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Machine learning can make a strong contribution to accelerating the discovery of transition metal

complexes (TMC). These compounds will play a key role in the development of new technologies for

which there is an urgent need, including the production of green hydrogen from renewable sources.

Despite the recent developments in machine learning for drug discovery and organic chemistry in

general, the application of these methods to TMCs remains challenged by their higher complexity and

the limited availability of large datasets. In this work, we report a representation for deep graph learning

on TMCs – the natural quantum graph (NatQG), which leverages the electronic structure data available

from natural bond orbital (NBO) analysis. This data was used to define both the topology and the

information expressed by the NatQG graphs. At the topology level, two different NatQG flavors were

developed: u-NatQG, with undirected edges, and d-NatQG, with edges directed along donor /

acceptor orbital interactions. At the information level, the node and edge attribute vectors of both

graphs contain NBO data, including natural charges and bond orders. The NatQG graphs were used to

develop graph neural networks (GNNs) for the prediction of the quantum properties underlying the

structure and reactivity of TMCs (e.g. HOMO–LUMO gap and polarizability). These models surpassed

baselines based on traditional descriptors and performed at a level similar to, or higher than, state-of-

the-art GNNs based on radial cutoffs. The results showed that the electronic structure information

encoded by the models has a stronger impact on its accuracy than the geometric information. With the

aim of benchmarking the GNNs, we also developed the transition metal quantum mechanics graph

dataset (tmQMg), which provides the geometries, properties, and NatQG graphs of 60k TMCs.
Introduction

Machine learning (ML) is revolutionizing chemistry in all its
diversity – from drug discovery1–4 to materials science5–15

through related areas including computational chemistry,16–33

organic synthesis,34–38 biochemistry,39,40 catalysis,41–50 and clean
energy.51,52 In this context, the deep learning of graph repre-
sentations53 is gaining momentum. Molecular graphs are highly
expressive, encoding not only the local environments repre-
sented by the atomic nodes but also their relationships, which
are represented by the bond edges.
ntre for Quantum Molecular Sciences,

rn, 0315 Oslo, Norway. E-mail: david.

f Oslo, P. O. Box 1053, Blindern, Oslo,

(ESI) available: Further information on
its outliers. Technical details of the
, and the linear tting of the atomic
The error metrics obtained with the
d to develop the HyDGL code, and the
dataset are also provided. See DOI:

633
A key advantage of molecular graphs is their direct connec-
tion to skeletal formulae (Fig. 1), which can be regarded as the
most universal language used by chemists. When combined
with graph neural networks (GNNs),54 the resulting models have
achieved state-of-the-art accuracy in the prediction of various
properties.55 Further, in the context of explainable AI,56–59 the
interpretation of the GNNs60–62 can refer to a skeletal formula,
providing interpretations that are immediately intuitive. GNNs
and related graph-based methods have also succeeded in other
challenging tasks, including the generation and inverse design
of molecular systems.63–65

Transition metal complexes (TMCs) are a diverse family of
compounds, including bioinorganic, Werner, and organome-
tallic complexes, with key applications in multiple elds
including catalysis66 (e.g. synthesis of ne chemicals), nano-
materials67 (e.g. electronic devices), medicinal chemistry68 (e.g.
anticancer drugs), and renewable energies69 (e.g. photosensi-
tizers). The development of accurate GNN models for the
discovery and design of new TMCs with optimal properties is
motivated by the strong societal impact of these applications. In
line with this, there is a growing interest in the development of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Examples of skeletal formulae and molecular graphs for organic (salicylic acid) and TMC (Zeise's salt) compounds. Graphs G1 and G3 are
connected, whereas G2 is disconnected. For the sake of clarity, H atoms were not included in the graphs.
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data-driven approaches to the study of TMCs and their
applications.70–79

For organic compounds, the derivation of molecular graphs
is straightforward (Fig. 1) and can be done from different
inputs, including geometries and line notations (e.g. SMILES80

and SELFIES81). In line with this, most GNN models have been
developed for, and tested on, organic molecules, oen in the
eld of drug discovery.3 In contrast, TMCs are more difficult to
express as graphs due to the metal d orbitals, which yield larger
valences and multi-center bonds. In this context, the repre-
sentation of a TMC can become ambiguous, with multiple
possible graphs of different topology. This may include
disconnected graphs limiting the applicability of GNNs. Fig. 1
illustrates this problem for the Zeise's salt, the rst historical
example of a metal–olen complex.82 Graph generation from
either line notations or geometries does not fully solve this
problem – the former either don't support or are not robust for
TMCs, and, from the latter, it is difficult to dene the atomic
connectivity. Nonetheless, geometric information is highly
valuable and it has been used successfully to inform several
graph representations with the aim of increasing the accuracy
of GNN models.83 In contrast, the use of electronic structure
information for the same purpose remains largely unex-
plored,84,85 despite its availability from geometry optimization
calculations and its low computational cost.

In this article, we introduce the natural quantum graph
representation (NatQG) for TMCs and its implementation into
© 2023 The Author(s). Published by the Royal Society of Chemistry
GNN models based on message-passing algorithms.86 These
models leverage the inductive bias provided by natural bond
orbital (NBO) theory,87 which transforms the quantum wave
function into a set of localized molecular orbitals (i.e. the NBOs)
corresponding to the electron pairs of a Lewis structure. In the
context of this theory, second-order perturbation analysis87

(SOPA) yields the nature and strength of the interactions
between pairs of NBO orbitals based on their energy difference
and overlap. The NBO and SOPA data were used to dene the
topology and inform the nodes and edges of undirected (u-
NatQG) and directed (d-NatQG) molecular graphs for TMCs
(Fig. 2 and 3, respectively), which were used in the prediction of
their quantum properties with GNNs.

