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able experiments in atomistic
machine learning

John L. A. Gardner, Zoé Faure Beaulieu and Volker L. Deringer *

Machine-learning models are increasingly used to predict properties of atoms in chemical systems. There

have been major advances in developing descriptors and regression frameworks for this task, typically

starting from (relatively) small sets of quantum-mechanical reference data. Larger datasets of this kind

are becoming available, but remain expensive to generate. Here we demonstrate the use of a large

dataset that we have “synthetically” labelled with per-atom energies from an existing ML potential model.

The cheapness of this process, compared to the quantum-mechanical ground truth, allows us to

generate millions of datapoints, in turn enabling rapid experimentation with atomistic ML models from

the small- to the large-data regime. This approach allows us here to compare regression frameworks in

depth, and to explore visualisation based on learned representations. We also show that learning

synthetic data labels can be a useful pre-training task for subsequent fine-tuning on small datasets. In

the future, we expect that our open-sourced dataset, and similar ones, will be useful in rapidly exploring

deep-learning models in the limit of abundant chemical data.
Introduction

Chemical research aims to understand existing, and to
discover new, molecules and materials. The vast size of
compositional and congurational chemical space means that
physical experiments will quickly reach their limits for these
tasks.1–3 Digital “experiments”, powered by large datasets and
machine learning (ML) models, provide high-throughput
approaches to chemical discovery, and can help to answer
questions that their physical counterparts on their own can
not.4–7 However, because ML methods generally rely on large
datasets rather than on empirical physical knowledge, they
require new insight into the methodology itself – one example
in this context is the active research into interpretability and
explainability of ML models.8,9

Among the central tasks in ML for chemistry is the predic-
tion of atomistic properties as a function of a given atom's
chemical environment. Atomistic ML models have now been
developed to predict scalar (e.g., isotropic chemical shis),10,11

vector (e.g., dipole moments),12 and higher-order tensor prop-
erties (e.g., the dielectric response).13 ML methods are also
increasingly enabling accurate, large-scale atomistic simula-
tions based on the “learning” of a given quantum-mechanical
potential-energy surface. Widely used approaches for ML
interatomic potential models include neural networks
(NNs),14–17 kernel-based methods,18,19 and linear tting.20,21 The
most suitable choice out of these options may depend on the
istry Laboratory, University of Oxford,

r@chem.ox.ac.uk

the Royal Society of Chemistry
task and chemical domain.22 For instance, the ability of NNs to
scalably learn compressed, hierarchical, and meaningful
representations has allowed them to converge to “chemical
accuracy” in the small-molecule setting on the established QM9
dataset.23–26

When exploring a new chemical system for which there is no
established, large dataset, it is not necessarily obvious which
model class will be suitable for a given task, or how a model will
perform. Unfortunately, creating the high-quality, quantum-
mechanically accurate data needed to train such ML models
is very expensive. For instance, using density-functional theory
(DFT) to generate and label the 1.2 million structures within the
OC20 database required the use of large-scale compute
resources, and millions of CPU hours.27 This cost oen limits
the size of dataset available when exploring different model
classes on new chemical domains, favouring simpler models
with high data economy over more complex ones that benet
from large data quantities.

Here we demonstrate the use of synthetic data labels, ob-
tained from an existing ML potential model (Fig. 1), as a means
to sidestep the high computational cost of quantum-accurate
labelling that would otherwise be required for experimenting
with atomistic ML approaches. Concretely, we introduce an
open-sourced dataset containing 22.9 million atomic envi-
ronments drawn from ML-driven molecular-dynamics (MD)
simulations of diverse disordered carbon structures, subse-
quently labelled in less than a day on local, consumer-level
compute. The size of this dataset enables us to study the
behaviour of different ML models in the small- and large-data
limits.
Digital Discovery, 2023, 2, 651–662 | 651
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Fig. 1 Synthetic data for atomistic ML. Left: Quantum-mechanical
(QM) data are used to label a set of structures, x0, with energy and
force data, y0, and these serve as input for an ML model of the
potential-energy surface. Right: QM labels are expensive, and so we
here use an existing ML model to cheaply generate and label a much
larger dataset. The data in this set are “synthetic” as they are not
labelled with the ground-truth QM method itself, yet represent its
behaviour (note that whilst the QM method describes energies and
forces on atoms, our synthetic dataset is labelled only with per-atom
energies in the present study).
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Dataset

