital Discovery, 2023, 2, 578–590 | 583
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Fig. 5 Applying Exp2SimGAN on a range of simulated and experimental 2D INS spectra. (a) After the network has been trained, it is used to
compute a resolution deconvolution of the experimental INS spectra measured at 4 K on PCSMO (upper panels) and on a dataset that is used as
a negative control (lower panels). The negative control dataset is composed of experimental INS spectra measured with the same instrumental
settings (and hence instrumental resolution) on various different materials. Note that the experimental axis is the same as in Fig. 1a. The insets
show the DUQ classifications.45 (b) The Wasserstein distance of the Exp2SimFeaturespace position has been calculated between various datasets
(target distributions) and the Exp2SimFeaturespace position of 20 randomly chosen points from the training set. This process was repeated 1000
times to sample distributions of Wasserstein distances from the target distributions to the training set distribution. Section C in the ESI† shows the
results of applying Exp2Simnetwork on the target distributions and Section D in the ESI† shows the same experiments conducted in this figure but
using Sim2Expnetwork.
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0.31jGoodenough: 0.84] provide values far away from the
extremes (0 and 1), which shows that the data are out of the
training set distribution and that Exp2SimGAN does not alter
the data to describe the Dimer or Goodenough spin wavemodel.

We have demonstrated that Exp2SimGAN can successfully
convert between simulated and experimental 2D INS spectra, by
adding or removing the effect of resolution broadening and
noise associated with experiments in the case of INS spectra for
PCSMO. Knowing when the experimental dataset is beyond the
training distribution and, consequently, the GAN's useable
domain is important when thinking about real-world applica-
tions. Inspired by the Fréchet inception distance (FID) score,46

which quanties similarities of real and generated images by
using feature vectors from the inception v3 model, we can use
Exp2SimFeaturespace (shown in Fig. 1) to quantify whether a new
example comes from the same distribution as the training set.
We evaluate similarity by approximating the Wasserstein
distance between the Exp2SimFeaturespace distribution of the new
instance and the Exp2SimFeaturespace distribution of the training
set. Note that in Fig. 5, we only consider the Exp2SimGAN
network, which is intended to perform a resolution
584 | Digital Discovery, 2023, 2, 578–590
deconvolution of the dataset. The same type of analysis is pre-
sented in Section D in the ESI,† where Sim2ExpGAN performs
a resolution convolution.

We approximate the Wasserstein distance distribution
between a new data example and the training set using the
Sinkhorn distance approach.47 Here, we calculate the Wasser-
stein distance between a subset of the training data (20
randomly sampled points) and the new data example. To obtain
a distribution of Wasserstein distances, we repeat this process
1000 times. Note that the Wasserstein distance applied in this
manner only approximates the true distance between the rele-
vant parameter distributions.

As seen in Fig. 5 and Section C in the ESI,† six of the datasets
are INS spectra; the training set, the resolution convolved and
unconvolved test set, the experimental PCSMO INS spectrum,
the experimental negative control, and simulated 2D INS
spectra of spin waves from a different atomic structure
(Rb2MnF4).48 The last two datasets are the MNIST digit dataset
and 15 random images of cute animals found on the internet.
These two datasets are hypothesized to be extremely far from
the training set distribution (out-of-distribution examples).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5a demonstrates that both the training set and the
resolution convolved test set have a mean Wasserstein distance
of ∼75 000, which can be taken as the baseline. These datasets
are in the ‘trustworthy’ area, meaning that it is very likely that
Exp2SimGAN will be successful on the specic datasets. The
experimental INS spectrum has a slightly higher mean Was-
serstein distance (∼120 000) to the training set than the base-
line, which we expect to be from experimental noise and
artefacts as described in the Introduction section. The data of
the digits (∼240 000) and animals (∼200 000) have signicantly
larger mean Wasserstein distances from the training data than
the experimental INS spectrum does, demonstrating that the
Wasserstein metric can identify data that are very far from the
training set domain. These datasets are in the ‘untrustworthy’
area, meaning that it is very likely that Exp2SimGAN will not be
successful on the specic datasets. To look at data with more
subtle differences, we turn to the unconvolved INS spectra
(∼125 000), the negative control data (∼160 000) and the
Rb2MnF4 spectra (∼155 000) – in all cases, the mean
Fig. 6 Evaluating Exp2SimGAN on simulated 3D INS data from the test s
the network has trained on the training set, we apply it on the test set da
and convolution on 3D INS spectra simulated with the Dimer spin wave
spin wave model.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Wasserstein distance is greater than that of the experimental
INS spectrum, showing that the Wasserstein metric can pick up
on more nuanced differences in datasets that may mean that
Exp2Simnetwork is not applicable to a given data instance. These
datasets are in the ‘expert opinion’ area, meaning that an expert
opinion is needed to nally evaluate if Exp2SimGAN is
successful on the specic datasets. The measure of applicability
is important for real-world applications of Exp2Simnetwork where
the user must know how closely related the experimental data
are to the training distribution before using Exp2Simnetwork