With the aim of benchmarking the GNNs, we developed the
transition metal quantum mechanics graph (tmQMg) dataset,
which provides the NatQG graphs of 60k TMCs together with
their DFT geometries and properties. For most properties, the
accuracy of the NatQG GNNs surpassed that of other models,
including graphs that were either informed with classical
descriptors or built from cutoff radius. This includes the
HOMO–LUMO gap of the TMCs, which underlies several TMC
properties of high interest, including conductivity, photo-
chemistry, and thermal stability. The present work also showed
how the electronic structure data from a single-point calcula-
tion of the energy can be leveraged in machine learning models
to predict expensive quantum properties requiring the
Digital Discovery, 2023, 2, 618–633 | 619
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Fig. 2 Derivation of the Zeise's salt u-NatQG graph. Abbreviations used for the NBO orbitals: LP = lone pair, LV = lone vacancy, BD = bonding,
BD* = antibonding. LBO = natural bond order threshold.
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calculation of energy derivatives, including the polarizability
and the thermodynamic corrections.
Natural quantum graphs

The Zeise's salt structure is known and yet its skeletal formula
can be drawn in two different ways differing on how the haptic
Pt–ethylene bond is represented (Fig. 2a); whereas one formula
may mostly represent the Pt ) ethylene donation, with both C
atoms bound to Pt, the other would account for Pt / ethylene
backdonation, with the metal interacting with the p-bond of
ethylene. These two formulae can be regarded as resonance
forms yielding graphs of different topology. This issue can be
solved by means of a natural bond orbital (NBO) calculation,87

which yields a Lewis structure (Fig. 2b) maximizing the electron
occupancies of the NBO orbitals (Fig. 2c). With the NBO data,
a single graph can be dened for the Zeise's salt, including its
topology and the attribution of its nodes and edges with rich
electronic structure information. The NBOs can be computed
with several quantum chemistry programs and they have a low
computational cost, requiring only a single-point calculation of
the energy. E.g., at the DFT level, the NBOs of the Zeise's salt can
be computed on a laptop in a few seconds.

In this work, we used NBOs and their donor–acceptor
interactions to derive two types of natural quantum graphs
(NatQG) differing in the nature of their edges, which are either
undirected (u-NatQG) or directed (d-NatQG). There is no node
redundancy in either graph (i.e. each node represents a single
atom of a TMC), and both contain geometric information (i.e.
620 | Digital Discovery, 2023, 2, 618–633
bond distances). For generating the graphs, we developed the
Hylleraas deep graph learning (HyDGL) program, with code
openly available at https://github.com/hkneiding/HyDGL.

In this study, both the geometries and the NBOs were
computed with DFT methods. However, these properties can
also be obtained at lower levels of theory; e.g. NBOs can be
calculated with DFTB methods,88 reducing the computational
cost by two orders of magnitude. It should be noted that
changing the level of theory at which these properties are ob-
tained may affect the accuracy of the ML models in which the u-
NatQG and d-NatQG representations are leveraged.
Undirected graphs

Fig. 2 illustrates the derivation of u-NatQG for the Zeise's salt.
First, the NBO orbitals are used to dene the topology of the
graph. The one-center lone electron pairs (LP) and vacancies
(LV) NBOs are both expressed as atom nodes of the graph
(Fig. 2d). Next, the two-center bonding (BD) NBOs are added to
the graph as bond edges, and their atoms are also added as
nodes if they do not have LP and LV NBOs (e.g., in the Zeise's
salt, the C atoms of the ethylene ligand; Fig. 2e).

The graph topology resulting from the NBOs has a major
drawback – it can be disconnected (Fig. 2e) and, therefore, in
a GNN, message passing cannot span the whole graph regard-
less of the model depth. The disconnectedness arises from the
Lewis structure generated in the NBO calculation, which can
exclude some of the metal–ligand bonds yielding isolated
fragments (e.g. ethylene in the Zeise's salt). This problem was
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/hkneiding/HyDGL
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2dd00129b


Fig. 3 Derivation of the Zeise's salt d-NatQG graph. Abbreviations used for the NBO orbitals: LP = lone pair, LV = lone vacancy, BD = bonding,
BD* = antibonding.
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solved by dening a natural bond order threshold (LBO). Aer
applying the LBO $ 0.05 bonding condition to all possible
metal–atom pairs, the Zeise's salt u-NatQG graph became fully
connected (Fig. 2f). This LBO value was set aer inspecting
graph connectedness over the 60k TMCs included in the
tmQMg dataset (vide infra).

Aer dening the topology, the u-NatQG graphs are
informed with attribute vectors expressing the NBO electronic
structure (Fig. 2g). At the node level, these attributes include the
natural atomic charge, valence index, and electron congura-
tion, whereas the edges are attributed with the natural bond
order. In addition, both the nodes and the edges encode
features of the LP/LV and BD/BD* NBO orbitals, respectively,
including orbital type, number, energy, electron occupancy, and
symmetry (i.e. spd hybridization). Table 1 provides a systematic
list and further details of the u-NatQG attributes.