Our dataset consists of 546 independent MD trajectories
describing the melt-quenching and thermal annealing of
elemental carbon. The development of ML potentials for
carbon28,31–34 and their application to scientic problems35–37
Fig. 2 Overview of ML approaches used in the present work. (a) A synthe
different categories of carbon environments as sketched. The distribution
for each (note there are much fewer sp than sp2 atoms overall). Energie
Positions (SOAP) power spectrum.29 The power-spectrum vector is an inv
Construction of the SOAP kernel, as a dot-product of the power-spect
Neural-network model. We use the power-spectrum vector [cf. panel (
a new value, ŷ, from this. (e) Deep kernel learning. A neural network is
indicated in red, from the original SOAP vectors. Gaussian process regre
a learned set of coefficients, c, and the similarity of a new point to each en
under a CC BY licence (https://creativecommons.org/licenses/by/4.0/)

652 | Digital Discovery, 2023, 2, 651–662
have been widely documented in the literature, and the exis-
tence of established potentials such as C-GAP-17 (ref. 28) means
that there is a direct route for creating synthetic data.

Initial randomised congurations of 200 atoms per cell at
varying densities, from 1.0 to 3.5 g cm−3 in 0.1 g cm−3 incre-
ments, were generated using ASE.38 Each structure then
underwent an MD simulation driven by C-GAP-17, as imple-
mented in LAMMPS.39 First, each structure was melted at 9000
K for 5 ps before being quenched to 300 K over a further 5 ps.
Second, each structure was reheated to a specic temperature
at which it was annealed for 100 ps, before nally being cooled
back down to 300 K over 50 ps. The annealing temperatures
ranged from 2000 to 4000 K in 100 K increments. These
protocols are in line with prior quenching-and-annealing type
simulations with empirical and machine-learned
potentials.40–43

The resulting database captures a wide variety of chemical
environments, including graphitic structures, buckyball-esque
clusters, grains of cubic and hexagonal diamond, and tetra-
hedral amorphous carbon. Every atom in the dataset was
labelled using the C-GAP-17 potential, which predicts per-atom
energies as a function of a given atom's environment.28 Fig. 2a
shows the distribution of these energies in the dataset, cat-
egorised in a simplied manner by their coordination number:
“sp” as in carbon chains (N = 2), “sp2” as in graphite (N = 3),
and “sp3” as in diamond (N = 4). The energies for the sp2 and
sp3 environments are rather similar, consistent with the very
similar energy of graphite and diamond; those for sp atoms are
notably higher.
tic dataset of atomic energies, predicted by the C-GAP-17 model,28 for
s are shown by kernel density estimates, normalised to the same value
s are referenced to that of a free atom. (b) Smooth Overlap of Atomic
ariant fingerprint of the atomic environment, and illustrated in grey. (c)
rum vectors for two atomic environments, raised to a power of z. (d)
b)] to directly construct the input layer, and train a network to predict
used to learn a compressed representation of atomic environments,
ssion is then used to make predictions in this compressed space, using
try in the data set. Panel (b) is adapted from ref. 30, originally published
.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Methods
Structural descriptors

Wedescribe (“featurise”) atomic environments using the Smooth
Overlap of Atomic Positions (SOAP) technique.29 SOAP is based
on the idea of a local-basis expansion of the atomic neighbour
density and subsequent construction of a rotationally invariant
power spectrum (Fig. 2b).29 Initially developed as a similarity
measure between pairs of local neighbourhood densities, SOAP
can also provide a descriptor of a single local environment, and
be used as input to other ML techniques.44–47 In the present work,
we use SOAP power-spectrum vectors in two ways: to construct
kernel matrices for Gaussian process regression (GPR), and as
a base from which to learn richer and compressed descriptions
using neural network models (Fig. 2c–e).

The SOAP descriptor is controlled by four (hyper-) parame-
ters.29 Two convergence parameters, nmax and lmax, control the
number of radial and angular basis functions, respectively; the
radial cut-off, rcut, denes the locality of the environment, and
a Gaussian broadening width, sat, controls the smoothness of
the atomic neighbourhood densities. Here, descriptor vectors
pre-calculated using (nmax, lmax) = (12, 6) led to convergence for
the average value in the SOAP similarity matrix for a 200-atom
structure to within 0.01%, as compared to (16, 16). Values of 3.7
Å and 0.5 Å for rcut and sat, respectively, were used, in line with
the settings for the C-GAP-17 model.28
Fig. 3 Learning curves for our synthetic dataset. Mean absolute error
(MAE) values for the prediction of C-GAP-17 labelled local energies, as
a function of training set size (“learning curves”), for the most accurate
instance of each model class. The dashed line indicates GPR models
that required specialist compute (>64 GB RAM) to train.
Gaussian process regression (GPR)

