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For performing successful measurements within a limited experimental time, efficient use of preliminary
data plays a crucial role. This work shows that a simple feedforward type neural network approach for
learning preliminary experimental data can provide a quick access to simulate the experiment within the
learned range. The approach is especially beneficial for physical property measurements with scanning
on multiple axes, where differentiation or integration of data are required to obtain the objective
quantity. Due to its simplicity, the learning process is fast enough for the users to perform learning and
simulation on-the-fly by using a combination of open-source optimization techniques and deep-

learning libraries. Here such an approach for augmenting the experimental data is proposed, aiming to
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1 Introduction

The recent global increase in databases on materials as well as
accessible repositories and advanced text mining techniques
has led to the evolution of materials informatics as a new
paradigm for exploration and design of functional materials.
Along with the increase in the available crystal structural input
data, the emergence of high-throughput first-principles calcu-
lation systems has enhanced a variety of materials’ estimated
property data useful for statistical analysis.>* In addition, the
application of machine-learning methods has proved to be
quite efficient for dealing with large amounts of materials
data,"” allowing the extraction of useful information that has
been hidden or too complicated for an ordinary human to
perceive. As a result of the recent rapid growth of such tools for
handling materials data, the process for obtaining candidate
materials in cyberspace has been significantly accelerated,
while the bottleneck for the discovery of functional materials
remains the actual synthesis and experimental evaluation in
real space.® This is because the cost for obtaining experimental
data is usually high, especially when researchers have to use
a state-of-the-art shared facility with fixed machine time.
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Furthermore, not only the experiment itself but also its prepa-
ration can be time-consuming as sometimes one has to start
with optimization of the sample synthesis process, a typical
aspect of physics and materials science workflows.

Such a costly-in-real situation is even more serious in
industrial fields, where the production of “real” items is
expensive. To overcome this issue, an idea called the “digital
twin” was created, where one builds a simulation model that
takes account of the data in real space and tries to optimize the
parameters in cyberspace before real manufacturing.” For being
beneficial, the model has to correspond enough to the objective,
and the cost for the simulation both in terms of money and time
has to be lower than the actual production. Here again, the
application of machine-learning methods has greatly reduced
the duration required for the execution of simulation as
compared to that for performing conventional simulation
algorithms. Recently, the use cases of such a digital-twin
approach aided by machine learning are becoming popular
also in academic research. For instance, machine-learning was
used for approximating time-consuming simulation results for
fluid dynamics, allowing researchers to perform a quick opti-
mization of the growing conditions of objective crystals.?

In this context, the use of the digital-twin approach is also
expected to be effective and highly useful for physics and
materials science measurements, where the objective properties
are sometimes deduced from experimental data by applying
mathematical operations such as differentiation or integration.
Especially in physics, the development of new approaches or
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ideas for data analysis creates an opportunity to revisit or
reanalyze previously published data, allowing researchers to
draw new insights from this previous knowledge. However, it is
quite often that the data are non-evenly spaced along multiple
axes due to experimental confinements, and they may contain
non-linear responses that cannot be interpolated easily. In such
a case, it is quite difficult to estimate the target quantity from
preliminary data. On the other hand, artificial neural networks
are known to have high flexibility and adaptivity in principle.>*®
It has also been discussed™ that neural network learning can be
as efficient as other approximation methods from a viewpoint of
minimizing loss by keeping the number of parameters as low as
possible. They have proved to be even useful when the objective
has inhomogeneity in smoothness*> or when the objective has
several discontinuities.” Thus, approximation using this
method is expected to be suitable for materials science and
physics experimental data that tend to contain discrete change
due to first-order transition and/or multiple peak structures.

In this article, we show that learning preliminary data of
materials science using neural networks provides us a way to
quickly build a model that can describe the target property
dependencies on scanning axes (treated as features). In order to
ensure the accuracy of the model that can be built on-the-fly
during the experiment, we used several open Python libraries
in combination. Once the model is built, the simulation within
the learned feature range can be performed instantly, which
enables researchers to evaluate the experimental plan as well as
its cost (Fig. 1). We propose that such an approach to data
augmentation helps researchers use preliminary- or deposited
data effectively for performing the data-driven search of func-
tional materials.