In principle, the combination of NBO- and LBO-based edges
(eNBO and eL, respectively) for enforcing the connectedness of u-
NatQG (Fig. 2f) would yield heterogeneous graphs with attribute
vectors of different dimensionality, challenging their exploita-
tion in GNN models. This issue is caused by the different
amount of data available in each case – whereas all orbital
parameters are available to inform the eNBO edges, yielding
a total of eighteen dimensions (Table 1), for the eL edges only
two dimensions can be dened (the bond order and distance).
© 2023 The Author(s). Published by the Royal Society of Chemistry
This problem was solved by informing eL with the same eigh-
teen dimensions of eNBO, using the graph-averaged values to
assign the unknown orbital parameters. It should be noted that,
in practice, the amount of eNBO edges is ca. ten times larger than
that of eL edges (vide infra).
Directed graphs

An alternative way of expressing the NBO data as a molecular
graph is by using the SOPA analysis.87 This part of the NBO
calculation yields the interactions between the donor (e.g. LP)
and acceptor (e.g. BD*) NBOs and, in addition to identifying the
interacting orbitals, it provides the stabilization energy, E(2),
which measures the strength of the interactions. The E(2) value
is proportional to the square of the perturbation (orbital mixing,
F) of the interacting NBOs and inversely proportional to the
energy difference between them (DE); i.e.

Eð2Þ ¼ �2F 2

DE

The SOPA data was used to build the directed d-NatQG
graphs, in which the interacting node pairs (ni, nj) are connected
with directed ni / nj edges accounting for ni-to-nj donor–
acceptor interactions.
Digital Discovery, 2023, 2, 618–633 | 621
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Table 1 Node and edge attributes of the u-NatQG graphs

Attribute Description

Nodes
Z Atomic number
NH Number of H atoms attached to the node
qNat Natural atomic chargea

VNat Natural valence indexa,b

NVEl Number of s, p, and d valence electrons; NVEl = (Ns, Np, Nd)
c

NLP Number of lone pair (LP) NBOsd

ELP Energy of the highest-lying LP
OLP Electron occupancy of the highest-lying LP
SLP s, p, and d orbital symmetries of the highest-lying LP; SLP = (sLP, pLP, dLP)

e

DELP Energy gap between highest- and lowest-lying LP
NLV Number of lone vacancy (LV) NBOs
ELV Energy of the lowest-lying LV
OLV Electron occupancy of the lowest-lying LV
SLV s, p, and d orbital symmetries of the lowest-lying LV; SLV = (sLV, pLV, dLV)

e

DELV Energy gap between lowest- and highest-lying LV

Edges
BO Natural bond orderb

d Bond distance
TBN Bonding NBO (BN) type; i.e. 2-center or 3-center (one-hot encoded)
NBN Number of bonding NBOsf

BNE Energy of the highest-lying BNg

OBN Electron occupancy of the highest-lying BN
SBN s, p, and d orbital symmetries of the highest-lying BN; SBN = (sBN, pBN, dBN)

e,g

DEBN Energy gap between lowest- and highest-lying BNh

NBN* Number of non- and anti-bonding NBOs (BN*)i

EBN* Energy of the lowest-lying BN*g

OBN* Electron occupancy of the lowest-lying BN*
SBN* s, p, and d orbital symmetries of the lowest-lying BN*; SBN* = (sBN*, pBN*, dBN*)

e,g

DEBN* Energy gap between lowest- and highest-lying BN*h

a Atomic charges and valences from NBO analysis. b Wiberg-based. c In the natural electron conguration. d This and all other LP and LV attributes
are set to zero when the node is not associated to these NBO types, and the same approach is applied to the energy gap when there is a single LP or
LV. e Percentage of orbital character in NAO basis (hybridization). f Either BD or three-center (3C) NBOs. g This and all other BN and BN* attributes
are set to the graph-average values for the edges build with the LBO $ 0.05 condition. h Restricted to NBOs of the same type. i Counting BD*, 3Cn,
and 3C* orbitals.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 7
/2

1/
20

25
 3

:3
2:

39
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Fig. 3 shows the derivation of the d-NatQG graph of the
Zeise's salt. For the bonding between platinum and ethylene,
the SOPA yields a BDC]C / LVPt interaction for the p /

d donation from the ligand to the metal center, and an LPPt /
BD*C]C interaction for the d / p* backdonation from the
metal center to the ligand. In d-NatQG, these interactions are
expressed with a directed graph topology including Pt % C
edges, in which the relationship expressed in one direction, Pt
) C (BD-to-LV donation), is different from that expressed in the
opposite direction, Pt/ C (LP-to-BD* backdonation). When an
atom pair is involved inmultiple donor–acceptor interactions in
either one direction or in both, d-NatQG accounts only for the
strongest (i.e. the one yielding the largest E(2) value). In order to
avoid a redundant excess of edges, the latter are only added to
the graph if they represent an interaction with E(2) >
1 kcal mol−1.

Once the d-NatQG graph is built, it is informed with elec-
tronic structure information. The node attribute vectors contain
the same NBO data used in the u-NatQG graphs. In contrast, the
edge attributes are mostly extracted from the SOPA, including
the orbital type, energy, occupancy, and symmetry of the donor
and acceptor NBOs. Further, the bond order and the maximum
622 | Digital Discovery, 2023, 2, 618–633
and average values of E(2) are included. Table 2 provides
a systematic list and further details of the d-NatQG attributes.