GPR non-parametrically ts a probabilistic model to high-
dimensional data. For a detailed introduction to GPR, see ref.
48, and for its applications in chemistry, see ref. 30. At a high
level, prediction at a test point, x′, involves calculating its
similarity to each data location in the training set, xi, using
a specied kernel, k. Each of these similarities, k(xi,x

′), then
modulates a coefficient, ci, learned during training, such that
the prediction is

ŷ
�
x
0� ¼XN

i

ci$k
�
xi; x

0�
hc$k

�
X; x

0�
: (1)

In this work, we evaluated k(x,x′) as the dot product of the
respective SOAP power-spectrum vectors, raised to the power of
z = 4 as is common practice.30

For an exact implementation of GPR, the time complexity for
predicting ŷ(x′) is O(N), where N is the number of training
example pairs, {xi, yi}. However, solving for c during training
entails an O(N3) time and O(N2) storage cost. In practical terms,
this limits “full GPR” to at most a few thousand data points.48

One approach to circumventing this unfavourable scaling is
referred to as sparse GPR,30 which only considers M represen-
tative data locations when making predictions. Prediction time
complexity is therefore O(M), while training entails O(M2N +M3)
time and O(NM + M2) space scaling. Provided M � N, this can
signicantly increase the amount of data that can be used for
training in practice. In the present work, we usedM= 5000, and
varied N up to 106.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Neural-network (NN) models

Articial NNs can provably represent any function given suffi-
cient parameterisation.49,50 For an overview of the inspiration
for, workings of, and theory behind NNs, we refer to ref. 51. In
brief, NNs make predictions by repeatedly applying alternating
linear and non-linear transforms, parameterised by weights and
biases. These are learned using backpropagation to iteratively
reduce a loss function.

Throughout this work, we train NNs using standard forward
and backward propagation techniques using the Adam opti-
miser52 and CELU activation functions,53 all as implemented in
PyTorch.54 The performance of a deep NN depends heavily on
the choice of hyperparameters for the model architecture and
training, including the depth and width of the network, and the
learning rate of the optimiser. We establish optimised values for
these hyperparameters using an automated process: random
sweep over values, and validating on a test set (see below).
Deep kernel learning (DKL)

DKL models make predictions through the sequential applica-
tion of deep NN and GPR models:55,56 the NN takes high-
dimensional data as input and outputs a compressed repre-
sentation in a space where the Euclidean distance between two
data points, relative to the learned length scale of the GPR
model, is representative of their (dis-) similarity.

During training, the parameters of both the NN and GPR
model are jointly optimised by maximising the log posterior
marginal likelihood. Thesemodels were implemented using the
PyTorch and GPyTorch libraries.54,57
Learning curves

The rst result of this paper is the demonstration that our
synthetic data, viz. ML atomic energies, can indeed be
machine-learned, and how the quality of this learning depends
Digital Discovery, 2023, 2, 651–662 | 653
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View Article Online
on the size of the training dataset. In Fig. 3, we test the ability
of our GPR, NN, and DKLmodels to learn atomic energies from
the dataset of carbon structures described above. We show
“learning curves” that allow us to quantify and compare the
errors of the three model classes considered. In each case,
mean absolute error (MAE) values are quoted as averaged using
a 5-fold cross-validation procedure, where the structures from
a single MD trajectory are dedicated completely to either the
training or the test set, to avoid training example data
leakage.58 When using less than the full training set, we take
a random sample from all atomic environments without
replacement. When training network-based models, which
require a validation set, we further split the shuffled training
set using one tenth of the set, or 1000 points, whichever is
lower. We note that this learning of ML-predicted data is
related to the recently proposed “indirect learning”
approach,59 but it is distinctly different in that the latter does
not regress per-atom energies, rather aiming to create teacher–
student ML potential models.

In the low-data regime, the learning curves in Fig. 3 show the
behaviour known for other atomistic ML models: the error
decreases linearly on the double-logarithmic plot. There is
a clear advantage of the GPR models (blue) over either network-
based technique (NNs, black; DKL, red) in this regime, with 104

data points perhaps being representative of a specialised
learning problem in quantum chemistry requiring expensive
data labels. However, this effect is diminished upon moving to
larger datasets. Typical ML potentials use on the order of 105

data points for training, and in this region the learning curve for
the GPR models visibly saturates. We emphasise that we use
sparse GPR, and so the actual number of points in the regres-
sion,M, is much lower than 105; this aspect will be discussed in
the following section.