2 Construction of a neural network
model

Our approach relies mainly on 4 open libraries available to the
public in addition to the Anaconda package.* As a machine-

learning body, we built fully connected feedforward neural
networks, using Keras with the Tensorflow backend (v.2.x).**¢
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Fig. 1 Graphical concept for application of the digital-twin approach
to material property measurements for performing efficient experi-
ments using preliminary data as training data.
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Keras has several optimizers by default, and among them, we
tried stochastic gradient descent, Nesterov accelerated
gradient,"” root mean square propagation,’ and adaptive
moment estimation (Adam)* several times on our data shown
in Section 3. For our data, Adam tended to be the most stable
and fast for minimizing the loss of mean squared error between
predicted values and training data (not shown). We set the
number of layers, nodes, learning rate, batch size, and regula-
rization methods and factors as hyperparameters to be opti-
mized. Once these hyperparameters are suggested, random
weights and biases are given as the initial values in Keras and
they are tuned by the optimizer as the epoch proceeds in
a single training run. Thus the learned result in a single run
varies by the initial random values, even though there could be
a general trend for obtaining a moderate set of hyper-
parameters; for example the case of the learning rate and batch
size.’*?* To be quick, we confined the default search space of
the hyperparameters to the following range: 2 < number of
layers =10, 50 =< number of nodes <200, 5¢ * < learning rate
=5e~*, and 16 =< batch size <1024 varying on the data size. To
obtain the best possible learned result in a fixed time, we used
the Bayesian optimization package Optuna.*® By combining
a relational database provided by MySQL,* Optuna receives
each training result with a set of hyperparameters running in
parallel, so that it can determine a set of hyperparameters for
the next run based on the tree Parzen estimator.* Typically, the
best set of hyperparameters is found after at most ~30 runs. For
visualization of data and controlling multiple Optuna runs in
parallel, we used the Streamlit library®® to construct a graphical
user interface (GUI) that works on a web browser. For ease of
use, we also provide a Jupyter Notebook that does not require
the usage of MySQL, without several visualizations.

To obtain the best model during the hyperparameter search,
we used three functions equipped in the above libraries. The
first is early stopping implemented in Keras, with the option of
saving the best model in the run, where the maximum epoch
number is 500. The second is the learning rate scheduler
implemented in Keras, where we change the learning rate to be
5 times smaller than its initial value after 100 epochs. The third
is pruning with the asynchronous successive halving algo-
rithm?® implemented in Optuna, where it examines if each run
should be pruned based on the comparison of the current score
with those of running parallel by 25" epochs where n is an
integer greater than or equal to zero.

The approach used here might be primitive as compared to
recent state-of-the-art combinations of neural network archi-
tectures, optimizers, and other techniques, but we tried to keep
the system simple, fast, and easy to use as much as possible
since we think that such tools should be convenient if they can
be wused instantly even during the experiments, where
researchers do not necessarily have an access to powerful PCs.
As a result, we could quickly finish learning small datasets
typical for physical property measurements (number of data ~
a few thousand) shown in the next section, even without using
graphics processing units (GPUs). More details on case studies
for the duration and used computers are in the ESL.T A tutorial
for how to get ready and perform the neural network learning

© 2023 The Author(s). Published by the Royal Society of Chemistry
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and simulation shown in this paper will be available at https://
www.github.com/kensei-te/mat_interp.

3 Results and discussion

In this section, we show 4 typical use cases as an example. The
first is the magnetization curve of a well-known magnetocaloric
material ErCo,, where 1% order transition occurs that accom-
panies a steep change in the magnetization as a function of
temperature and the transition temperature migrates by appli-
cation of an external magnetic field. The second example is the
magnetization curve and estimation of magnetocaloric effect in
another magnet Fe;Ga, that shows 1° order transition but
whose transition temperature changes more drastically by the
applied field than in the first example of ErCo,. The third
example is the resistance data of the PAH superconductor which
is relatively noisy as compared to the above examples. The
fourth example is the mapping data of angle-resolved photo-
electron spectroscopy (ARPES) intensity on Fermi energy of
a La(O,F)BiS, superconductor taken above superconducting
temperature (7.) as a demonstration of the application of the
method for a two-dimensional intensity map, consisting of
a number of peak structures.