In contrast with u-NatQG, the connectedness of the d-NatQG
is guaranteed by the SOPA analysis, without requiring the
denition of a threshold. However, from a skeletal formula
perspective, d-NatQG is more exotic, with missing edges in
positions where there are covalent bonds (e.g., in the Zeise's
salt, between the two carbon atoms of the ethylene ligand). In
terms of explainability, this may make the d-NatQG graphs less
intuitive though it should be also noted that they express, with
directionality, the fundamental interactions commonly used by
chemists to conceptualize the structure and bonding of TMCs,
including p-backdonation.

In addition to the electronic structure attributes of Tables 1
and 2, both the u-NatQG and d-NatQG graphs include infor-
mation on chemical composition and geometry, as well as
whole-graph attributes. Chemical composition is encoded by
including the atomic number in the node attribute vectors. The
graphs also include hydrogen atoms explicitly, as nodes, which
allows for including features that are relevant in the chemistry
of TMCs; e.g. hydride complexes and agostic interactions. For
implicit representations, the number of hydrogen atoms
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Node and edge attributes of the d-NatQG graphs

Attribute Description

Nodes
Z, NH, qNat, VNat, NVEl As described for u-NatQG in Table 1

Edges
BO Natural bond order
d Bond distance
E(2)MAX SOPA stabilization energy for the strongest donor–acceptor interaction
E(2)Avg Average of the SOPA stabilization energiesa

TD Donor NBO type;b i.e. LP, BD, or 3C (one-hot encoded)
ED Energy of the donor NBO
OD Electron occupation of the donor NBO
SD s, p, and d orbital symmetry of the donor NBO; DSym = (Ds, Dp, Dd)
DED Energy gap between lowest- and highest-lying donor NBOc

TA Acceptor NBO type;b i.e. LV, BD*, 3Cn, or 3C* (one-hot encoded)
EA Energy of the acceptor NBO
OA Electron occupation of the acceptor NBO
SA s, p, and d orbital symmetry of the acceptor NBO; ASym = (As, Ap, Ad)
DEA Energy gap between lowest- and highest-lying acceptor NBOc

a E(2)MAX when there is a single interaction. b This and all other properties are for the NBOs yielding the strongest donor–acceptor interaction for
the node pair connected by the edge (i.e. largest E(2) value in the SOPA). c Restricted to NBOs of the same type.
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attached to each node is also available. At the geometric level,
the edges were informed with the interatomic bond distance.
Further, a whole-graph attribute vector provides the charge of
the TMC, its molecular mass, and the total number of atoms
and electrons. In TMCs containing three-center bonding (3C),
non-bonding (3Cn), and antibonding (3C*) NBOs, the data of
these orbitals was also used to dene the topology and attri-
butes of the graphs. When BD and 3C orbitals overlapped at
a given edge, the data of the latter was used to build the graph.
Neither of the two graph representations contain information
about the core and Rydberg NBOs.

In both u-NatQG and d-NatQG, the denition of the NBOs
from a localized Lewis structure can partially break the
symmetry of the system (e.g. trans-Cl bonds become non-
equivalent in Fig. 2b), which may have an impact on the
predictions made by the GNN models (vide infra). Further, the
NatQG graphs encode the NBO orbitals implicitly, embedding
their dening parameters into the node and edge attribute
vectors of a molecular graph that, especially in the case of u-
NatQG, can be directly related to the skeletal formula of the
represented TMC. An alternative approach, recently explored by
Gomes et al.,89 consists in representing LP and BD orbitals with
additional explicit nodes. The NatQG graphs may also be used
to develop a string representation with rich electronic structure
information, similar to the representation developed by Dietz.90

Further, these graphs could also be useful in the context of the
zero-order bond approach developed by Clark.91
Transition metal quantum mechanics
graph dataset

In order to train and validate the deep learning models of this
work, we computed the transition metal quantum mechanics
© 2023 The Author(s). Published by the Royal Society of Chemistry
graph dataset (tmQMg). Fig. 4 gives an overview on the deriva-
tion and contents of this dataset. tmQMg provides the quantum
geometries and properties of 60 799 transition metal complexes
(TMCs), including all thirty elements from the 3d, 4d, and 5d
series. In addition to this data, tmQMg provides the u- and d-
NatQG graphs (Fig. 2 and 3) of all complexes, including the
topology and attribute vectors derived from the NBO and SOPA
data (Tables 1 and 2). A baseline graph informed with generic
atomic and bond properties (vide infra) is also provided for each
TMC.

The TMCs of the tmQMg dataset were extracted from the
Cambridge Structural Database (CSD; 2020.0 release) by
applying a series of lters on structure and composition, which
yielded 3D-resolved non-polymeric and non-disordered struc-
tures with a single metal center, containing C and H, and also
allowing for B, Si, N, P, As, O, S, Se, F, Cl, Br, and I. Co-
crystallizing molecules (e.g. solvent) were excluded, and lters
on charge (q) and the number of electrons (Ne) and atoms
(Natoms) were also applied. The TMCs included in tmQMg have q
˛ {+1, 0, −1}, even Ne, and Natoms # 85.