Comparing the NN and DKL models side-by-side, we nd no
notable advantage of DKL over regular NNs in this context –
a slight gain in accuracy comes at a cost of approximately 100-
fold slower prediction. In the remainder of this paper, we will
therefore focus on a deeper analysis of GPR and NN models for
atomistic ML, and report on numerical experiments with these
two model classes.
Fig. 4 Aspects of GPRmodels and their effect on prediction quality. (a)
MAE for a series of GPR models with varied numbers of representative
points, M, and training points, N. We used M = 5000 in the present
work, limited by memory availability for N = 106. We include results for
M = 10 000 as far as practicable, and find that those do not lead to
substantial improvements in the region tested. (b) MAE for a series of
GPRmodels with varied regularisation terms. Too low values will cause
the model to overfit to data, whereas too high values (too high “ex-
pected error”) will diminish the quality of the prediction. The minimum
value is found around 10meV for most values ofN, and this setting was
used for all other GPR results shown in this work.
Experiments
GPR insights

Having identied synthetic atomic energies as a “machine-
learnable” and readily available target quantity (Fig. 3), we can
use these synthetic data to gain further insight into GPR
models. There are two important considerations when con-
structing sparse GPR models that we address here.

The rst aspect is the choice of the number of representative
points,M, that are used in the sparse GPR t. In a full GPR setting,
the tting coefficients, c, would be obtained at training time as

c = (KNN + S)−1y, (2)

where KNN is a matrix of kernel similarity values between any
two data locations, viz. (KNN)i,j = k(xi,xj), S is a regularisation
654 | Digital Discovery, 2023, 2, 651–662
term, and the vector y collects all labels in the training data-
set.30,48 In sparse GPR, as we use here, the analogous equation
for obtaining the tting coefficients reads:18

c = [KMM + KMNS
−1KNM]−1KMNS

−1y, (3)

where similarly dened kernel matrices, now of different sizes,
are used to quantify similarities between individual atomic
environments. The resulting coefficient vector, c, now has
length M (not N), and therefore the number of representative
points,M, is what effectively controls the computational cost at
runtime. For example, in a widely used GPR-based potential for
elemental silicon, the reference database includes hundreds of
thousands of atomic force components, whilst M is only
9000.60

In Fig. 4a, we show learning curves as in the previous section,
but now for different values of M in otherwise similar GPR
models. We nd that the change from M = 5000 to M = 10 000
© 2023 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
does not seem to lead to a major change any more, at least up to
the range investigated.

The second aspect that we explore for our GPR models is the
regularisation, controlled by the matrix S in eqn (2) and (3)
above. The regularisation applied during training can be inter-
preted as “expected error” of the data (in the context of inter-
atomic potentials, this might be due to accuracy and
convergence limits of the quantum-mechanical training data30).
Another interpretation is as the driving force applied during
training that affects the extent to with the nal t passes through
all the data points. For simplicity, we use a constant regularisa-
tion value for all atoms in the database; that is, S = sI, with s =

10 meV unless noted otherwise. We note in passing that more
adaptive approaches are possible, such as an individual regu-
larisation for each atom, as exemplied before in GAP tting.61

We tested the effect of varying the regularisation value, s,
over a wide range of values – the ease with which synthetic data
labels are accessible means that we can rapidly t many
candidate models, both in terms of s, and of the number of
training points, N. The results are shown in Fig. 4b.

Interestingly, the dependence on the regularisation becomes
less pronounced with larger N: the curves visibly atten as one
moves to larger datasets. At the same time, there is still
a difference between the N = 105 and N = 106 curves in Fig. 4b,
even though the learning curve itself had already “levelled off”
Fig. 5 Pre-training neural networks with synthetic atomistic data. (a)
energies from a large synthetic dataset,D1 (h{x1,~y1}), then use the optimis
(red) on quantum-mechanical (“QM”) total energies from a smaller datase
training on D0 (purple). (b) Parity plots for local (per-atom) energy pred
From left to right: the directly trained NN (which learns to assign local en
correlation), and finally the fine-tuned model. 1000 data points are draw
values are given in Table 1. (c) Effect of varying the number of pre-train
complete D0. Low numbers of pretraining environments have little effe
Increasing the number of pre-training environments beyond about 105

performance of the fine-tuned over the directly trained model. (d) Learni
during training. To obtain a model with the same predictive power, in th
trained NN, as compared to random initialisation. Note that we truncate t
for the fine-tuned NNs.

© 2023 The Author(s). Published by the Royal Society of Chemistry
(Fig. 3). We observe a atter curve for the larger dataset, and
a shi of the location of the minimum to higher s, although it
remains to be explored how signicant the latter is. GPR is
a fundamentally Bayesian technique, and so the behaviour seen
in Fig. 4b can be rationalised by noting that using more data
reduces the importance of any priors, in this case, of the exact
value of s. As larger and larger datasets become used for GPR-
based models, tuning of the regularisation is therefore ex-
pected to become less important.

