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eneralizability of probabilistic
models on low-data chemical datasets with
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Benjamin Sanchez-Lengeling f and Alán Aspuru-Guzik*abcghi

Deep learning models that leverage large datasets are often the state of the art for modelling molecular

properties. When the datasets are smaller (<2000 molecules), it is not clear that deep learning

approaches are the right modelling tool. In this work we perform an extensive study of the calibration

and generalizability of probabilistic machine learning models on small chemical datasets. Using different

molecular representations and models, we analyse the quality of their predictions and uncertainties in

a variety of tasks (regression or binary classification) and datasets. We also introduce two simulated

experiments that evaluate their performance: (1) Bayesian optimization guided molecular design, (2)

inference on out-of-distribution data via ablated cluster splits. We offer practical insights into model and

feature choice for modelling small chemical datasets, a common scenario in new chemical experiments.

We have packaged our analysis into the DIONYSUS repository, which is open sourced to aid in

reproducibility and extension to new datasets.
1. Introduction

The design and discovery of molecular materials routinely
enables technologies which have crucial societal consequences.
Given a library of compounds, prediction of molecular func-
tionality from its structure enables ranking and selection of
promising candidates prior to experimental validation or other
screening lters. Therefore, building accurate quantitative
structure–activity relationship models (QSAR) is key to acceler-
ated chemical design and efficient experimental decision-
making.1 Models that leverage statistical patterns in data are
now oen the state of the art on such tasks. Specically, data
science and machine learning (ML) have played critical roles in
modern science in general,2 enabling the utilization of data at
unprecedented scales. Deep learning (DL) models are able to
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extract statistical patterns in dataset features and give accurate
QSAR predictions and classications.3 When compared to
traditional ab initio techniques, such as density functional
theory (DFT), ML models are less computationally demanding,
and can learn statistical patterns directly from experimental
data. However, the quality of such models is determined by the
quality of the original datasets they are trained on, and thus the
models are still affected by the cost of accurate data generation.

To date, many studies consider molecular property predic-
tion tasks where training data is plentiful.4,5 In real-world
molecular design campaigns, particularly in the initial stages,
only small molecular datasets (<2000 data points) are available
due to the expense (monetary, resource, or labour) associated
with the design, synthesis, and characterization of chemicals.
In addition to the datasets examined in this work, examples of
applications in the low-data regime include design of opto-
electronic materials (i.e. organic photovoltaics,6 or photo-
switching molecules7), prediction of biochemical properties (i.e.
olfactory response,8,9 or mosquito repellency10), and drug
discovery.11,12 Despite the practical importance of this regime,
molecular property prediction using ML with limited data
instances has been relatively under-explored, and remains
a challenging task, especially for deep learning models which
oen require large amounts of training instances due to large
number of model parameters.

In the low-data setting, understanding a ML model's
performance is important since predictions inform decisions
about further research directions, or, in a sequential learning
setting, promote molecules to be subject to property
Digital Discovery, 2023, 2, 759–774 | 759
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Fig. 1 Schematic of the evaluation of probabilistic model on small
molecular datasets with DIONYSUS. We study the performance and
calibration of probabilistic models with different molecular represen-
tations when applied to small molecular datasets. The models are then
evaluated on their performance in a simulated optimization campaign
and their ability to generalize to out-of-distribution molecules.
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measurement. In particular, we place emphasis on (1) the
generalizability, the ability of a model to predict accurately on
new chemical data, and (2) uncertainty calibration, the ability of
a model to estimate the condence of its predictions (Fig. 1).

Adequate generalizability, the ability for a model to make
accurate predictions on out-of-distribution (OOD) data, is
paramount for many learning tasks, such as in the hit-to-lead
and early lead optimization phases of drug discovery.12,13 Aer
identication of a biological target (usually a protein or nucleic
acid), initial molecular hits are optimized in an expensive and
time-consuming make-design-test cycle. Using ML to predict
molecular properties has indeed been shown to reduce the
number of syntheses and measurements required.14–16

Commonly, drug discovery project permit the synthesis and
measurement of hundreds of candidate molecules due to
constraints in expense, and typically involve functionalizations
of a common molecular core or scaffold. Model generalization
is therefore critical for the reuse of QSAR models for unstudied
molecular scaffolds.17,18

Uncertainty calibration is the ability of a probabilistic model
to produce accurate estimates of its condence, and is also
a crucial aspect of the molecular design process and high-risk
decision making.19 Here, the goal is to learn a ML model that
is not only accurate, but also furnishes its predictions with
a notion of uncertainty. For instance, in a safety critical
molecular property prediction scenario, e.g. the prediction of
the severity of drug-induced liver injury,20,21 predictive uncer-
tainty estimates can be an effective way of quantifying and
communicating risk that can preserve time, resources, and
human well-being. Additionally, strategies for sequential
learning, such as Bayesian optimization22–24 or active learning25

commonly use uncertainties to construct utility functions,
which determine how to promote molecules for property
measurement based on their expected performance or infor-
mativeness. Previous studies have demonstrated that many
state-of-the-art DL models are, although accurate, poorly cali-
brated.26 Poorly calibrated predictions may have an adverse
effect on decision-making.27
760 | Digital Discovery, 2023, 2, 759–774
Wemaintain that the topics of molecular property prediction
in the low-data regime on one hand, and uncertainty quanti-
cation and model generalizability on the other, are intimately
related, as they are all commonly encountered in realistic
molecular design and discovery campaigns. In the spirit of
providing the community with a “handbook” on best practices
thereof, we contribute DIONYSUS: a Python soware package
for facile evaluation of uncertainty quantication and general-
izability of molecular property prediction models, accompanied
by the current study, in which we showcase DIONYSUS by
evaluating and analyzing these topics on several QSAR datasets.

The contributions of this work are as follows:
� We present a comprehensive study of the relationship

between features and models in the low data regime across
multiple axes: predictive performance, calibration of uncer-
tainty, generalization and quality of uncertainty in optimization
campaigns.

� We perform two experiments with associated metrics that
can be conducted on generic regression and classication tasks:
iterative molecule selection with Bayesian optimization and
generalization on out-of-distribution (OOD) molecules.

� We introduce a novel type of split to better benchmark
predictive models on clusters of molecules.

� This contribution describes our soware which enables the
extension of all analyses shown in this work to arbitrary
molecular datasets. Most of the analysis is agnostic of ML
model library and featurization strategy.

Code and experiments are packaged as DIONYSUS https://
github.com/aspuru-guzik-group/dionysus.