Fig. 5 shows a random selection of ten different TMCs, one
for each transition metal group. From a composition perspec-
tive, and in addition to the metals, these complexes contain
nine different elements (C, H, O, S, N, P, F, Cl, and Br), whereas,
from a structural perspective, they contain nineteen different
ligands, including both monodentate and chelating ligands,
binding to the metal center in eight coordination modes
(monodentate, (k, h2), h5, k5, (k2, h2), k2, h6, and k3) and three
coordination numbers (4, 6, and 8). The diversity of this small
selection, which represents only 0.016% of the overall dataset,
reects the complexity of the chemical space within tmQMg.

For all TMCs in tmQMg, the quantum data was obtained
from three different DFT calculations carried out for the closed-
shell singlet state in this order:
Digital Discovery, 2023, 2, 618–633 | 623
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Fig. 4 Derivation and content of the tmQMg dataset.
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(1) Full geometry optimization at the PBE-D3BJ/def2-SVP
level.92–94

(2) Calculation of frequencies and thermochemistry at the
PBE-D3BJ/def2-SVP level.92–94

(3) Single-point energy and NBO calculation at the PBE0-
D3BJ/def2-TZVP level.93–95

When any of these three calculations failed, the system was
excluded from the dataset. The overall success rate of the
calculations was 88.7%. Calculation 1 yielded fully optimized
energy minima. Complexes with the same stoichiometry and
energy (e.g. duplicates and enantiomers) were excluded. In
calculation 2, only geometries giving all-real frequencies were
included in the dataset. In addition to the geometries, the
following quantum properties were extracted from the output of
these two calculations: the double-z potential, zero-point,
internal, entropy, enthalpy, and free energies, heat capacity at
Fig. 5 Randomly selected geometries from groups 3 to 7 (top, left-to-r
metal centers of the complexes are Sc, Zr, V, W, Mn, Ru, Ir, Pd, Cu, and C
blue (N), orange (P), light green (F), dark green (Cl), brown (Br). Hydroge

624 | Digital Discovery, 2023, 2, 618–633
constant volume, isotropic polarizability, and lowest and high-
est harmonic vibrational frequencies. Calculation 3 yielded the
NBO parameters used to build and attribute the u- and d-NatQG
representations (Fig. 2 and 3, and Tables 1 and 2), as well as the
dipole moment, the triple-z potential and dispersion energies,
the HOMO and LUMO energies, the HOMO–LUMO gap, and the
natural charge of themetal center. All these quantum properties
are included in the tmQMg dataset. The ESI† provides statistics
on tmQMg, including molecular charge, size, and composition,
as well as pair plots showing the degree of correlation between
the different quantum properties (Fig. S1–S3†).

Besides the optimization of the GNNmodels reported in this
study (vide infra), the NBO data available from tmQMg was also
used to develop the NatQG representations. Whereas the
connectedness of the d-NatQG representation (Fig. 3) was
guaranteed by the SOPA-based denition of its topology, u-
ight) and 8 to 12 (bottom, left-to-right). Following the same order, the
d. The color code of the non-metal atoms is: grey (C), red (O), gold (S),
n atoms were removed for clarity.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Number of disconnected u-NatQG graphs vs. the Wiberg (orange) and NLMO (blue) natural bond order thresholds (LBO).
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NatQG (Fig. 2) required a natural bond order threshold (LBO) to
dene a connected topology around the metal center. Fig. 6
shows how the number of disconnected graphs decreases with
the LBO threshold for the whole tmQMg dataset. The Wiberg
LBO reduced disconnectedness more rapidly than the NLMO;
e.g. at LBO = 0.20, there were either 11 034 (Wiberg) or 19 493
(NLMO) disconnected graphs. For this work, we used a Wiberg
LBO $ 0.05 threshold to dene the u-NatQG topology, with
which only 3.9% of the graphs (2370 TMCs) remained discon-
nected. Many of these disconnected graphs represent group 11
and 12 TMCs with weakly bound molecular fragments that,
from a covalent bond perspective, may not be considered metal
ligands. LBO can thus be used as a parameter modulating the
connectedness of the u-NatQG graphs depending on the
strength of the metal–ligand bonds. In the disconnected
graphs, the metal-free fragments can be easily identied as
isolated subgraphs and be further processed as needed (by e.g.
connecting or excluding them). With LBO $ 0.05, the average
ratio over the entire dataset between NBO-based (eNBO) andLBO-
based (eL) edges in the u-NatQG graphs was eNBO/eL = 10.4.

The metal complexes included in tmQMg exist in the CSD
and, therefore, they are accessible through synthetic routes
described in the literature. This feature may enhance the reli-
ability of generative models trained with tmQMg, though it may
also introduce biases (e.g. TMC tendency to form crystals of the
quality required for structure determination by diffraction
techniques). Further, the tmQMg dataset can be used to
benchmark deep graph learning models for TMCs, including
convolutional embedding.96 Another potential application of
tmQMg is the transformation of the NatQG graphs into vector
and string representations; e.g. autocorrelations97 and SELF-
IES,81 respectively.