3.1 M(T, H) of the ErCo, magnet and estimation of its
magnetocaloric effect

First, we show a case for physical property data that have 1st
order transition, namely a steep change in the observed value.
ErCo, is known to be a ferrimagnet with an ordering tempera-
ture Tcurie Of ~ 35 K.?® It exhibits a 1st order magnetic transition
accompanied by magnetostriction, and the material is one of
the most popular materials for magnetic refrigeration.>*=** To
evaluate the magnitude of magnetic entropy change |ASy|, one
of the most common ways*® is to measure the magnetization of
the sample as a function of temperature and applied magnetic
field change AH (from 0 to H) either isothermal or isofield, and
deduce |ASy| by applying the following Maxwell's equation to
the observed magnetization data:

’

HaM(T, H’)
ASm(T,AH) = MJ dH

o 0T

The equation includes an integration along the applied field
(H). Practically, with such discrete experimental data, trape-
zoidal integration can be applied for a numerical integration,
which corresponds to a linear interpolation along the H-axis.
However, if we estimate |ASy| in this manner from the experi-
mental data shown in Fig. 2(a) taken with a coarse magnetic
field step, we end up with extrinsic oscillation of estimated
|ASnm| values shown as a gray solid line in Fig. 2(e). This is simply
because of the failure of linear interpolation of data having 1st
order transition (see the ESI} for technical details and
comparison of approximation methods including several
regressors available in Scikit-learn®?). To avoid this extrinsic
effect for estimation of the target properties, one has to use
a finer magnetic field step, so that linear interpolation starts to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Preliminary magnetization data of ErCo,, which are used as

the training data for construction of the model. (b) Simulated
magnetization by the trained model for the conditions in the training
data. Gray solid lines show the training data. (c) Magnetization of ErCo,
with the magnetic field step proposed by the model. (d) Simulated
magnetization by the trained model. (e) Estimated |ASw| of ErCo, for
a field change of 0-5 T. (f) Simulated |ASn| for different experimental
steps of magnetic fields. The gray solid line shows the estimated |ASu|
from (a) by applying trapezoidal integration along the magnetic field
direction. The blue arrows between figures indicate the order of the
workflow of the measurements and simulations.

work well since dM/dT|y between two steps has a finite overlap
each other. This means one has to know the appropriate
measurement step before the measurement itself. In such
a case, neural network simulation based on preliminary data
works efficiently as it can perform a non-linear interpolation.
Fig. 2(b) shows the predicted magnetization values by a con-
structed model for the conditions in the training data shown in
Fig. 2(a), which correspond well to the training data, indicating
that a plausible model has been made. Once such a model is
constructed, the model can perform quick predictions for any
desired feature value within the learned range. After a couple of
trials, we found as shown in Fig. 2(f) that extrinsic oscillation in
the simulation is expected to be significantly suppressed when
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the magnetic field step of the measurement is smaller than 0.2
T. We measured the magnetization in the proposed step as
shown in Fig. 2(c), and found as shown in Fig. 2(e) that the
experimentally evaluated |ASy| corresponds very well to what
has been predicted by the simulated model.

3.2 M(T, H) of the Fe;Ga, magnet and estimation of its
magnetocaloric effect

Here we show the case of another magnet Fe;Ga, and evaluation
of its magnetocaloric properties, to show the possibility of
applying the neural network study for analyzing literature data.
The magnetic properties and magnetization as a function of
temperature and magnetic fields have been reported,* while
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Fig. 3 (a) Preliminary magnetization data of FezGa4, Which is used as