� We provide a “handbook” of practical recommendations
for building and comparing models in the low-data regime.

2. Related work
2.1 Probabilistic models

A variety of supervised learning models are available for repre-
senting predictive uncertainty. They can be broadly classied
into two categories: those approaches derived from frequentist
statistics and those based on Bayesian inference.

Frequentist methods lack construction of a prior, and are
instead concerned with the frequency of results over multiple
trials. Ensemble methods are widely used examples of fre-
quentist probabilistic machine learning.28 Ensemble-based
methods generate uncertainty estimates based on the variance
in the prediction of an ensemble of models that are trained on
random subsets of data, as is the case of random forests
(RF),29,30 or trained with randomly initialized parameters, as is
oen the case with weights of neural networks.31 For DLmodels,
uncertainties can be estimated using Monte Carlo-dropout, in
which the ensemble is created by randomly dropping out
weights in a trained model at inference time.32,33 This approach
is less computationally expensive, as it does not require training
multiple neural networks with different weights.

Methods based on Bayesian inference seek to update a prior
distribution, which summarizes pre-existing belief, in light of
new observations. Commonly used Bayesian strategies for
molecular property prediction in the low-data regime include
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Gaussian processes (GPs),34–36 and Bayesian neural networks
(BNNs).37–39 GPs have more recently been combined with deep
neural networks to produce more expressive models that natu-
rally output uncertainties.40,41 Several studies have highlighted
the accuracy and calibration of such models on larger
datasets.5,42,43

2.2 Calibration and quantication of model uncertainties

Despite the fact that many approaches exist to produce
predictive uncertainties, they are not guaranteed to be cali-
brated. In fact, it is well known that many modern DL strategies
are poorly calibrated, despite their accuracy.26,46 For classica-
tion tasks, condence calibration seeks to adjust probability
estimates such that they reproduce the true correctness likeli-
hood. Several calibration methods, such as isotonic regres-
sion,47 Platt scaling,48 and temperature scaling49 can be applied
as a learned post-processing step to any predictive model.
Similar approaches can be extended condence calibration to
a regression task setting.

Techniques have also been developed for ensuring ML
models produce calibrated uncertainties through the use of
regularization during training.50–52 In one particular case, Sol-
eimany et al.51 leverage evidential deep learning53,54 for molec-
ular property prediction. While effective, such methods require
careful choice of hyperparameters, as model condence is
sensitive to regularization strength. Multiple models must oen
be trained for each predictive task and molecular representa-
tion to determine the optimal evidential uncertainty
hyperparameter(s).

Uncertainty quantication has since been studied for
chemical prediction and classication tasks by numerous
works.38,55 Hirscheld et al. studied and compared the perfor-
mance of several neural network based uncertainty estimating
techniques for regression on molecular properties.56 Similarly,
Hwang et al. employed graph neural networks (GNNs) for binary
classication tasks on molecules.52 Similar issues with con-
dence calibration were observed, and corrections were applied
through loss regularization.

2.3 Downstream applications of probabilistic models

Probabilistic ML models are the central component in real-
world decision making. In the molecular design and discovery
setting, they are commonly used in sequential learning frame-
works, such as in high-throughput virtual screening, Bayesian
optimization,22–24 and active learning.25 Common to these
frameworks are a machine-learned surrogate model which
approximates the true underlying structure–property relation,
and a utility function which determines which molecules to
subject to measurement based on their expected informative-
ness. Typically, utility functions balance exploitative and
explorative sampling behavior by considering both the surro-
gate model's predictive mean and variance.

Although such frameworks have been demonstrated in the
context of molecular design and discovery, many applications
have focused on tasks with large pools of available candidates.
For example, Graff et al. report accelerated structure-based
© 2023 The Author(s). Published by the Royal Society of Chemistry
virtual screening large computational docking libraries (>108

compounds) using scalable models trained using mean-
variance estimation.13,57 Ryu et al. used Bayesian deep learning
to screen the ChEMBL dataset58 for active inhibitor molecules.39

It was found that the Bayesian model returned active inhibitors
at a signicantly greater “hit rate” than did baseline strategies,
suggesting that ML models with reliable uncertainty estimates
execute more efficient screening campaigns. Studies consid-
ering smaller molecular datasets (#1000) also exist. For
instance, Zhang et al. used Bayesian semi-supervised graph
convolutional neural networks to learn structure–bioactivity
relationships with statistically principled uncertainty esti-
mates.38 The authors showed estimations of uncertainty in the
low-data regime can drive an active learning cycle, obtaining
low model error with limited queries for training set data.
Despite the strong work reported in previous studies, the rela-
tionship between performance of an active learner and the
calibration and generalizability of the surrogate model has been
relatively underexplored, particularly in the low-data molecular
setting.

3. Methods
3.1 Molecular features

Molecules must be represented in machine-readable format to
enable computational property prediction. Several featurization
methods are explored in DIONYSUS (Fig. 2). All information is
derived from themolecular graph, parsed from a SMILES string.
The features used are categorized into 2 types: vector-valued and
graph-valued. A d-dimensional vector-valued feature x ˛ ℝd

comprise bit-vectors or physicochemical descriptors of a mole-
cule, while graph-valued features are represented as a tuple G =

(U,V,E). When referring abstractly to a molecular feature type,
we use X to represent either x or G from herein.

Morgan ngerprints (MFPs) are generated by iterating over
atomic centres and assigning bits according to neighboring
structures up to a certain radius away.59 A hashing algorithm is
then used to generate a high dimensional bit-vector unique to
the molecule. For our experiments, we use d = 2048 dimen-
sional MFPs with radius 3, generated using the open-source
cheminformatics package RDKit.60 A radius of 3 was chosen in
order to capture important molecular motifs such as the
aromatic six-member ring structure, present in many organic
molecules in our datasets.61

In addition to ngerprints, physicochemical molecular
descriptors are oen used for prediction of properties of
molecules in cheminformatics techniques such as quantitative
structure–activity/property relationship (QSAR/QSPR) models.
We use the Mordred package to generate up to 1613 chemical
descriptors from 2D molecular structures.62