The previous version of the dataset, tmQMg,71 did not
provide the graphs and most of its quantum properties,
including the geometry, were calculated with the semiempirical
GFN2-xTB method. The update provided by tmQMg adds the
quantum geometries and properties computed at the DFT PBE-
D3BJ/def2-SVP//PBE0-D3BJ/def2-TZVP level. The two datasets
© 2023 The Author(s). Published by the Royal Society of Chemistry
can thus be combined to train D-ML98 models predicting xTB-to-
DFT corrections. The tmQMg data is openly available at https://
github.com/hkneiding/tmqmg.
Natural quantum graph neural
networks

The u- and d-NatQG representations (Fig. 2 and 3) were used to
predict quantum properties, including the HOMO–LUMO gap,
polarizability, and dipole moment, by adapting the architec-
tures of two different GNN models, both originally developed
for applications to chemistry: (1) the message passing neural
network (MPNN) of Gilmer and co-workers,86 and (2) the
multiplex molecular graph neural network (MXMNet) of Xie and
co-workers.99 A random 80 : 10 : 10 split of the tmQMg dataset
was used for training, validation, and testing, respectively,
including only connected graphs. The model hyperparameters,
including the number of message passing iterations and the
dimensionality of the embeddings, were optimized by
combining a number of possible values. Aer considering
parametric and non-parametric methods on a per-metal basis
for six different quantum properties (i.e. HOMO–LUMO gap,
polarizability, dipole moment, metal charge, HOMO energy,
and LUMO energy), 2390 TMCs (3.9% of tmQMg) were excluded
as outliers using the isolation forest algorithm.100 The ESI†
provides further details on both the hyperparameters and the
outlier detection methods.

For the MPNNmodels, we used the gated graph avor, which
includes a gated recurrent unit (GRU) to mitigate over-
smoothing in message passing.86 Fig. 7 shows the MPNN
architecture used in this study, which, aer embedding the
node and edge attributes of the NatQG graphs, applies the GRU,
and, in the readout layer, uses the set2set attention mechanism
for pooling. We also experimented with the addition of
a concatenation operation augmenting the set2set output with
the whole-graph attribute vector before passing the nal
embedding to the prediction layer (MPNN4G model).
Digital Discovery, 2023, 2, 618–633 | 625
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Fig. 7 The MPNN architecture operating over the node (n), edge (e), and graph (G) attribute vectors of the u- and d-NatQG graphs (Fig. 2 and 3).
4 = concatenation.
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The MXMNet architecture encodes molecules as a multiplex
graph including local and global representations in two sepa-
rated layers. The local layer accounts mainly for covalent
interactions and includes geometric information in the edges.
In contrast, the global layer represents non-covalent interac-
tions by connecting the atomic nodes within a cutoff distance of
10 Å. Besides standard message passing within each layer,
a cross-layer mapping is used to exchange information between
the two layers. Adding to the base implementation of Xie,99 in
which the graphs were built and informed with a molecular
mechanics force eld, we developed an MXMNet model in
which the NatQG graphs were used as the local layer.

The performance of the NatQG-based MPNN and MXMNet
models on the test dataset was assessed using the metrics
collected in Table 3 and the correlation plots shown in Fig. 8. In
the prediction of the HOMO–LUMO gap, the u-NatQG MPNN
achieved the highest accuracy with a MAE of 6.02 mHa and r2 =
0.910. This accuracy, in the milli-Hartree scale, appears to be
remarkable given the complexity and diversity of the tmQMg
dataset. The HOMO–LUMO gap is a key quantum property of
TMCs related to stability and conductivity, which both have
Table 3 Mean absolute error (MAE) and r2 score of the GNN models fo
bohr3), and dipolemoment (in D) in the test dataset. The GNN architectur
and 3), and graphs derived from a cutoff radius (CRG). The base MXMNe

Architecture Graph

HOMO–LUMO gap

MAE r2

MPNN u-NatQG 6.02 0.910
d-NatQG 7.22 0.873

MPNN4G u-NatQG 6.04 0.910
d-NatQG 7.19 0.877

MXMNet Base 9.36 0.778
u-NatQG 8.22 0.800
d-NatQG 9.07 0.795

SchNet CRG 12.6 0.693
EdgeUpdate CRG 10.2 0.785
DimeNet++ CRG 10.3 0.789
ALIGNN CRG 7.72 0.859

626 | Digital Discovery, 2023, 2, 618–633
a strong impact on applications like catalysis and photovoltaic
materials. The performance of the MXMNet models was poorer
though they gave an interesting result; i.e. the u-NatQG and d-
NatQG implementations achieved higher accuracies than the
original base model based on molecular mechanics, showing
the value of using electronic structure analysis data (here NBO)
to dene the topology and attributes of the graph.

In contrast with the HOMO–LUMO gap, MXMNet made
more accurate predictions for the polarizability and, based on
the u-NatQG graph, yielded the lowest MAE of all models tested,
with a value of 3.76 bohr3 (r2 = 0.997). With the best MPNN
model, this MAE was larger (4.94 bohr3), though the r2 score
remained high (0.995) due to the wide range and spread of the
polarizability in the tmQMg dataset, compared to other popular
datasets containing smaller organic molecules (e.g. QM9 101).
Regarding the dipole moment, both models yielded MAEs
within the range of [0.819–1.019] D. An interesting result with
MXMNet is that the base and the NatQG models gave very
similar MAEs, with the latter being slightly smaller. This
suggests that the partial loss of symmetry that may occur in
some systems upon localizing the NBOs does not affect to
r the prediction of the HOMO–LUMO gap (in mHa), polarizability (in
es were based on different graphs, including the u- and d-NatQG (Fig. 2
t model refers to the original implementation of Xie99