blindly. As seen in Section D in the ESI,† the same conclusions
can be made from the Sim2Expnetwork model.

In Section D in the ESI,† we present the same type of analysis
but where Sim2ExpGAN performs a resolution convolution. The
unconvolved INS spectra are located in the trustworthy area,
and the convolved INS spectra are moved to the expert opinion
area, demonstrating that the trained models successfully bridge
the two distributions for those samples. While the approach
that we have demonstrated using the GAN to learn a mapping
et. The INS data are split into an 80% training set and 20% test set. After
ta. Here is shown an example of performing resolution deconvolution
model. Section F in the ESI† shows an example with the Goodenough

Digital Discovery, 2023, 2, 578–590 | 585
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Fig. 7 Simulating INS spectra of PCSMO. (Left) Diagram of the a–b plane of Pr(Ca,Sr)2Mn2O7 showing just the Mn atoms, with Mn3+ sites in green
and Mn4+ sites in red. Arrows denote the magnetic structure and black lines joining the atoms denote exchange interactions in the Goodenough
(a) and Dimer (b) spin wave models. In addition to the Mn–Mn interactions shown in the a–b plane, there is an additional interaction, Jt,
perpendicular to the a–b plane coupling Mn ions in adjacent planes. (Right) Table of limits of exchange parameter values used to generate the
training data.
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from simulations with expensive instrument resolution added
and pure simulated data is successful in this instance, the
method could be further improved by using experimental data
as well for training. The advantage of using real experimental
data would be that the method can learn to account for factors
which may have been missed, even in the high quality instru-
ment resolution simulation, for example signals arising from
sources beyond the spin-wave simulations, such as phonons.
The exibility of the model means that including experimental
data in the training, when it is available, will not be difficult.

Removing instrumental resolution from 3D INS data with
Exp2SimGAN, and vice versa

Until now, we have solely used Exp2SimGAN to convert between
simulated and experimental 2D INS data. While organizing the
INS spectra into 2D datasets helps conserve computer memory,
it also compromises some of the information in the INS data,
which is frequently 3-dimensional.

Fig. 6 shows the results of converting between simulated and
experimental 3D INS spectra. Here, the INS spectra are similar
to those in the previous section but without being arranged into
a 2D representation. See Section E in the ESI† for more details
about the INS 3D data distribution. Some pixels are masked
(shown as transparent in the gure) because they correspond to
gaps in the physical detector coverage so there are no data in
those regions. Again, we can see that Exp2SimGAN performs
well in convoluting or deconvoluting the resolution function
from the INS spectra, displaying a broadening of the disper-
sions with convolution very similar to those obtained with the
accurate Monte Carlo resolution in Horace, but at a fraction of
the computational cost.

Conclusion

Our GAN-based algorithm, Exp2SimGAN, shows promising
visual results of convoluting and deconvoluting the resolution
function from both simulated 2D and 3D INS spectra. We have
further demonstrated the potential of using GANs for matching
586 | Digital Discovery, 2023, 2, 578–590
simulated and experimental data. Quantitively, we validated
Exp2SimGAN using a classication ML model trained on
simulated data but used on experimental data. The accuracy
was increased by rst using Exp2SimGAN to create simulated-
like data from the experimental data. To further demonstrate
that Exp2SimGAN does not add articial features to the INS
data, we used it on an experimental negative control that did
not achieve high accuracy. In this study, we trained Exp2Sim-
GAN on simulated INS spectra with and without applying
resolution function convolution. More impactful would be to
train Exp2SimGAN on a set of simulated data and a set of
experimental data, enabling Exp2SimGAN to also remove or
identify effects from phenomena not yet described by the
underlying physics of the simulations.