The molecular graph can also be directly encoded in graph
representation, written as G = (U,V,E).45,63 The du-dimensional
global attributes describe global properties of the molecule. V is
the set of node (atom) attributes {vi}i=1Nv for a molecule with Nv

atoms, where vi ˛ ℝdv. The set of edge (bond) features E =

{(ek,rk,sk)}k=1Ne comprise information about each of the Ne

bonds in themolecule. Here, ek˛ ℝde stores properties of the kth
Digital Discovery, 2023, 2, 759–774 | 761
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Fig. 2 Schematic summary of molecular featurization methods. All methods are available in DIONYSUS. (A) Morgan fingerprints (MFP) are bit-
vectors representing circular fragments of certain radii around heavy atoms.44 (B) Mordred descriptors are physicochemical descriptors
generated from the molecular graph. (C) Graph representations consist of the vertices (atoms) and edges (bonds) of a chemical graph, and the
global node that is connected to all the atoms. (D) Graph embeddings are extracted from the global node of a GraphNets GNN predictor
pretrained on themolecules and targets of the dataset.45 Molecules in the test set are not accessible during pretraining to ensure no data leakage.
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bond, while the indices rk and sk ˛ {1, ., Nv} indicate the two
vertices that the bond joins together. The atom and bond
features used are listed in Table S5,† while the global feature
vector is zero-initialized.

The graphs can be directly used as inputs for graph neural
networks (GNN) predictor/classier. From this representation,
we also generate learned vector-based features, in which the
graph-to-feature transformation is learned from the dataset.
The graphs are passed through 3 GraphNet blocks and the
resulting global vectors enter a prediction layer (Fig. 2D). The
global vectors from the trained network are the graph embed-
dings which are saved as vector-valued features for the various
models.9

3.2 Datasets and preprocessing

To evaluate model performance and calibration, we selected
several datasets which contain experimentally determined
properties for small organic molecules. The prediction task
type, number of molecules, heavy atom types, and the chemical
property measured are summarized in Table 1. A dataset of N
molecules D ¼ fðXi; yÞi¼1gN are comprised of pairs of molecular
features X and target properties y ˛ ℝ for regression tasks and y
˛ {0, 1} for binary classication tasks.
Table 1 Overview of the QSAR datasets considered in this work. Both reg
within the low-data regime (<2000 molecules)

Dataset name Task type Number of molecules

BioHL64 Regression 150
Freesolv65 Regression 637
Delaney66 Regression 1116
BACE67 Binary classication 1513
RBioDeg64 Binary classication 1608
BBBP68 Binary classication 1870

762 | Digital Discovery, 2023, 2, 759–774
For all datasets, the SMILES were canonicalized using RDKit,
while duplicated or invalid SMILES, and entries with fragments
or salts are removed. Additionally, all features that have zero
variance across the molecules were removed to reduce the size
of feature space along redundant dimensions, and improve
speed of the models.

3.3 Models implemented

For each dataset and each featurization, we train and test ve
different models and evaluate the performance and uncertainty
calibration of each: (1) NGBoost,69 (2) Gaussian process (GP),34

(3) spectral-normalized GP (SNGP),42 (4) graph neural network
GP (GNNGP),43 and (5) Bayesian neural networks (BNNs).37

NGBoost is a random forest method that makes use of
natural gradient boosting, similar to XGBoost,70 to estimate the
parameters of the conditional probability distribution of
a certain observation given the input feature. An ensemble of up
to 2000 decision trees with at most 3 layers comprise the
ensemble, which will predict the parameters for a probability
distribution; a Gaussian distribution for regression, and a Ber-
noulli distribution for binary classication. The ensemble is
then tted with the natural gradient to maximize the likelihood
of the distribution for the given data.
ression and binary classification tasks are explored. The datasets are all

Heavy atom types Experimental value

C, S Biodegradability half-life
C, N, O, F, P, S, Cl, Br, I Free energy of solvation
C, N, O, F, P, S, Cl, Br, I Log aqueous solubility
C, N, O, F, S, Cl, Br, I Binds to human BACE-1 protein
C, N, O, F, Na, Si, P, S, Cl, Br, I Readily biodegradable
B, C, N, O, F, P, S, Cl, Br, I Blood–brain barrier permeability

© 2023 The Author(s). Published by the Royal Society of Chemistry
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BNNs are probabilistic deep learning models that replace
deterministic weight values of a neural network with weight
distributions.37 This allows the model to capture the epistemic
uncertainty of the predictions due to limited training data. In
our experiments, we use the local reparameterization esti-
mator71 to approximate the Gaussian prior distributions of 100
nodes of a single hidden layer. The output is passed through
a rectied linear unit (ReLU) activation function and a nal
linear layer is used to generate a prediction.

GP is a distance-aware Bayesian model in which predictions
are made via transformed relative distances between data
points, dictated by a kernel function. Unlike Bayesian deep
learning, which require approximate inference of the posterior
distribution such as through variational methods,37,72 GPs allow
for exact inference of the posterior predictive distribution
directly from the input, using relatively few parameters and
making it more robust to overtting. Additionally, exact infer-
ence becomes computationally expensive in larger datasets,
making GPs an ideal choice for low-data probabilistic predic-
tions, as demonstrated in many previous works.7,36,73,74 We use
the GPFlow package to implement the GP.75,76 For the MFP
features, we use a kernel based on the Tanimoto distance
measure commonly used for high-dimensional binary vectors,
which has been implemented in Moss et al.55 The standard
radial basis function (RBF) kernel was used for all other vector-
valued features.

A SNGP is a deep kernel GP method, in which the kernel
function is learned by training the model end-to-end. The
kernel is a multi-layer perceptron (MLP) with a spectral
normalization procedure on the weights of each layer to inject
distance awareness in the intermediate latent representations
of the network.42 The features are then passed through
a random features GP, which approximates a RBF kernel GP
using a two-layer neural network.77

A GNNGP is a graph-based model, trained end-to-end with
the random features GP to combine the expressive power of
graph representations with the probabilistic estimates of GPs.
Like the GNN used to generate the graph embeddings, this
model takes in graphs and has the same architecture as
described above. The nal predictive layer is replaced with the
random features GP layers to produce predictive uncertainties.
3.4 Evaluation metrics

DIONYSUS is designed in a modular way such that all predic-
tions and uncertainties are saved, and metrics for the perfor-
mance and calibration are calculated separately. Predictions
and uncertainties from other models and datasets can be easily
processed.

3.4.1 Predictive metrics. For regression tasks, previous
works have utilized metrics such as root-mean-squared error or
mean absolute error for measuring performance.78 However,
comparison of such metrics across target properties is oen
obfuscated by differences in magnitudes. As such, we use
coefficient of determination R2 between a prediction and its
ground truth. Values for R2 range from −N to 1. Models with R2

= 0 correspond to performance equal to the mean of the labels,
© 2023 The Author(s). Published by the Royal Society of Chemistry
while 1 corresponds to perfect prediction. Values can be lower
than 0 since predictions can be innitely worse.