In retrospect, both plots in Fig. 4 seem to conrm settings
that have been intuitively used in ML potential tting using the
GAP framework.30 We are curious whether large-scale experi-
ments on synthetic (proxy) data can, in the future, inform the
choice of regularisation and other hyperparameters in new and
more complex “real-world”GPRmodels for chemistry. We argue
that the speed at which these atomistic GPR energy models can
be t makes this proposition attractive (for reference, training
a model on 106 atomic environments using 5000 sparse points
took 61 minutes on a mid-range dual-CPU node).
Pre-training

We now move to the discussion of neural-network methodology
for atomistic ML. We hypothesised that our synthetic dataset
can be used to pre-train an atomistic NNmodel, which can then
be ne-tuned for predicting a related property. For this
Schematic of the experiment. We pre-train an NN (orange) on local
ed parameters as a starting point for training (“fine-tuning”) another NN
t, D0. We compare against the more conventional approach of directly
ictions, testing against D1, i.e., against the performance of C-GAP-17.
ergies in a different manner from GAP), the pre-trained NN (with tight
n at random from the corresponding cross-validation test set. RMSE
ing environments on final test-set accuracy when fine-tuned on the

ct on the final accuracy (∼ no change as compared to direct training).
(i.e., roughly the number of environments in D0) leads to increasing

ng curves that show the dependence on the number of QM labels seen
is case, ∼8× fewer QM labels are required when starting from a pre-
he plot at 100 QM labels for direct training, but extend it to as low as 25

Digital Discovery, 2023, 2, 651–662 | 655
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approach to be useful, it needs to lead to a better nal model
than training an NN directly without prior information. The
idea behind this experiment is sketched in Fig. 5a.

The task on which we have focused so far is to minimise the
atom-wise (squared) error of our model predictions as
compared to synthetic labels:

argmin
l

L

 X
i

j~3i � b3lðxiÞj2
!
; (4)

where ~3 are the ML atomic energies, as labelled by C-GAP-17 and
used here as synthetic training data, and 3̂ are our model's
predictions of this property. The loss function, L, is optimised
with respect to the set of model parameters, l.

The task that we ultimately want to perform is the prediction
of quantum-mechanical, per-cell energies, E: we have a dataset,
D0, consisting of pairs {X, EDFT}, where X is the set of descriptor
vectors, xi, together describing all atoms in a given unit cell, and
EDFT is the per-cell energy as calculated using DFT (in this proof-
of-concept, D0 is the subset of all 64-atom amorphous carbon
structures taken from the C-GAP-17 database28). In many
currently used NN models for chemistry, this task involves
predicting total, per-cell energies as a sum of local atomic
energies:14,62–64

Êc ¼
X
i˛c
b3lðxiÞ: (5)

The optimisation problem then becomes

argmin
l

L

 X
c˛D0

�����EDFT;c �
X
xi˛Xc

b3lðxiÞ
�����
2!

; (6)

where EDFT,c is the ground-truth value for cell c against which
the model parameters l are optimised.

We rst describe the control experiment: training
a randomly initialised NN model exclusively on per-structure
energies, EDFT,c. The resulting model (purple in Fig. 5a) learns
atomic energies that, when summed over a cell, predict per-cell
energies with an average test-set RMSE of 51.4 meV per atom.
This is, to within noise, the same as the original C-GAP-17
model (on its own training data!). Interestingly, the NN model
trained in this way learns to partition per-cell energies into
atomic contributions in a different manner to C-GAP-17: a parity
plot of these shows only a loose correlation (Fig. 5b), and the
RMSE is on the order of 750 meV per atom (Table 1). This non-
uniqueness of local energies from NN models seems to be in
keeping with previous ndings.65,66
Table 1 Errors for different NNmodels (cf. Fig. 5a and b), tested either
on atomic energies from the C-GAP-17 labelled synthetic dataset, or
on total energies from DFT

RMSE (meV per atom)

Directly trained Pre-trained Fine-tuned

Test on ~3 748.8 156.7 338.9
Test on EDFT 51.4 70.6 45.1

656 | Digital Discovery, 2023, 2, 651–662
Training a new NN solely on C-GAP-17 local energies for the
synthetic dataset unsurprisingly leads to a model (orange in
Fig. 5) that reproduces these quantities much more closely.
Starting from this pretrained model and its set of optimised
parameters, and subsequently performing the same per-cell
energy optimisation procedure of eqn (6), we obtain an NN
(red in Fig. 5) that performs signicantly better than direct
training from a random initialisation in predicting per-cell
energies, with a test-set RMSE of 45.1 meV per atom (Table 1).
The parity plots (Fig. 5b) show that the ne-tuned network,
having been originally guided by the C-GAP-17 local energies,
partitions local energies in a more similar manner to C-GAP-17
as compared to the direct training approach.