the training data for construction of the model. (b) Simulated
magnetization by the trained model for the conditions in the training
data. Gray solid lines show the training data. (c) Magnetization of
FesGa, with a magnetic field step proposed by the model. (d) Simu-
lated magnetization by the trained model. (e) Estimated |ASy| of
FesGay for a field change of 0—1 T. (f) Simulated |ASu| for different
experimental steps of magnetic fields. The gray solid line shows the
estimated |ASu| from (a) by applying trapezoidal integration along the
magnetic field direction. The blue arrows between figures indicate the
order of the workflow of the measurements and simulations.
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|ASy| of this material has not been reported yet. Fig. 3(a) shows
our preliminary experimental data that corresponds well to the
literature data,® but both of them do not have fine enough
experimental steps to evaluate |ASy| of this material. As shown
in Fig. 3(d) and (f), we have performed a simulation of expected
|ASy| taken on each field step case and found that the extrinsic
effect for |ASy| would not be observed when we measure
magnetization with a magnetic field step of less than 0.1 T for
this material. Considering the required experimental time, we
chose a 0.075 T step, and the simulated data showed an excel-
lent correspondence with the real experimental data as shown
in Fig. 3(c)—(f). The simulation also tells us that the estimated
|ASy| is at most 0.25 J kg~ ' K~ ' by a field change of 0-1 T (which
is small as compared to those of other magnetocaloric mate-
rials®®) despite this measurement covering a wide temperature
range of 10-200 K with a fine magnetic field step; hence it is
expected to take approximately 1 week. Therefore if one is
simply looking for a material with high |ASy|, the simulation
tells us that this material may not be suitable to be synthesized
and measured by spending a fair amount of time. In other
words, such a simulation is not only useful for analyzing the
past preliminary or repository data from a different point of
view, but it can also help researchers evaluate the cost of per-
forming the experiment by leveraging the confined knowledge
available from preliminary- or literature data.

3.3 R(T, H) of the PdH superconductor

Next, we show the case for data with a lower signal-to-noise
ratio. For this purpose, we used a part of our resistance data
of PAH* as training data (Fig. 4(a)). As can be seen in Fig. 4(b),
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Fig. 4 (a) Training data of resistivity measurements for PdH, taken
from a part of the whole experimental data in (c). (b) Simulated resis-
tance by the trained model for the conditions in the training data. Gray
solid lines show the training data. (c) Experimental data of resistivity
measurements for the PdH superconductor.?* (d) Simulated resistance
by the trained model for the same conditions as in (c). Gray open
circles show the conditions seen by the model during training.
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the model does not necessarily capture the ultrafine structure
coming from noise; however it grabs not only the overall
tendency of the lineshape but also several fine structures that
might be influenced by noise. The inability of tracking the full
noise is because of the fact that the number of layers and nodes
in the model is limited and lower than the number of total
training data points. Indeed, neural networks are sometimes
used for denoising purposes.’**® On the other hand, our
intention here is to simulate the experiment as it is, including
the extrinsic effects such as noise and the unique characteristics
of the measurement apparatus, based on the non-evenly spaced
preliminary data. By comparing the experimental data shown in
Fig. 4(c) with simulated data shown in Fig. 4(d), it can be said
that the model in the current approach can tell us how the ex-
pected lineshapes can be affected by the noise level that
appeared in the training data, with a finite and inevitable
denoising effect.

3.4 Angle-resolved photoelectron spectroscopy intensity
map of La(O,F)BiS,

As a last example, we show that our quick and simple approach
is also applicable to a two-dimensional intensity map, namely,
the ARPES intensity map at Fermi energy in the La(O,F)BiS,
superconductor in a normal state (above T..). ARPES intensity at
fixed energy tends to be high in an angular area where the
corresponding electronic state exists, and thus the data consist
of a number of peak structures (see the ESIT for the lineshape of
each cut). In Fig. 5, the ARPES intensity is shown as a function
of two-dimensional angles with respect to the normal angle to
the sample surface that corresponds to two-dimensional wave
vectors in reciprocal space.’” For constructing such mapping
data, it is quite often that one measurement is performed by
fixing one of the axes (for instance 6, in the figure) and keeping

Experimental Simulation
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Fig. 5 (a) Roughly scanned ARPES intensity distribution as a function
of angles with respect to the sample normal, used as training data. (b)
Simulated ARPES intensity map by the trained model for the conditions
in the training data. The green dotted square shows the simulated
angular area in (d). (c) Same as (a) but with proposed angular steps by
simulation in (d). (d) Simulated ARPES intensity map by the trained
model for estimation of the measurement conditions in (c).