Binary classication tasks are evaluated by the area under
the receiver-operating curve (AUROC), which compares the true
positive and true negative rates at different discrimination
thresholds. An AUROC of 1.0 indicates a perfect binary classi-
er, while a score of 0.5 indicates random classications.

3.4.2 Calibration metrics. The calibration of a model is
a measure of the correlation between the predicted uncertainty
for a given input feature, and the error of the predicted value
from the ground truth. For a well-calibrated model, the uncer-
tainty associated with a poor prediction should be greater, and
vice versa.

While there are many metrics that have been used, here we
will use statistics generated from the reliability diagram, also
known as the calibration diagram.26 For regression tasks, the
reliability diagram is given by the C(q) score plotted as a func-
tion of quantile q, in which the Z-score statistic is used to
compare the prediction and uncertainty with the ground
truth.55 For a set of predictions ŷ(X) with variances ŝ2(X)

(1)

where F−1 is the standard Gaussian inverse cumulative distri-
bution, and is the indicator function.

For the qth quantile, a well-calibrated model would have q
fraction of predictions Z-scores within the quantile, i.e. C(q)= q.
When C(q) < q, the model is overcondent, and when C(q) > q,
the model is undercondent. The calibration metric obtained
from the diagram is the absolute miscalibration area

AMAðy; ŷ; bsÞ ¼ ð1
0

jCðq; y; ŷ; bsÞ � qjdq; (2)

which measures the absolute area between the model reliability
and the perfect calibrated C(q) = q, with 0 area indicating
a perfectly calibrated model.

For binary classication, the uncertainty of the model is
given by the probability p = ŷ(X), or the mean of the Bernoulli
distribution. The reliability diagram is given by the plot of the
classication accuracy as a function of condence p.26 The
predicted probabilities p are binned into M = 10 uniform
intervals Bm, wherem˛ {1/M}, and averaged for the condence

confðBmÞ ¼ 1

jBmj
X
i˛Bm

ŷðXiÞ; (3)

while the accuracy is the fraction of correct classications

(4)

Similar to the case of regression, we expect the accuracy to be
equal to the given condence, for example, at p = 0.5, we would
expect only half the predictions in the bin to be accurately
classied.
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The metric derived from the binary classication reliability
diagram is known as the expected calibration error (ECE),79

ECEðy; ŷÞ ¼
XM
m¼1

jBmj
N

jaccðBm; y; ŷÞ � confðBm; y; ŷÞj; (5)

which is the average absolute difference between the accuracy
and the condence of the given bin, and is the discrete analog
of the integral between the reliability curve and the perfectly
calibrated model.
3.5 Cluster splits

Datasets have oen several structural motifs and we can identify
them via a clustering algorithm. A cluster split separates
a dataset into train and test via a cluster label. The test set will
contain the structural motif and the training set will not.
Performance on such splits can give an idea as to how well
a model generalizes to new chemical classes. A cluster split can
be viewed as a more general version of scaffold splitting which
tends to involved a specic molecular core.78

To build cluster splits, molecules are rst assigned clus-
ters based on the MFPs, which are decomposed into lower
dimensional bit-vectors representing structural motifs using
latent Dirichlet allocation.80 The vectors are then appended
to a bit representation of the dataset labels: for regression
tasks, the values are binned into 10 discrete one-hot cate-
gories, and for binary classication, the classication label is
used. This ensures that the individual clusters will not have
extremely imbalanced labels. The joint labels are then
further decomposed onto a 5-dimensional manifold using
UMAP,81 and the resulting vectors are clustered with the
HDBScan algorithm.82 The number of molecules in each
cluster varies, and similar structures are indeed found within
the same cluster (Fig. 3A).

To evaluate the generalizability, a test set is separately
generated by iterative stratied splitting 20% of the dataset
appended to the cluster labels, creating an unbiased test set
across all the clusters.83 The remaining molecules form various
clusters which are partitioned into combinations of differently
Fig. 3 Visualization of molecular clusters splits (A) Schematic of dimensi
molecules. (B) Schematic for generating cluster splits of training/valida
evaluated on the test set and plotted as function of available data.

764 | Digital Discovery, 2023, 2, 759–774
sized training sets (Fig. 3B). Validation set is a 15% iterative
stratied split of the training set.

4. Experiments and results
4.1 Predictive performance and uncertainty calibration

In preparation for supervised learning experiments, regression
datasets were randomly split into 70/10/20 percent training/
validation/testing sets, while binary classication datasets
were split using stratied splitting to ensure a similar propor-
tion of classes in all three sets. Each model is trained with the
described featurizations until an early stopping criteria is
reached on the validation set to prevent overtting to the
training set. Finally, the predictions and uncertainties are made
and saved for the testing set, and the models are evaluated by
the aforementioned performance and calibration metrics. The
95% condence intervals were generated by bootstrapping from
the test set results.

Plots comparing the calibration and performance metrics
are shown in Fig. 4 for each of the datasets. The models and
features with the best performance are found in the lower right
of each plot, where the calibration error is minimized and the
performance metric is maximized. The results are also tabu-
lated in Table S6† for regression, and in Table S7† for
classication.

In the regression data, we can observe much wider ranges in
the performance metrics, particularly in the lower data regime
of the BioHL and Freesolv datasets, with R2 < 0.3 being trun-
cated from the plot. The MFP feature has markedly lower R2

scores and comparable AMA, with the Tanimoto kernel GPs
performing the best. In the case of the BioHL dataset, all deep
learning models (SNGP, BNN, GNNGP) struggled to compete
with GPs and the NGBoost models trained on Mordred
descriptors and, surprisingly, graph embeddings, despite the
small amount of data available. GNNGPs and BNNs onMordred
and graph embeddings achieve competitive results in Freesolv
and Delaney, likely due to the larger amount available training
data. In all three regression datasets, the SNGP models achieve
poor calibration, with high R2 scores in Freesolv and Delaney.
onally reduced chemical space sorted by clusters of structurally similar
tion sets based on identified clusters. Performance and calibration is

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Plot of calibration error against model performance. Results are for all models and compatible input features for the regression and binary
classification datasets. Deep learning models (BNN, SNGP, and GNNGP) performance in BioHL are not shown due to truncation of R2 < 0.3.
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We note that the Mordred features contain 21 descriptors
that are related to the Crippen partition coefficient and molar
refractivity, which are parameterized to experimental solubility
measurements.84 To ensure that there is no advantage provided
to the solvation datasets (Freesolv and Delaney), the Crippen-
related descriptors are masked, and the predictions are
repeated for the datasets (Fig. S1†). Indeed we see no statisti-
cally signicant difference between predictions on the original
Mordred features, and those that have the Crippen-related
descriptors removed, indicating that the impact of the Crip-
pen values in the Mordred features on the performance of the
model on the solvation datasets is low.