We perform preliminary tests for the role of dataset size in
this pre-training procedure. Fig. 5c suggests that D1 needs to be
at least as large as D0 (in terms of number of atomic environ-
ments) in order for the pre-training approach to improve upon
the accuracy from direct training on D0 (purple dashed line).
Note that we use hyperparameters that maximise accuracy when
training on the full D1 set (here, using 4 million atomic envi-
ronments) for all pre-training dataset sizes investigated; thus,
while Fig. 5c might seem to suggest that small amounts of pre-
training are detrimental, we assume that they actually have no
effect in practice. Fig. 5d shows that, when pre-training on the
full D1 set (red), ∼8× fewer QM labels are required to achieve
the same nal accuracy compared to using the direct approach
(purple). Thus we have shown initial evidence that learning to
predict synthetic atomic energies can be a useful and mean-
ingful “pre-training task” for chemistry.

The trends present in Fig. 5d suggest that on the order of
5000 QM data labels would close the gap between ne-tuned
and directly trained models. While this amount of data would
not be difficult to obtain with standard DFT approaches, there
are more accurate methods available (such as periodic random-
phase approximation or quantum Monte Carlo) where this
amount of data would be much more expensive to generate. We
therefore propose that these would be particularly interesting
use cases for synthetic pre-training, especially because this
technique provides the largest performance increase for low N.

We note that our pre-training can be recast as transfer
learning from a lower to a higher level of quantum-aware
labelling. Transfer learning for atomistic models has been
demonstrated by Smith et al. from DFT to coupled-cluster
quality,68 and by Shui et al. from empirical force elds to
DFT.47 We also note that Huang et al. have used atomic energies
to train NN-based atomistic models.69 In a wider perspective,
the pre-training of NN models is a well-documented approach
in the ML literature for various applications and domains,70–74

and it has very recently been described in the context of inter-
atomic potential models,47,75,76 property prediction with
synthetic pre-training data,77 and as a means to learn general-
purpose representations for atomistic structure.76
Embedding and visualisation

We nally illustrate the usefulness of synthetic atomistic data
for the visualisation of structural and chemical space. This is an
© 2023 The Author(s). Published by the Royal Society of Chemistry
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increasingly important task in ML for chemistry, leading to
what are commonly referred to as “structure maps”.78 Out of the
many recipes for creating such a map, a popular one entails (i)
selecting a metric to dene the (dis-) similarity, or distance,
between two atomic environments, (ii) calculating this metric
for each pair from a (representative) set of environments to
create a distance matrix, and (iii) embedding this matrix onto
a low-dimensional (2D or 3D) manifold. A popular instantiation
of this recipe is to use the SOAP kernel as a similarity metric,
and to use a non-linear dimensionality reduction technique,
such as UMAP or t-SNE, to embed the distance matrix.78,79 Such
SOAP-based maps have been reported for pristine and chemi-
cally functionalised forms of carbon37,80,81 and can help in
understanding local environments – e.g., in assigning the
chemical character of a given atom beyond the simplied “sp”/
“sp2”/“sp3” labels.80

Our present work explores the ability of an NN model to
generate analogous 2D maps of chemical structure. Outputs
from hidden layers of an atomistic NN can be used to visualise
Fig. 6 UMAP projections67 to visualise the configurational space of the sy
the compressed representations learned by an NN trained on synthetic C
the C-GAP-17 atomic energy relative to graphite, by coordination env
similarity to diamond (red) and graphite (blue). Some clustering exists in
within the space predominantly populated by sp3 carbon. At a local scale
to the representation learned by the NN: clear clustering occurs that ali
region, further sub-clustering exists, each of which has clear meaning as
atomic energy is much smoother, as is to be expected given the netwo

© 2023 The Author(s). Published by the Royal Society of Chemistry
structural space.82 We investigate such visualisation for a model
that has been trained on the synthetic dataset introduced above,
and draw comparison with earlier work on carbon.80 We adapt
the above recipe by using the Euclidean distance between NN
penultimate hidden-layer representations as a dissimilarity
metric, and embed the resulting matrix using UMAP,67 a general
approach not limited to chemistry.83