Finally, we have created a way to quantify Exp2SimGAN's
applicability domain. This metric can be used to determine
whether the dataset being examined is closely connected to the
Exp2SimGAN training set distribution or whether it must be
retrained using new data. Future ML models, in our opinion,
must contain a domain of applicability metrics so that users do
not employ them blindly. The approach demonstrated here
could be an important step in the application of ML to more
efficient analysis of large experimental datasets.
Methods
The Exp2SimGAN network

We mostly follow the network architecture from DCLGAN to
train Exp2SimGAN,25 which has shown state-of-the-art results
on various datasets to perform unpaired image-to-image
translation. Therefore, we hypothesize that it will also
perform well on INS data.

This means that the generator, G, is ResNet-based49 with 9
residual blocks. We initialize the weights with Xavier initiali-
zation,50 and use instance normalization.51 We load all images
in 286 × 286 and crop them to 256 × 256. We train for 200
epochs with a learning rate of 0.0001, whereaer it decays
linearly for 200 epochs more. The best model is evaluated using
© 2023 The Author(s). Published by the Royal Society of Chemistry
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the FID score46 using PyTorchs official implementation with
default settings (https://github.com/mseitzer/pytorch-d). We
use the Adam optimizer52 with b1 = 0.5 and b2 = 0.999 and
a batch size of 1. We use a similar discriminator to the
PatchGAN discriminator architecture described for the
original CycleGAN paper28 and Pix2Pix53 but change the
output prediction to two: an output for simulated/
experimental (auxiliary) and an output for real/fake (GAN).
The training was done on a Tesla V100-SXM3 32GB with GPU
driver version 418.211.00 and CUDA version 10.1.

We weigh the loss functions 1 : 4 : 2 : 1 in the order GANloss :
NCEloss : Idtloss : Auxiliaryloss, where the Idtloss is the identity loss
that calculates the mean absolute error (MAE) of the generator
output G(x) and its identity x:

L IdtðGÞ ¼ MAEðGðxÞ � ðxÞÞ

Exp2SimGAN can train on any shape of data; however,
a limitation is GPU memory since Exp2SimGAN uses four large
NNs with about 30 million parameters in total using default
parameters. However, at inference (test) time, the generators,
Exp2Simnetwork or Sim2Expnetwork, can be used individually
saving large amounts of memory. This means that Exp2SimGAN
can be trained on small patches of the data to save memory and
aerwards be applied on large datasets.
Experimental INS data

INS measurements, previously reported by Johnstone et al.,43

were carried out using a MAPS spectrometer on a co-aligned
array of single crystals mounted such that the crystallographic
c axis is parallel to the incident neutron beam. This ensured that
the a–b plane is imaged in the detector array. Measurements
were made at this xed orientation at 4 K for a series of different
incident neutron energies (Ei= 25, 35, 50, 70, 100, and 140meV)
to span the full bandwidth of the spin wave spectrum. For each
measurement, an estimate of the non-magnetic scattering and
background was made from regions in the data with no visible
magnetic signal, and subtracted to leave an estimate of the
purely magnetic scattering.

The negative control data, previously used in,14 are formed
from several different measurements, with each measurement
forming a single row in the dataset, as follows (from the bottom
row upwards).