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

concatenating data with different angles of 6,. Therefore
a preliminary measurement with a coarse angle step of 6,
(Fig. 5(a)) can be performed before a serious measurement with
fine angular steps and better statistics (Fig. 5(c)), so that one can
determine the objective measurement area of angles. With the
help of neural network learning, we can simulate how the data
would become with specific measurement areas and steps as
shown in Fig. 5(d); thus the simulation helps researchers make
a decision on planning the experiment. Here we note that the
simulated pattern captures characteristics of the measurement
apparatus, namely high sensitivity at the edge and detection
limits in certain angles, so it is suitable for estimating the effect
of such instrumental conditions as well. However, the simu-
lated pattern is affected by the presence of sizable noise; hence
the pre-processing of training data with other noise reduction
methods might help further though such a process may take
longer time. Alternatively, it is also possible to take an average
of predictions using several models found during the learning
process. We also note that although our simple approach is
applicable on-the-fly to such mapping data including non-
evenly spaced ones, other sophisticated methods such as the
super resolution convolutional neural network-based
approach® would perform certainly better especially for
evenly spaced data such as photographs if one can spare
enough time for training and has an access to powerful GPUs.

3.5 Scope and limitation of the current approach

Here we note the applicability/inability of our approach. It can
quickly learn the data so that one can perform the simulation
during the experiment, especially when the total number of data
points is kept up to a few tens of thousands. For this reason, it is
preferred to keep the dimensions of data (i.e., the number of
feature columns) low, even though it can deal with multidi-
mensional data. The approach would be useful mainly in two
cases: (i) Simulation of a costly experiment from preliminary
experimental data: based on the roughly scanned data, one can
simulate how the data and resultant estimated target properties
would be, when taken in fixed experimental steps and ranges.
Thus it helps researchers plan and perform efficient experi-
ments. This is beneficial especially when the target properties
are deduced from mathematical operations on experimental
data and hence depend on experimental conditions, as shown
in Sections 3.1 and 3.2. (ii) Alignment and augmentation of
repository data: there is an increasing number of accessible
materials data sets that have been published in the past. It is
quite often that one encounters such problems that despite the
material being of interest, there is a mismatch or lack in the
experimental conditions as compared to what is required in
order to perform additional analysis. As the current method can
adapt readily to non-evenly spaced data with a non-linear
response, it will help researchers judge whether the material
is worthy of being examined further by reusing this data for the
simulation method proposed here, sparing a certain amount of
experimental cost as shown in Section 3.2.

It is worth noting here that the method is ultimately a mere
interpolation, and thus the signal that is skipped in the training
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data with too coarse a step will never be predicted in the
simulation. Particularly in physical property experiments, the
existence of only a few data points (such as sharp peaks) can
have great significance for the entire observation. Experimen-
talists would have a dilemma: the more training data we
provide, the more accurate the model becomes, while experi-
mental data are costly to collect. Given these factors, we have
used all of the preliminary experimental data as the training
data in Sections 3.1-3.4, aiming to build an interpolator that
can map the desired relationship and use it to simulate/suggest
what steps we should take to accurately measure the properties
of interest in a given range. As shown in these examples, the
models built here, despite their simple approach, were able to
learn well the relationship between the two scanning axes and
the target properties, allowing the simulated results to corre-
spond well with the real costly experiments. This shows the
potential of its usage in physical disciplines. We also stress that
though the simulation helps researchers plan the experiment,
the simulated results and estimated values of physical proper-
ties themselves should be clearly distinguished from experi-
mental data and be taken with care since it is not certain what
will come out in reality until verified by the experiment. As
shown in Sections 3.3 and 3.4, the prediction by learned models
includes how the data will be affected by unique characteristics
of experimental apparatus (sensitivity, detection limit, and so
on) and noise that also helps researchers for decision-making
on experimental plans. The effect of noise could be examined
by comparing several simulated results in different runs (see the
ESIT for details). If the researcher aims to suppress the effect of
noise rather than simulate it, other noise reduction methods
may work better.

4 Conclusions

In this work, we present a simple and quick method to simulate
experimental data by learning preliminary data using fully
connected feedforward neural networks. The approach is shown
to be suitable for materials science experimental data with
typical examples. Such a tool would help researchers deal with
preliminary- or past repository data efficiently, supporting
decision-making during experimental research.
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