Fig. 6 shows the resulting structure maps. We use 30 000
atomic environments selected at random from the dataset pre-
sented above. The upper row (Fig. 6a–c) shows a SOAP-based
UMAP embedding, colour-coded by relevant properties,
whereas the lower row (Fig. 6d–f) shows a UMAP embedding
derived from hidden-layer representations of an NN model. The
former conrms observationsmade before on smaller datasets:80

distinct types of environments, both energetically and structur-
ally, can be discerned in the map by different colour coding. For
example, there is a small island of structures with high local
energy (yellow, Fig. 6a), and those correspond to the twofold-
nthetic dataset, as described by the original SOAP vectors (a–c), and by
-GAP-17 atomic energies (d–f). From left to right, we colour-code by
ironment category as determined by a 1.85 Å cut-off, and by SOAP
the original SOAP space, although many strictly sp2 atoms are found
, the gradient in atomic energy is very noisy in this space. Compare this
gns very tightly with carbon coordination environment. Within the sp2

highlighted by the SOAP similarity colour coding. The local gradient in
rk has been trained on this quantity.

Digital Discovery, 2023, 2, 651–662 | 657
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bonded “sp” environments, as seen from Fig. 6b. This observa-
tion is consistent with the energy distributions shown in Fig. 2a.

Whilst the SOAP map does therefore capture relevant
aspects, the clustering in the map produced from the learned
NN representations (Fig. 6d–f) is signicantly more intricate,
while also aligning more strongly with our understanding (or
the chemistry textbook picture) of carbon atom hybridisation.
Specically, compared to the embeddings produced from SOAP
descriptors, the NN space shows a much clearer separation of
sp2 vs. sp3 atoms (dark red vs. light blue in the central panels),
and it also shows sub-clustering within the sp2 region. We can
interpret this sub-clustering by colour-coding each datapoint
according to the corresponding environment's SOAP similarity
to both graphite (blue) and diamond (red). These results are
shown on the right-hand side of Fig. 6: some of the formally sp2

carbons are very similar to diamond-like environments, sug-
gesting that these are in fact dangling-bond sp3 environments,
further corroborated by their high local energies. This kind of
structure is not made as obvious in the SOAP map in Fig. 6c.

In Fig. 7, we show further evidence that the NN has learned
a different description of local structure from the original SOAP
Fig. 7 UMAP embeddings showing (a) clusters found in the NN-based
map of Fig. 6d–f, and (b) projection of these cluster labels into the
original SOAP space. Clear mixing occurs in the latter, showing that the
NN is learning a different representation than the SOAP features with
which it was trained, rather than some linear recombination of these.

658 | Digital Discovery, 2023, 2, 651–662
descriptors. We performed cluster analysis in the NN-based
structure map, using the BIRCH algorithm84 to separate the
data into 7 distinct clusters (colour-coded arbitrarily in Fig. 7a),
and then projected the resulting cluster labels into the space of
the original SOAP map (Fig. 7b). Doing so shows that atoms
contained within the same cluster in NN space are not neces-
sarily co-located in SOAP space: while the sp atoms remain
isolated in the SOAPmap (cf. Fig. 6b), the remaining clusters are
clearly heavily intermixed, with some (e.g., bright green) span-
ning most of the SOAP space. Hence, the mapping between
SOAP vector and NN representation is complex and highly non-
linear, such that the NN is truly learning a new representation.

We therefore argue that maps based on hidden layers of
atomistic NN models, trained on synthetic datasets as exem-
plied here, can capture aspects of both the structure and the
energetics of a given material. This is not merely a consequence
of the higher exibility of NNs – in fact, an analogue to the
SOAP-based maps shown herein would be the visualisation of
the latent space of an autoencoder model. Instead, we here take
the hidden layer following supervised learning, thereby auto-
matically incorporating information about the data labels in the
structure map (although the question how exactly this infor-
mation is learned is deliberately le to the network to optimise).
There is some similarity of this approach to principal covariates
regression85 which has been combined with kernel metrics for
use in atomistic ML.86 Here, however, the data labels can enter
into the model in nonlinear form, and also the embedding of
the structural information itself is more intricate. Where
applicable, our ndings are in line with a very recent study by
Shui et al., who demonstrated that pre-training can lead to more
meaningful embeddings for SchNet models compared to
random initialisation.47 We suggest that maps of similar type
could be explored for different systems and application prob-
lems in chemistry.

Discussion

Our study demonstrates that “synthetic” atomic energies, pre-
dicted at large scale by a machine-learning model, are them-
selves learnable and can be used to study the behaviour of
different atomistic ML techniques. In the present work, we have
compared the ability of GPR, NN, and DKL models to predict
properties of chemical environments in the large-data limit,
using atomic energies as a proxy for other quantities.