Ei = 25 meV, 150 Hz: SrCuO2

Ei = 35 meV, 200 Hz: SrCo2As2

Ei = 50 meV, 200 Hz: La0.5Sr1.5MnO4

Ei = 70 meV, 250 Hz: SrCuO2

Ei = 100 meV, 250 Hz: La0.5Sr1.5MnO4

Ei = 140 meV, 400 Hz: La0.5Sr1.5MnO4
© 2023 The Author(s). Published by the Royal Society of Chemistry
All measurements were done with the medium energy high
ux (“sloppy”) boron chopper at the CCR base temperature
(around 5 K).
Simulated INS data

The simulated INS images (both 2D and 3D) for PCSMO were
recorded using linear spin wave theory (LSWT) as implemented
in the SpinW54 code. The spin wave models are shown in Fig. 7,
together with a table of the ranges of the exchange parameters
from which values were randomly selected in the simulations
which generated the training data. We used the standard Hei-
senberg Hamiltonian with single-ion anisotropy:

H ¼
X
i;j

JijSi$Sj þD
X
i

ðSi
zÞ2

with 5 exchange parameters Jij in each spin wave model (Good-
enough and Dimer) as shown in the gure. The calculated spin
wave spectrum was then convolved with the spectrometer reso-
lution function using Horace.44 In the case of Rb2MnF4, a similar
Hamiltonian was used but without the anisotropy term propor-
tional to D, and considering only nearest neighbour interactions
J1 in the range [0, 1] meV and next nearest neighbour interactions
J2 in the range [−0.2, 0.2] meV between Mn2+ ions on a square
lattice. Each pixel in the simulated image is a histogram bin,
which averages the measured intensity (neutron counts) of typi-
cally hundreds of individual detector-energy points, which
represents neutrons scattered through a particular angle and
arriving at a particular time-of-ight (ToF). The nominal scat-
tering angle and ToF dene a nominal momentum and energy
transfer. However, the neutron beam is neither perfectly colli-
mated nor monochromatic, so the actual neutron momentum
and energy have a spread which is the resolution function. The
distributions dening this spread are not Gaussian but are well-
dened by the geometry and other characteristics of the spec-
trometer. To perform the resolution convolution, we draw Nmc =

10 samples from the distributions describing the resolution
function for each detector-energy point, calculate the INS inten-
sity using LSWT and average the result. Since each image pixel
(histogram bin) has several hundred detector-energy points, Nmc

does not need to be large to yield an accurate convolution.
For the resolution unconvolved calculations, the LSWT

model was only evaluated at the nominal centre of the pixel
(histogram bin), which thus requires several thousand times
fewer evaluations of the LSWT model. In the case of PCSMO,
each evaluation requires the construction and diagonalization
of a 32 × 32 element Hamiltonian matrix (8 × 8 in the case of
Rb2MnF4) and addition matrix–matrix multiplications to
compute the spin–spin correlation function (which is propor-
tional to themeasured neutron intensity). As we need∼108 such
evaluations per image for the resolution convolution calcula-
tion, this is prohibitive so we also used the Brille55 code to
perform linear interpolation of the spin wave energy and spin–
spin correlation function, which provides ∼5× speedup
compared to evaluating the diagonalization directly.

Even with the linear interpolation speed up, the resolution
convolved calculation took ∼720 CPU-minutes per image,
Digital Discovery, 2023, 2, 578–590 | 587
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whereas the resolution unconvolved calculation takes ∼8 CPU-
minutes per image. The speedup is not larger because the linear
interpolation was not used for the unconvolved calculation
since there are so few evaluation points that the overhead of
setting up the interpolation grid would have made the overall
calculation slower. In addition, the same script was used to run
both the resolution-convolved and unconvolved calculations,
which impose some overheads such as reading in the measured
data les to obtain the coordinates of all detector-energy points
(which is not needed for the resolution unconvolved
calculation).

The measurements were carried out with a range of different
incident neutron energies, in neutron energy loss mode (that is,
the magnon energy corresponds to the energy lost by a scattered
neutron). In this mode, a higher incident neutron energy will
give a larger dynamic range, but coarser energy resolution.
Using several different neutron energies allowed us to both see
the full dispersion of the spin waves and to resolve features
around 30 meV, which is critical to distinguishing between the
Dimer and Goodenough spin wave models.14 The 2D data
contain data from all the different incident energies, where
each incident energy corresponds to a row of images, but with
each panel in a row integrating over a relatively large range in
magnon energy. The 3D data, on the other hand, show only the
data taken with Ei = 70 meV, but where the third dimension is
now the energy transfer, allowing a more in-depth look at the
key dataset for distinguishing between the spin wave models.
Both 2D and 3D datasets were generated using the same
workow of SpinW for the spin wave calculation and Horace
and Brille for resolution convolution.
Data availability