In the binary classication data, the AUROC of all models
and features are similar, likely due to the larger size of the
datasets, and more data points representing the two binary
classes in the discrete target than the continuous target, relative
to the regression datasets. The error bars in the ECE score are
much larger than those of the AMA in regression, since, in the
low-data regime, there may be sparsely populated bins in the
reliability diagram, and hence greater variability when boot-
strapping. The best results are observed in GPs and NGBoost
models trained on Mordred and MFPs, possibly due to the
importance of certain fragments represented by the MFP in the
classication tasks represented here. Within the MFP results,
we observe the best performance in the Tanimoto kernel GPs.
Graph embeddings for all models gave higher calibration error.
Among the deep learning models, SNGP and GNNGPs achieved
good AUROC scores, but poorer calibration, while BNNs, when
provided Mordred descriptors, performed comparably to GPs
and NGBoost models. We also observe an overall increase in
classication miscalibration as the dataset size increases.
© 2023 The Author(s). Published by the Royal Society of Chemistry
4.2 Bayesian optimization

Bayesian optimization (BO) is a global, model-based optimiza-
tion strategy which consists of two main steps: (1) the inference
of a probabilistic surrogate model to the unknown objective
function based on all current measurements, and (2) the
selection of new candidates for subsequent measurements
using an acquisition function which balances the expected
performance of each candidate and uncertainty of the surrogate
model. BO has been employed as a promising optimization
framework across multiple disciplines,85 including automatic
machine learning,86–88 robotics,89,90 and experimental design.91,92

More recently, BO has been employed to efficiently search
through libraries of candidate molecules for those candidates
which exhibit optimal properties.13,93,94 Formally, for the mini-
mization of a molecular property over candidate space X , the
optimization problem is

X* ¼ arg min
X˛X

f ðX Þ; (6)

where f($) is some unknown black-box response function which
in general is expensive to evaluate and potentially subject to
noise (although we do not explicitly consider measurement
noise here). We consider optimization over a domain X which
consists of a nite set of Nmolecular candidates dened a priori
to experimentation, i.e. X ¼ fXigi¼1

N (Fig. 5). At each iteration,
newly evaluatedmolecules are appended to a dataset of K input–
output pairs, D ¼ fðXi; yiÞgi¼1

K , which is used to train the
surrogate model.

The mean (prediction) and variance (uncertainty) of the
model output are used to calculate the acquisition function. A
plethora of acquisition functions have been proposed for BO.
Digital Discovery, 2023, 2, 759–774 | 765
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Fig. 5 Bayesian optimization guided molecular design experiment (A) BO pipeline with library of molecular candidates. Blue circles represent
unmeasured molecular candidates, while red diamonds represent candidates for which a property measurement has transpired. The gold star
indicates the structure with optimal parameters after termination of the optimization campaign. (B) Single BO step. (C) Modified upper confi-
dence bound acquisition function with interpolation parameters d and binter, where d h 1 − binter.
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We consider the commonly used upper condence bound
(UCB)

aUCB(X) = ŷ(X) + bŝ(X), (7)

which has a trade-off parameter b that controls the contribution
of the predicted variance in the acquisition function. This is set
to 0.25 for the experiments. Molecules recommended for
measurement are those that maximize eqn (7), i.e.
Xnext ¼ arg maxX˛XaUCBðXÞ.

Representative results of simulated BO experiments using
the Delaney dataset are shown in Fig. 6. Optimization traces for
experiments on the remaining datasets are shown in Fig. S1D.†
The algorithm aims to minimize the log aqueous solubility,
nding the molecule within the Delaney dataset that has the
Fig. 6 Optimization traces for the BO experiments on the Delaney
dataset. The goal is to minimize the log solubility. Traces show the best
value achieved as a function of evaluations, with 95% confidence
interval from 30 independently seeded runs. Horizontal dashed lines
indicate the optimal log solubility. The shaded region indicates the
randomly sampled 5% of the dataset that initialized the optimization.
Random search (random) and 1-nearest-neighbour (1-nn) traces are
shown as baselines.

766 | Digital Discovery, 2023, 2, 759–774
lowest water solubility. The BO traces represent the cumulative
best log aqueous solubility value identied by each surrogate
and feature, averaged over 30 independently seeded runs. For
regression, the initial design dataset comprises 5% of the
dataset size and is randomly sampled based on the seed of the
run, with a minimum of 25 molecules. For binary classication,
we start with 10%, with a maximum of 100 molecules, to avoid
only sampling molecules of the same class. In the case of the
Delaney dataset, which comprises 1116 molecules, we use 56 for
the initial design. For all datasets except for BioHL, the allotted
budget is 250 measurements, excluding the randomly sampled
initial design. The budget for the BioHL dataset is reduced to 75
measurements due to the small size of the dataset.

Although several studies73,95 have shown that a smaller initial
design set (as low as 5 data points) can result in increased BO
performance on materials science design tasks, we elect not to
vary the number of initial design points, as we are focused on
the effects of the surrogates and the molecular features on the
optimization. The aforementioned studies both employ only GP
or tree-based surrogate models, which have been observed to
perform sufficiently well with limited training data, while in this
study, we also consider neural network surrogate models, which
typically have trouble training in such data regimes. Addition-
ally, the studies employ expert-craed low-dimensional features
tailored to their respective datasets, which have been shown to
improve BO performance,93 while we use general purpose
higher-dimensional features across multiple datasets and tasks.
Thus, we select relatively larger initial design sets of 5% and
10% of the datasets for regression and binary classication,
respectively, in order to account for the inclusion of deep
surrogate models, and the effects of higher-dimensional but
multi-purpose molecular features.