By means of numerical experiments, we showed that
network-based models are able to learn useful representations
from the original SOAP descriptors, and that these can lead to
improved accuracies compared to SOAP-GPR models if the
number of training data points is large. Whereas DKL can
substantially outperform stand-alone NNs in some applica-
tions,87 and has begun to be successfully applied to research
questions in chemistry,88,89 we have found that in the setting of
the present work (i.e., regression of large amounts of per-atom
energy data), DKL models were only slightly more accurate
than NNs whilst being signicantly more expensive when
making predictions. In comparison, SOAP-based GPR models,
while slower and less accurate in the large-data regime, show
© 2023 The Author(s). Published by the Royal Society of Chemistry
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better generalisation (and thus accuracies) for small amounts of
data. This nding is consistent with the marked success of
sparse-GPR-based atomistic ML models on datasets of (rela-
tively) modest size.30

In the present work, we have focused on learning ML atomic
energies. These values do not directly correspond to any
quantum-mechanical observable, and yet empirically they do
appear to correlate well with local topological disorder and
distortions,90 and they can be used to drive structural explora-
tion.91 Irrespective of their physical interpretation (or absence
thereof), we propose that ML atomic energies are a useful
regression target for NN models: the compressed representa-
tions of structure learned through this task are imbued with
deep, and to some extent interpretable, meaning (Fig. 6). The
fact that synthetic labels are quick to generate, and the networks
quick to train, suggests that this is a useful auxiliary or pre-
training task to create models with “knowledge” about a chem-
ical space. These network models could then be used to ne-
tune on much smaller datasets, using their existing and
general chemical knowledge to overcome the relative weakness
of NN models in the low-data regime. We have shown initial
evidence for this in Fig. 5, and further work is ongoing.

Appendix: Technical details

When training all NN models, we employed as means of regu-
larisation: early stopping (by measuring performance on a vali-
dation set), dropout, and L2 weight decay. To nd optimal
parameters for the number of hidden layers, layer width,
learning rate, batch size, dropout fraction, and weight decay
magnitude, we performed a random (Hammersley) search over
a broadly dened hyper-parameter space. We found that the
optimal learning rate in all instances was close to the commonly
used 3 × 10−4 for the Adam optimiser. 3 hidden layers, each
withz800 nodes, gave the most accurate models in the limit of
large data, while smaller models performed better for smaller
training sets, presumably because the model size is acting as
further regularisation to avoid extreme overtting. In all
instances, we found high dropout (p z 0.5) to be a more
effective regulariser than weight decay.

For the NN models trained on DFT per-cell energies, we
performed 10-fold cross validation, reporting error metrics as
averaged over the 10 folds, and ensuring that all atomic envi-
ronments for a given structure are placed in either the training,
test, or validation set to avoid data leakage. When using less
than the full dataset to train, we sampled N random structures
from the training set without replacement. The best model
trained directly on the full training set obtained errors on the
test and training set amounting to 51.4 and 18.1 meV per atom,
respectively, and for the ne-tuned models we obtained 45.1/
22.0 meV per atom on test/train data. We note that, despite
aggressive regularisation during training, this generalisation
gap is large – we attribute this to the small dataset size (1200
labels) used in the ne-tuning experiment. In comparison, the
corresponding generalisation gap for the N = 106 NN model in
Fig. 3 is much smaller, viz. 23.7/22.0 meV per atom for test/train
data, respectively.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Data availability

The dataset supporting the present work is provided at https://
github.com/jla-gardner/carbon-data and a copy has been
archived in Zenodo at https://doi.org/10.5281/zenodo.7704087.
Each trajectory is supplied as a standalone “extended” XYZ
le, with local energies provided as a per-atom quantity.
These les can be read and processed, for example, by the
Atomic Simulation Environment (ASE).38
Code availability

Python code, data, and Jupyter notebooks for reproducing the
ne-tuning experiments (Fig. 5) are openly available at https://
github.com/jla-gardner/synthetic-ne-tuning-experiments.
Code and data for the other experiments are at https://
github.com/jla-gardner/synthetic-data-experiments. Copies
have been archived in Zenodo and are available at https://
doi.org/10.5281/zenodo.7688032 and https://doi.org/10.5281/
zenodo.7688015, respectively.
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M. Ceriotti and G. Csányi, Gaussian Process Regression for
Materials and Molecules, Chem. Rev., 2021, 121, 10073–
10141.

31 R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler and
M. Parrinello, Graphite-diamond phase coexistence study
employing a neural-network mapping of the ab initio
potential energy surface, Phys. Rev. B: Condens. Matter
Mater. Phys., 2010, 81, 100103.

32 P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi and
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