The authors declare that the data supporting this study are
available within the paper, its ESI† les and the associated
GitHub and Zenodo to the paper: https://github.com/
AndySAnker/Exp2SimGAN and https://zenodo.org/record/
7308423#.Y2zgoOzML0o. Additional data that support the
ndings of this study are available from the corresponding
authors upon request.
Code availability

The authors declare that the code supporting this study is
available on the associated GitHub to the paper: https://
github.com/AndySAnker/Exp2SimGAN. The additional code
that supports the ndings of this study is available from the
corresponding authors upon request.
Author contributions

A. S. A., K. T. B., and D. M. L. conceptualized the project and
designed the methodology. A. S. A. wrote the code. D. M. L.
simulated the data. T. G. P. and J. T. procured funding. All
authors were involved in the writing of the paper.
588 | Digital Discovery, 2023, 2, 578–590
Conflicts of interest

The authors declare no competing interests.

Acknowledgements

ASA would like to thank the Augustinus Foundation, the Fab-
rikant Vilhelm Pedersen og hustrus Foundation, the Haynmann
Foundation, the Henry og Mary Skovs Foundation, the Knud
Højgaard Foundation, the Thomas B. Thriges Foundation, and
the Viet Jacobsen Foundation for nancial support to this
research project. This work was partially supported by wave 1 of
the UKRI Strategic Priorities Fund under the EPSRC (Grant No.
EP/T001569/1), particularly the “AI for Science” theme within
that grant and The Alan Turing Institute. The simulated data-
sets were generated using computing resources provided by
STFC Scientic Computing Department's SCARF cluster.
Exp2SimGAN was trained using computing resources provided
by STFC Scientic Computing Department's PEARL cluster. TGP
thanks collaborators A. T. Boothroyd and D. Prabhakaran in ref.
43 for their permission to use the PCSMO experimental
datasets.

References

1 J. Armstrong, A. J. O'Malley, M. R. Ryder and K. T. Butler,
Understanding dynamic properties of materials using
neutron spectroscopy and atomistic simulation, J. Phys.
Commun., 2020, 4(7), 072001.

2 Z. Chen, N. Andrejevic, N. C. Drucker, T. Nguyen, R. P. Xian,
T. Smidt, Y. Wang, R. Ernstorfer, D. A. Tennant, M. Chan and
M. Li, Machine learning on neutron and X-ray scattering and
spectroscopies, Chem. Phys. Rev., 2021, 2(3), 031301.

3 S. V. Kalinin, C. Ophus, P. M. Voyles, R. Erni,
D. Kepaptsoglou, V. Grillo, A. R. Lupini, M. P. Oxley,
E. Schwenker, M. K. Y. Chan, J. Etheridge, X. Li,
G. G. D. Han, M. Ziatdinov, N. Shibata and S. J. Pennycook,
Machine learning in scanning transmission electron
microscopy, Nat. Rev. Methods Primers, 2022, 2(1), 11.

4 E. O. Pyzer-Knapp, J. W. Pitera, P. W. J. Staar, S. Takeda,
T. Laino, D. P. Sanders, J. Sexton, J. R. Smith and
A. Curioni, Accelerating materials discovery using articial
intelligence, high performance computing and robotics,
npj Comput. Mater., 2022, 8(1), 84.

5 J. Deng, W. Dong, R. Socher, L. J. Li, L. Kai and F.-F. Li,
ImageNet: a large-scale hierarchical image database, in
2009 IEEE Conference on Computer Vision and Pattern
Recognition, 20–25 June 2009, pp. 248–255.

6 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, Commentary: the Materials Project:
a materials genome approach to accelerating materials
innovation, APL Mater., 2013, 1(1), 011002.