As baseline search strategies, we use a random search
(random) and a 1-nearest-neighbour strategy (1-nn), the latter of
which queries the molecule which has the highest MFP Tani-
moto similarity to the current best for measurement. Note that
graph embeddings were not used, as the GraphNets GNN
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Fraction of hits in Bayesian optimization of binary classifica-
tion datasets. A greedy strategy was used. Statistics are gathered over
30 runs, and the 95% confidence interval is reported. The run starts
with 10% randomly sampled portion of datasets (maximum of 100)

BACE MFP Mordred Graph

Random 0.212 � 0.005
1-nn 0.253 � 0.008
SNGP 0.259 � 0.005 0.236 � 0.006
GP 0.362 � 0.004 0.372 � 0.004
BNN 0.265 � 0.005 0.229 � 0.005
NGBoost 0.352 � 0.003 0.347 � 0.004
GNNGP 0.221 � 0.004

MFP Mordred Graph-based

RBioDeg
Random 0.193 � 0.004
1-nn 0.310 � 0.014
SNGP 0.206 � 0.004 0.200 � 0.006
GP 0.396 � 0.006 0.388 � 0.003
BNN 0.202 � 0.004 0.209 � 0.007
NGBoost 0.360 � 0.004 0.360 � 0.004
GNNGP 0.228 � 0.005

BBBP
Random 0.167 � 0.002
1-nn 0.171 � 0.011
SNGP 0.156 � 0.002 0.161 � 0.003
GP 0.212 � 0.001 0.210 � 0.001
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embedder requires training on the targets. While the embed-
dings may be effective when trained on the entire dataset, the
GNN embedder would have seen the data prior to measurement
in the setting of a BO experiment. Instead, the embeddings
would have to be trained from the data available to the BO
algorithm (∼25−100), and would not be informative, provided
the performance of the GraphNets architecture in the GNNGP
on BioHL (Fig. 4).

In Fig. 6, we see the best optimization performances with the
Mordred descriptors, and the GP and NGBoost models. Similar
to the results observed in the performance/calibration experi-
ments (Section 4.1), the MFP performs best with the Tanimoto
kernel GP model. The deep learning models struggle with the
sparse data. BNN and SNGP perform best with the Mordred
descriptors, with the BNN performing better than the 1-nn
baseline model in the later stages of the optimization. SNGP on
the other hand performs better random search, but fails to
surpass the 1-nn search method. The GNNGP is unable to
achieve better optimization with the graph inputs. Interestingly,
in the early stages of BO, the 1-nn search is quite effective,
especially when compared to random search. But the method
quickly plateaus, and is stuck in a local minimum due to the
exploitative nature of the search.

To succinctly summarize all experiments, the number of hit
molecules are recorded for the optimization trace over the
separate runs, not including those found by serendipity in the
Table 2 Fraction of hits in Bayesian optimization of regression data-
sets. The UCB acquisition function was used, with b = 0.25. Statistics
are gathered over all 30 runs, and the 95% confidence interval is re-
ported. The run starts with 5% randomly sampled portion of the
datasets (minimum of 25 molecules)

MFP Mordred Graph

BioHL
Random 0.610 � 0.044
1-nn 0.635 � 0.035
SNGP 0.721 � 0.042 0.585 � 0.041
GP 0.779 � 0.083 0.796 � 0.030
BNN 0.729 � 0.034 0.538 � 0.040
NGBoost 0.769 � 0.040 0.802 � 0.042
GNNGP 0.738 � 0.043

Freesolv
Random 0.520 � 0.020
1-nn 0.638 � 0.073
SNGP 0.750 � 0.024 0.690 � 0.036
GP 0.946 � 0.011 0.954 � 0.010
BNN 0.792 � 0.031 0.786 � 0.048
NGBoost 0.907 � 0.013 0.953 � 0.011
GNNGP 0.482 � 0.026

Delaney
Random 0.276 � 0.016
1-nn 0.439 � 0.043
SNGP 0.371 � 0.018 0.343 � 0.023
GP 0.838 � 0.012 0.953 � 0.021
BNN 0.393 � 0.018 0.417 � 0.022
NGBoost 0.786 � 0.013 0.959 � 0.007
GNNGP 0.189 � 0.015

BNN 0.155 � 0.002 0.165 � 0.003
NGBoost 0.198 � 0.002 0.190 � 0.003
GNNGP 0.171 � 0.002

© 2023 The Author(s). Published by the Royal Society of Chemistry
initial random search. The number of hits is normalized by the
total number of possible hits accessible throughout the opti-
mization to give a fraction of hits achieved, mimicking a real-
life molecular design scenario of nding as many materials
that extremize a certain property as possible. The results for the
datasets of interest are shown in Tables 2 and 3. In a regression
task, a molecule is considered a hit if it is within the top 10% of
the dataset. In a classication task, as we are using a greedy
strategy, a hit is a positive binary label. Looking at the fraction
of hits for the Delaney BO experiment, we see that the best
feature and surrogate models agree with the results in the
optimization traces, with GPs and NGBoost using Mordred
features achieving the highest scores.

In BioHL, due to the small data size, all search methods,
including random search and 1-nn, are able to nd the optimal
molecule within the allotted budget (Fig. S2A†). In the fraction
of hits achieved, on average, GPs/NGBoost with Mordred
features achieved the highest scores, overlapping with results
using MFP with GP, NGBoost and BNN. We note that the
condence intervals are relatively large due to the small size of
BioHL; there are not many molecules in the top 10%. In the
Freesolv dataset, we again observe that GP and NGBoost with
Mordred attain the highest fraction of hit molecules and the
fastest optimization (Fig. S2B†). As observed in the previous
experiments, the Tanimoto kernel GP with MFP is better than
Digital Discovery, 2023, 2, 759–774 | 767
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Fig. 7 Results of b parameter scan in the interpolated UCB acquisition
function. Metrics evaluated on test sets over the course of BO on
Delaney dataset for GP and NGBoost models on Mordred descriptors.
Shaded areas represent 95% confidence intervals over 30 runs. (A) The
optimization traces. (B) The performance and calibration metrics after
each batch of measurements on a separate test set.
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the other surrogates with MFP, which is seen in both the BO
traces, and the fraction of hits achieved. Among the deep
surrogate models, the BNNmanages to nd themost number of
hits, and nd the optimal molecules within the budget. We
generally see poor optimization performance with MFPs, with
the exception of the GP surrogate, with search efficiency similar
to random and 1-nn search.