Polarizability Dipole moment

MAE r2 MAE r2

5.00 0.995 0.819 0.879
5.17 0.993 1.019 0.835
4.94 0.995 0.895 0.858
4.96 0.994 0.981 0.845
4.83 0.994 0.943 0.805
3.76 0.997 0.849 0.850
3.98 0.996 0.838 0.863
6.81 0.991 1.45 0.729
5.67 0.993 1.13 0.696
5.37 0.994 1.28 0.759
5.43 0.993 0.705 0.900

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Correlation plots between the true values (i.e. DFT-computed) and the values predicted by the NatQG-based MPNN models.
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View Article Online
a large extent the prediction of the dipole moment. Symmetry
loss does not seem to have a strong impact on the MPNN
models either, which yielded the second lowest MAE for the
dipole moment (0.819 D).

GNN models based on cutoff radius graphs (CRG) derived
from the atomic coordinates of the tmQMg dataset were also
considered. In particular, the performance of the SchNet,102

SchNet with edge updates (EdgeUpdate),103 DimeNet++,104 and
ALIGNN105 GNNs was assessed and compared to that of the
© 2023 The Author(s). Published by the Royal Society of Chemistry
MPNN and MXMNet. The advanced features of these models
include continuous-lter convolutions (SchNet and Edge-
Update), directional message passing with spherical harmonics
(DimeNet++), and line graphs (ALIGNN). For all these four
models, the CRG graphs were built with a topology based on
a cutoff radius, informing the nodes with the atomic number
and the edges with the interatomic distances. ALIGNN uses
additional node attributes (e.g. group number and atomic
volume) and geometric information (i.e. bond angles), which is
Digital Discovery, 2023, 2, 618–633 | 627
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also leveraged in DimeNet++. From the perspective of explain-
ability, and in contrast with NatQG, these models are more
difficult to relate to the chemical intuition around TMCs
because the topology of the CRG graphs differs signicantly
from that of the skeletal formulae, and their attributes do not
refer directly to the electronic structure descriptors used to
rationalize the properties of TMCs. The metrics of Table 3
showed that, in general, the NatQG-based GNNs outperformed
the CRG models with the exception of the dipole moment, for
which ALIGNN gave the lowest MAE and largest r2 (0.705 D and
0.900, respectively).

The performance of the GNN models was also benchmarked
against a baseline. The results obtained with the NatQG MPNN
models, which were among the most accurate (Table 3), were
compared to those obtained upon replacing all NBO data in the
nodes and edges by generic properties. The (Z, T, S, c) vector of
properties, where Z = atomic number, T = valence (node
degree), S = covalent radius, and c = Pauling electronegativity,
was used to attribute the nodes. These properties have been
previously used to compute autocorrelation functions for
TMCs.97 The edges were attributed with the (BO, d) vector, where
BO = bond order and d = bond distance. Table 4 and Fig. 9
show the results obtained with this baseline representation,
together with those of the u-NatQG and d-NatQG graphs. In
addition to the HOMO–LUMO gap, polarizability, and dipole
moment, the following quantum properties were also predicted:
heat capacity, largest vibrational frequency, energies (HOMO,
LUMO, electronic, dispersion, zero-point, enthalpy, entropy,
and Gibbs), and thermodynamic correction (i.e. the difference
between the Gibbs and potential energies). The latter correc-
tion, which is predicted with high accuracy (MAE = 1.06 mHa
with u-NatQG), is relevant to the eld of computational catalysis
with TMCs, where it is oen used to rene the energies.

For all properties collected in Table 4, the NatQG MPNN
models surpassed the accuracy of the baseline, showing the
Table 4 MAE and r2 score for the test dataset using the MPNN4G mo
including only generic properties (i.e. Z, T, S, c, BO, and d). The units are m
the dipole moment, bohr3 for the polarizability, and cm−1 for the largest

Property

Baseline

MAE r2

HOMO–LUMO gap 8.33 0.835
Polarizability 5.87 0.993
Dipole moment 1.71 0.537
HOMO energy 13.1 0.734
LUMO energy 13.0 0.722
Electronic energya 18.8 1.000
Dispersion energya 1.72 0.993
Zero-point energya 0.50 1.000
Enthalpy energya 16.8 1.000
Heat capacityb 0.25 1.000
Entropy energy 2.34 0.994
Gibbs energya 19.7 1.000
Thermodynamic correctionsc 1.36 1.000
Largest vibrational freq. 4.53 0.997

a Using linearly tted atomic energy offsets. b At constant volume (i.e. Cv)

628 | Digital Discovery, 2023, 2, 618–633
value of using the NBO data for attributing the graph nodes and
edges. The only exception was the prediction of the largest
vibrational frequency, for which the baseline was more accurate
than d-NatQG but less accurate than u-NatQG. For some prop-
erties, including the zero-point and entropy energies, the
baseline performed at a level similar to NatQG.