7 K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost,
A. J. Biacchi, A. R. Hight Walker, Z. Trautt, J. Hattrick-
Simpers, A. G. Kusne, A. Centrone, A. Davydov, J. Jiang,
R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian,
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/AndySAnker/Exp2SimGAN
https://github.com/AndySAnker/Exp2SimGAN
https://zenodo.org/record/7308423#.Y2zgoOzML0o
https://zenodo.org/record/7308423#.Y2zgoOzML0o
https://github.com/AndySAnker/Exp2SimGAN
https://github.com/AndySAnker/Exp2SimGAN
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00147k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 9
/3

0/
20

24
 7

:0
3:

26
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
V. Sharma, H. Zhuang, S. V. Kalinin, B. G. Sumpter,
G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt,
K. Rabe and F. Tavazza, The joint automated repository for
various integrated simulations (JARVIS) for data-driven
materials design, npj Comput. Mater., 2020, 6(1), 173.

8 X. Li, P.-F. Liu, E. Zhao, Z. Zhang, T. Guidi, M. D. Le,
M. Avdeev, K. Ikeda, T. Otomo, M. Kofu, K. Nakajima,
J. Chen, L. He, Y. Ren, X.-L. Wang, B.-T. Wang, Z. Ren,
H. Zhao and F. Wang, Ultralow thermal conductivity from
transverse acoustic phonon suppression in distorted
crystalline a-MgAgSb, Nat. Commun., 2020, 11(1), 942.

9 E. A. Goremychkin, H. Park, R. Osborn, S. Rosenkranz,
J.-P. Castellan, V. R. Fanelli, A. D. Christianson,
M. B. Stone, E. D. Bauer, K. J. McClellan, D. D. Byler and
J. M. Lawrence, Coherent band excitations in CePd3:
a comparison of neutron scattering and ab initio theory,
Science, 2018, 359(6372), 186–191.

10 T. Chen, Y. Chen, A. Kreisel, X. Lu, A. Schneidewind, Y. Qiu,
J. T. Park, T. G. Perring, J. R. Stewart, H. Cao, R. Zhang, Y. Li,
Y. Rong, Y. Wei, B. M. Andersen, P. J. Hirschfeld, C. Broholm
and P. Dai, Anisotropic spin uctuations in detwinned FeSe,
Nat. Mater., 2019, 18(7), 709–716.

11 P. A. McClarty, F. Krüger, T. Guidi, S. F. Parker, K. Refson,
A. W. Parker, D. Prabhakaran and R. Coldea, Topological
triplon modes and bound states in a Shastry–Sutherland
magnet, Nat. Phys., 2017, 13(8), 736–741.

12 S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome,
Y. S. Kwon, D. T. Adroja, D. J. Voneshen, K. Kim,
T. H. Jang, J. H. Park, K.-Y. Choi and S. Ji, Majorana
fermions in the Kitaev quantum spin system a-RuCl3, Nat.
Phys., 2017, 13(11), 1079–1084.

13 T. Holstein and H. Primakoff, Field Dependence of the
Intrinsic Domain Magnetization of a Ferromagnet, Phys.
Rev., 1940, 58(12), 1098–1113.

14 K. T. Butler, M. D. Le, J. Thiyagalingam and T. G. Perring,
Interpretable, calibrated neural networks for analysis and
understanding of inelastic neutron scattering data, J. Phys.:
Condens. Matter, 2021, 33(19), 194006.

15 R. A. Ewings, A. Buts, M. D. Le, J. van Duijn, I. Bustinduy and
T. G. Perring, Horace: soware for the analysis of data from
single crystal spectroscopy experiments at time-of-ight
neutron instruments, Nucl. Instrum. Methods Phys. Res.,
Sect. A, 2016, 834, 132–142.

16 T. G. Perring, High energy magnetic excitations in hexagonal
cobalt, University of Cambridge, 1991.

17 J. Y. Y. Lin, H. L. Smith, G. E. Granroth, D. L. Abernathy,
M. D. Lumsden, B. Winn, A. A. Aczel, M. Aivazis and
B. Fultz, MCViNE – an object oriented Monte Carlo
neutron ray tracing simulation package, Nucl. Instrum.
Methods Phys. Res., Sect. A, 2016, 810, 86–99.