In the binary classication datasets, the highest fraction of
hits are found by GP and NGBoost surrogate models trained on
MFP and Mordred descriptors, with GPs performing slightly
better, particularly in the RBioDeg and BBBP datasets. Again,
the GPs perform better with MFP through the Tanimoto kernel.
In general, the deep models perform similar to random search,
and worse than 1-nn method, indicating ineffective surrogate
models. Interestingly, in the optimization traces (Fig. S3†), at
around ∼300 evaluations, the traces for the deep learning
models start climbing at a steeper slope, indicating more effi-
cient optimization and better suggestions from the surrogate at
this threshold.

To study the effects of the acquisition function on the
surrogate model performance and calibration over the course of
optimization, we use a modied UCB acquisition function,

ainterUCB(X) = dŷ(X) + binterŝ(X) (8)

which allows for interpolation among selection strategies that
emphasize the predictive mean value and those that emphasize
the predictive uncertainty. The parameter binter is scanned
between values of 0 and 1, and d h 1 − binter. It is important to
note that we normalize the values of both ŷ and ŝ across the
entire molecular candidate pool such that their values can be
considered on equal footing. As binter approaches 0, greater
weight is placed on the predictive mean, and the sampling
behaviour should resemble that of a “greedy” strategy (exploi-
tation). As binter approaches 1, greater emphasis is placed on the
predictive uncertainty (exploration) (Fig. 5C).

The results of the optimization with varying binter on the
Delaney dataset are shown in Fig. 7. The scans were performed
only on GP and NGBoost models with Mordred descriptors,
which were among the most promising model–feature combi-
nations observed in the BO traces of Fig. 6. In the BO traces
(Fig. 7A), the best mean trace values correspond to binter = 0.25
for GPs, and binter = 0.5 for NGBoost, although there is overlap
in the condence intervals with lower binter traces. This corre-
sponds to b = 0.33 and 1, respectively, in the typical UCB
acquisition function (eqn (7)). At higher values of binter, opti-
mization performance quickly degrades in the GP model, while
NGBoost remains performant, identifying the optimal molecule
within the budget. In general, NGBoost performs better than GP
at data regimes of ∼100 molecules.

The performance and calibration metrics on a separate test
set of the model at every batch of 5 evaluations are shown in
Fig. 7B. Despite poorer optimization, the fully variance-based
sampling strategy achieves better R2 and AMA scores than the
greedy strategy. The variance-based exploration strategy
suggests more diverse candidates at each iteration, allowing the
models to train on a more diverse set of molecules, hence
768 | Digital Discovery, 2023, 2, 759–774
improving the prediction and calibrationmetrics on the test set.
Models with better predictions and calibration do not neces-
sarily give faster Bayesian optimization. A good balance of
optimization search efficiency and surrogate model perfor-
mance is achieved at binter = 0.25 for GPs, and 0.5 for NGBoost.
At these values, we observe improved predictions and uncer-
tainty calibration, especially at early stages of the optimization,
with similar search efficiencies to those of more exploitative
(lower binter) strategies.

For both models, we observe the general trend of better
predictions and uncertainties with more data. Overall, NGBoost
achieves higher R2 and lower AMA. We also observe a severe
drop in early optimization performance at around batch 10 for
the GPs at binter = 0 and 0.25. As the exploitation strategy
becomes exhaustive, molecules further in feature space are
included in the dataset. Due to sensitivity of GPs to distances in
the feature space, the model prediction and uncertainty metrics
drop until enough data is provided to improve the performance
of the GPs again. This drop in performance is not observed in
the NGBoost model, as random forest models can arbitrarily
divide the feature space, rather than relying on the kernel
function for feature distances. Interestingly, despite this
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Plots of metrics of regression models on ablated cluster splits. Graph representations are used for GNNGP, while the remaining models
used Mordred descriptors.
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pronounced drop in performance, BO at binter = 0 and 0.25 with
GPs achieved optimization trace results comparable to
NGBoost.
4.3 Generalizability

Generalizability of predictive models is important in order to
make accurate and reliable predictions on new chemical
structures, especially in the low-data regime, where there is
access to only a small slice of the chemical space. While models
can predict and classify onmolecules similar to the training set,
we are oen concerned with the performance and calibration
when extrapolating to molecules that are OOD. Measuring the
predictive performance of a model on the test set of a single
random split only provides a partial view to its generalization
capabilities—the biases in a single split can give an over-
condent or undercondent estimate of performance.
Fig. 9 Plots of metrics of binary classification models on ablated cluster
models used Mordred descriptors.

© 2023 The Author(s). Published by the Royal Society of Chemistry
To simulate prediction of OOD molecules, the models and
featurizations are trained and tested on cluster splits of the
datasets, as shown in Fig. 3. The clusters of molecules represent
“distributions” of similarly structured molecules and are
aggregated in different combinations to create a series of
training sets with difference sizes.

Visualizations of model prediction and uncertainty quality as
a function of amount of accessible training data for the
regression datasets are shown in Fig. 8 and 9. As a metric of
generalizability, the median performance over the cluster splits
are shown in Table 4. Here, only the Mordred descriptors and
the graph representation (for GNNGP) are studied.

For the regression datasets, we observe an increase in the R2

score with increasing training data. For the smallest BioHL
dataset, there are not enough clusters to form ablated sets that
span the gamut of training set sizes. Deep learning models like
SNGP, BNN and GNNGP are unable to achieve R2 > 0 for BioHL,
splits. Graph representations are used for GNNGP, while the remaining
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Table 4 Metric of generalizability. The median of performance of the
models on cluster splits of each dataset using Mordred descriptors
(graph representation for GNNGP). Higher value indicates better
generalizability

BNN GP NGBoost SNGP GNNGP

BioHL −2.511 0.710 0.853 0.007 0.016
Freesolv −0.207 0.916 0.905 −0.001 −0.006
Delaney 0.828 0.929 0.920 0.923 0.880
BACE 0.779 0.874 0.817 0.780 0.648
RBioDeg 0.876 0.933 0.909 0.875 0.873
BBBP 0.858 0.921 0.892 0.856 0.868
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as previously observed in the supervised learning studies
(Section 4.1). There is a clear jump in performance for deep
models at around 40% and 60% of training set for Delaney and
Freesolv, respectively. This indicates that the deep learning
models require at least ∼300 molecules to achieve sufficient
performance.