Interestingly, for the HOMO–LUMO gap, we observed the
following changes in the performance of the model:

MAE ¼ 8:96ðbaseline� dÞ
�����!DMAE

G
8:33ðbaselineÞ

�����!DMAE
ES

6:04ðu-NatQGÞ mHa

where baseline – d denotes the baseline representation without
the bond distances. This progression reects the signicant
increase in accuracy upon adding geometric and electronic
structure information (G and ES, respectively), with the latter
having a stronger impact, as shown by DMAE

G = −0.63 versus
DMAE
ES = −2.29 mHa. A similar progression was observed for the

polarizability and the dipole moment:

MAE ¼ 6:43ðbaseline� dÞ
�����!DMAE

G
5:87ðbaselineÞ

�����!DMAE
ES

4:94ðu-NatQGÞ bohr3

MAE ¼ 1:98ðbaseline� dÞ
�����!DMAE

G
1:71ðbaselineÞ

�����!DMAE
ES

0:895ðu-NatQGÞ D

again with a stronger contribution of the electronic structure
information, as shown by DMAE

G = −0.56 versus DMAE
ES = −0.93

bohr3 for the polarizability, and DMAE
G = −0.27 versus DMAE

ES =

−0.82 D for the dipole moment.
Another factor contributing to these observations can be the

smaller difference between the input and the embedding
del (Fig. 7) based on the NatQG graphs and a baseline representation
Ha for all energies, cal mol−1 K for the heat capacity and entropy,D for
vibrational frequency

u-NatQG d-NatQG

MAE r2 MAE r2

6.04 0.910 7.19 0.877
4.94 0.995 4.96 0.994
0.895 0.858 0.981 0.845
3.21 0.991 3.79 0.987
3.51 0.988 4.05 0.984
6.61 1.000 8.01 1.000
1.45 0.995 1.44 0.995
0.33 1.000 0.40 1.000
6.39 1.000 7.64 1.000
0.18 1.000 0.22 1.000
1.95 0.996 2.07 0.995
6.38 1.000 7.37 1.000
1.06 1.000 1.23 1.000
3.98 0.990 7.52 0.990

. c Difference between the Gibbs and potential energies.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 MAE values for the test dataset using the MPNN4Gmodel based on the baseline, u-NatQG, and d-NatQG graphs. The units are mHa for
all properties except the entropy and the heat capacity at constant volume (Cv), which are in cal mol−1 K, all in the same y-axis scale. E = energy,
ZPE = zero-point energy.
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dimensions, which is 90 for the u-NatQG representation and 123
for baseline – d.

In general, regardless of the property predicted, the models
based on the undirected graphs outperformed the directed,
which are also more computationally demanding because they
contain more edges. The concatenation of the whole-graph
attribute vector in the last layer of the MPNN4G model
improved the results obtained with d-NatQG (Table 3). Further,
for the training set, the best performance in the prediction of
several properties was obtained with the directed graphs, which
thus seem to have a lower generalization capacity (Tables S3 and
S4†). However, in most cases, the MAE and r2 values obtained
for both graph types were rather similar. The unusual topology
of d-NatQG can exclude edges where chemical bonds are present
(e.g. Pt–C bonds in Fig. 3), though it retains the fundamental
interactions within TMCs (e.g. d / p* backdonation). The
remarkable performance of d-NatQG in the GNN models shows
the promise of directed graph representations expressing
donor–acceptor interactions.
Conclusions

The present work showed how the NBO analysis of TMCs can be
used to dene NatQG graphs encoding both geometric and
electronic structure information. The NatQG graphs enabled
the optimization of GNN models for the accurate prediction of
the quantum properties of TMCs. These models will contribute
to the development of new TMCs, which can play a key role in
several elds of high interest, including catalysis, nano-
materials, medicinal chemistry, and renewable energies.

With the HyDGL program, the NatQG graphs can be easily
built from NBO data, which is used to dene both the topology
and the attribute vectors. The graphs can be made either
© 2023 The Author(s). Published by the Royal Society of Chemistry
undirected (u-NatQG), like a conventional molecular graph, or
directed (d-NatQG), for expressing donor–acceptor interactions.
Both avors are infused with electronic structure information
that can be directly related to the textbook concepts used to
rationalize the structure and reactivity of TMCs.

The NatQG graphs were used to optimize GNN models based
on the MPNN and MXMNet architectures. These models pre-
dicted several quantum properties of TMCs with remarkable
accuracy, including the HOMO–LUMO gap and the polariz-
ability, outperforming other models based on different topolo-
gies (CRG graphs) and attributes (periodic table properties).
Interestingly, numerical experiments showed that the electronic
structure information boosted the models performance by an
extent larger than the geometric information. Despite its
unusual connectivity, the d-NatQG representation performed at
a level similar to u-NatQG, showing the promise of directed
donor–acceptor graphs in deep learning.

The results obtained with the NatQG GNNs will be a useful
baseline for the development of machine learning models for
complex molecular systems. These models can be also applied
to the prediction of thermodynamic and kinetic parameters of
chemical reactions catalyzed by TMCs https://doi.org/10.48550/
arXiv.2011.14115. Further, the tmQMg dataset will be a valuable
benchmark for future studies exploring deep graph learning for
TMCs.
Data availability

The graphs reported in this study were generated with the
HyDGL program, which is openly available at https://
github.com/hkneiding/HyDGL. The code has a modular
structure that can be easily modied to generate other graph
types for any molecular system. The tmQMg dataset is also
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openly available at the URL https://github.com/hkneiding/
tmqmg, which provides access to the NatQG and baseline
graphs, outliers, xyz geometries, csv-formatted properties and
targets of all TMCs, and the code of the GNN models.
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