18 K. Lefmann and K. Nielsen, McStas, a general soware
package for neutron ray-tracing simulations, Neutron News,
1999, 10(3), 20–23.

19 P. Willendrup, E. Farhi, E. Knudsen, U. Filges and
K. Lefmann, McStas: past, present and future, J. Neutron
Res., 2014, 17, 35–43.
© 2023 The Author(s). Published by the Royal Society of Chemistry
20 P. Willendrup, E. Farhi and K. Lefmann, McStas 1.7-a new
version of the exible Monte Carlo neutron scattering
package, Phys. B, 2004, 350(1–3), E735–E737.

21 P. K. Willendrup and K. Lefmann, McStas (ii): an overview of
components, their use, and advice for user contributions, J.
Neutron Res., 2021, 23, 7–27.

22 P. K. Willendrup and K. Lefmann, McStas (i): introduction,
use, and basic principles for ray-tracing simulations, J.
Neutron Res., 2020, 22, 1–16.

23 E. B. Knudsen, P. K. Willendrup, J. Garde and M. Bertelsen.
McXtrace anno 2020-complex sample geometries and GPU
acceleration, in Advances in Computational Methods for X-
Ray Optics V, SPIE, 2020, pp. 46–52.

24 J. Y. Y. Lin, F. Islam, G. Sala, I. Lumsden, H. Smith,
M. Doucet, M. B. Stone, D. L. Abernathy, G. Ehlers,
J. F. Ankner and G. E. Granroth, Recent developments of
MCViNE and its applications at SNS, J. Phys. Commun.,
2019, 3(8), 085005.

25 J. Han, M. Shoeiby, L. Petersson and M. A. Armin, Dual
Contrastive Learning for Unsupervised Image-to-Image
Translation, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 746–755.

26 T. Park, A. A. Efros, R. Zhang and J.-Y. Zhu, Contrastive
learning for unpaired image-to-image translation, in
European Conference on Computer Vision, Springer, 2020,
pp. 319–345.

27 Z. Yi, H. Zhang, P. Tan and M. Gong, Dualgan: unsupervised
dual learning for image-to-image translation, in Proceedings
of the IEEE international conference on computer vision, 2017,
pp. 2849–2857.

28 J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-
to-image translation using cycle-consistent adversarial
networks, in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2223–2232.

29 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville and Y. Bengio, Generative
adversarial nets, Advances in Neural Information Processing
Systems, 2014, 27, https://papers.nips.cc/paper_les/paper/
2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html.

30 T. Kim, M. Cha, H. Kim, J. K. Lee and J. Kim, Learning to
discover cross-domain relations with generative adversarial
networks, in International conference on machine learning,
PMLR, 2017, pp. 1857–1865.

31 S. Kench and S. J. Cooper, Generating three-dimensional
structures from a two-dimensional slice with generative
adversarial network-based dimensionality expansion,
Nature Machine Intelligence, 2021, 3(4), 299–305.

32 A. Nouira, N. Sokolovska and J.-C. Crivello, Crystalgan:
learning to discover crystallographic structures with
generative adversarial networks, arXiv preprint
arXiv:1810.11203, 2018.

33 S. Kim, J. Noh, G. H. Gu, A. Aspuru-Guzik and Y. Jung,
Generative Adversarial Networks for Crystal Structure
Prediction, ACS Cent. Sci., 2020, 6(8), 1412–1420.

34 Y. Hong, B. Hou, H. Jiang and J. Zhang, Machine learning
and articial neural network accelerated computational
Digital Discovery, 2023, 2, 578–590 | 589

https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00147k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 9
/3

0/
20

24
 7

:0
3:

26
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
discoveries in materials science, Wiley Interdiscip. Rev.:
Comput. Mol. Sci., 2020, 10(3), e1450.

35 S. Papadopoulos, A. Drosou and D. Tzovaras, Modelling of
Material Ageing with Generative Adversarial Networks, in
2018 IEEE 13th Image, Video, and Multidimensional Signal
Processing Workshop (IVMSP), 10–12 June 2018, pp. 1–5.