We observe better performance on Freesolv and BioHL using
GPs and NGBoost, with NGBoost achieving higher R2 and lower
calibration errors, particularly when only given access to small
number of clusters in the chemical space, indicating better
performance at lower data regimes. However, as observed in the
Delaney dataset performance, GPs are able to achieve higher R2

scores once enough data is provided, indicating better gener-
alization. In the calibration metric of the cluster splits, we
observe a general decrease in the error for BNN, and NGBoost.
However, for SNGP, GNNGP, and GP, we observe an increase in
AMA, particularly for the smaller datasets. A possible explana-
tion for this: as the GP models gain more access to chemical
space with more clusters, the covariance matrix determined by
the kernel function gives larger uncertainties, due to low simi-
larity of new inputs from different clusters, giving under-
condent predictions.

The generalizability results for binary classication datasets
are seen in Fig. 9. Again, we observe that the deep learning
models are only able to get decent performance at around 25–
30% of the training data, corresponding to ∼300 data points.
The GPs and NGBoost models both achieved similar AUROC
scores in this data regime, but the GPs are able to reach higher
performance metrics, indicating better generalizability. In the
calibration metrics, all models exhibit decrease in ECE with
more training data, with NGBoost achieving the lowest score.
For all models, there is a dip in performance at training set size
of about 50% for BACE due to the distribution of molecules in
the chemical space of the dataset. The cluster splits feature
space is shown in Fig. S5.† The BACE molecule clusters
predominantly fall into two larger superclusters. Initially, we
observe an increase in AUROC and decrease in ECE due to
inclusion of more training data. However, at around 50% of the
training set size, the training set becomes more concentrated
around one of the superclusters, and hence is less representa-
tive of the test set (Fig. S6†). This is particularly pronounced in
the calibration metrics, in which there is a rise in ECE at around
50% of the BACE dataset. This not only explains the charac-
teristic shape of the model performance metrics for BACE
770 | Digital Discovery, 2023, 2, 759–774
ablated cluster splits, but also demonstrates the ability of the
cluster splits to simulate OOD molecules within molecular
datasets.

5. Conclusion

In this work, we have performed a comprehensive study of the
performance and application of probabilistic models on small
molecular datasets, for both regression and binary classica-
tion tasks. Several models were trained and tested on the
datasets with a variety of molecular input features. We evaluate
the models based on their prediction accuracy and uncertainty
calibration, and their effects on a simulated experimental
optimization campaign and the generalizability OOD clusters.

Based on the results, we compile a “handbook” of recom-
mendations for predictive tasks with ML models on small
molecular datasets:

� Mordred features are quite robust, independent of model
choice.

� GPs with Mordred features are a solid modelling choice for
small datasets. This combination fared well in all tasks and
experiments. Model setup and optimization is relatively
straightforward.

� Out of the models tested, GPs seem to perform best on
OOD molecules.

� NGBoost performs best for much smaller datasets (<100
molecules).

� If using MFP features, GPs with the Tanimoto kernel
provide best results.

� Deep learning techniques suffer from bad performance for
very low data regimes (<300 molecules). Their performance
starts to become comparable to GPs aer dataset sizes of 500
molecules. Nonetheless, these techniques require more careful
setup to properly train and regularize, such as selecting training
hyperparameters, and model architecture.

� When provided enough molecules, BNN with Mordred
descriptors and GNNGP with graph inputs both give robust
predictions and calibrated uncertainties.

� Learned graph embeddings are expressive and viable
features, even at low data regimes of ∼150 molecules, provided
that the features are used with GPs or NGBoost.

� When performing Bayesian optimization, even though
purely predictive models (UCB with b = 0) nd hits faster, their
model performance is worse than a model with some explor-
atory component (b > 0). We found that for the UCB acquisition
function on the Delaney dataset using Mordred features, GP
with b = 0.33, and NGBoost with b = 1.0 tends to give best
model performance while achieving fast optimization.

� Good prediction and calibration of a surrogate model on
a test set does not necessarily correspond to better Bayesian
optimization.

There are some caveats to our analysis that may be addressed
in future work. While we only look at particular metrics for the
performance and calibration, there are a number of other
metrics, particularly for calibration such as negative log-
likelihood or ranking coefficients between the error and the
uncertainties, which may provide different perspectives for the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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observed results. Additionally, we do not perform any optimi-
zation of the hyperparameters or architectures, which would
typically be done for each model, dataset, and molecule repre-
sentation. For other future work, besides the addition of more
models and features, the study can be extended to multi-
classication molecular tasks. Regardless of these potential
future extensions, we believe that the work here presented here
provides important insights to the development and application
of probabilistic models on low data chemical datasets.
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83 P. Szymański and T. Kajdanowicz, A network perspective on
stratication of multi-label data, in First International
Workshop on Learning with Imbalanced Domains: Theory and
Applications, PMLR, 2017, pp. 22–35.

84 S. A. Wildman and G. M. Crippen, Prediction of
physicochemical parameters by atomic contributions, J.
Chem. Inf. Comput. Sci., 1999, 39(5), 868–873.

85 B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de
Freitas, Taking the Human Out of the Loop: A Review of
Bayesian Optimization, Proc. IEEE, 2016, 104(1), 148–175.

86 C. Thornton, F. Hutter, H. H. Hoos and K. Leyton-Brown,
Auto-WEKA: Combined Selection and Hyperparameter
Optimization of Classication Algorithms, in Proceedings of
the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD'13, New York,
NY, USA, 2013, pp. 847–855.

87 M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg,
M. Blum and F. Hutter, in Auto-sklearn: Efficient and Robust
Automated Machine Learning, ed. F. Hutter, L. Kotthoff and
J. Vanschoren, Cham, 2019, pp. 113–134.

88 Automated Machine Learning - Methods, Systems, Challenges,
ed. F. Hutter, L. Kotthoff and J. Vanschoren, 2019.
774 | Digital Discovery, 2023, 2, 759–774
89 R. Calandra, A. Seyfarth, J. Peters and M. P. Deisenroth,
Bayesian optimization for learning gaits under uncertainty,
Ann. Math. Artif. Intell., 2016 Feb, 76(1), 5–23.

90 F. Berkenkamp, A. Krause and A. P. Schoellig, Bayesian
optimization with safety constraints: safe and automatic
parameter tuning in robotics, Machine Learning, 2021.

91 J. Vanlier, C. A. Tiemann, P. A. J. Hilbers and N. A. W. van
Riel, A Bayesian approach to targeted experiment design,
Bioinformatics, 2012, 28(8), 1136–1142.

92 A. Foster, M. Jankowiak, E. Bingham, P. Horsfall, Y. W. Teh,
T. Rainforth, et al., Variational Bayesian Optimal
Experimental Design, in Advances in Neural Information
Processing Systems, ed. H. Wallach, H. Larochelle, A.
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