36 Y. Mao, Q. He and X. Zhao, Designing complex architectured
materials with generative adversarial networks, Sci. Adv.,
2020, 6(17), eaaz4169.

37 Q. Ai, A. J. Norquist and J. Schrier, Predicting compositional
changes of organic–inorganic hybrid materials with
augmented CycleGAN, Digital Discovery, 2022, 1(3), 255–265.

38 A. Khan, C.-H. Lee, P. Huang and B. Clark, Using CycleGANs
to Generate Realistic STEM Images for Machine Learning, in
Machine Learning and the Physical Sciences Workshop at the
36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

39 T. Chen, S. Kornblith, M. Norouzi and G. Hinton, A simple
framework for contrastive learning of visual
representations, in International conference on machine
learning, PMLR, 2020, pp. 1597–1607.

40 M. Gutmann and A. Hyvärinen, Noise-contrastive
estimation: a new estimation principle for unnormalized
statistical models, in Proceedings of the Thirteenth
International Conference on Articial Intelligence and
Statistics, JMLR Workshop and Conference Proceedings, 2010,
pp. 297–304.

41 A. Odena, C. Olah and J. Shlens, Conditional image synthesis
with auxiliary classier gans, in International conference on
machine learning, PMLR, 2017, pp. 2642–2651.

42 K. Khan, G. Sahu, V. Balasubramanian, L. Mou and
O. Vechtomova, Adversarial learning on the latent space
for diverse dialog generation, arXiv preprint
arXiv:1911.03817, 2019.

43 G. E. Johnstone, T. G. Perring, O. Sikora, D. Prabhakaran and
A. T. Boothroyd, Ground State in a Half-Doped Manganite
Distinguished by Neutron Spectroscopy, Phys. Rev. Lett.,
2012, 109(23), 237202.

44 T. Perring, TOBYFIT version 2.0. Least-squares tting to single
crystal data, 2004.
590 | Digital Discovery, 2023, 2, 578–590
45 J. Van Amersfoort, L. Smith, Y. W. Teh and Y. Gal,
Uncertainty estimation using a single deep deterministic
neural network, in International conference on machine
learning, PMLR, 2020, pp. 9690–9700.

46 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and
S. Hochreiter, Gans trained by a two time-scale update rule
converge to a local nash equilibrium, Advances in Neural
Information Processing Systems, 2017, 30, https://
proceedings.neurips.cc/paper_les/paper/2017/hash/
8a1d694707eb0fefe65871369074926d-Abstract.html.

47 M. Cuturi, Sinkhorn distances: lightspeed computation of
optimal transport, Advances in Neural Information
Processing Systems, 2013, 26, https://
proceedings.neurips.cc/paper/2013/hash/
af21d0c97db2e27e13572cbf59eb343d-Abstract.html.

48 T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant,
R. L. Leheny, R. J. Christianson and C. D. Frost, Two-
magnon excitations observed by neutron scattering in the
two-dimensional spin-5/2 Heisenberg antiferromagnet
Rb2MnF4, Phys. Rev., 2005, 72(1), 014413.

49 K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for
image recognition, in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

50 X. Glorot and Y. Bengio, Understanding the difficulty of
training deep feedforward neural networks, in Proceedings
of the Thirteenth International Conference on Articial
Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249–256.

51 D. Ulyanov, A. Vedaldi and V. Lempitsky, Instance
normalization: the missing ingredient for fast stylization,
arXiv preprint arXiv:1607.08022, 2016.

52 D. P. Kingma and J. Ba, Adam: a method for stochastic
optimization, arXiv preprint arXiv:1412.6980, 2014.

53 P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, Image-to-image
translation with conditional adversarial networks, in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1125–1134.

54 S. Toth and B. Lake, Linear spin wave theory for single-Q
incommensurate magnetic structures, J. Phys.: Condens.
Matter, 2015, 27(16), 166002.

55 G. S. Tucker, https://brille.github.io/stable/index.html.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://brille.github.io/stable/index.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2dd00147k

	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k

	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k

	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k
	Using generative adversarial networks to match experimental and simulated inelastic neutron scattering dataElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2dd00147k




